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Powerful turbidity currents driven by dense basal
layers
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Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet

least documented sediment transport processes on Earth. A scarcity of direct observations

means that basic characteristics, such as whether flows are entirely dilute or driven by a

dense basal layer, remain equivocal. Here we present the most detailed direct observations

yet from oceanic turbidity currents. These powerful events in Monterey Canyon have frontal

speeds of up to 7.2 m s−1, and carry heavy (800 kg) objects at speeds of ≥4m s−1. We infer

they consist of fast and dense near-bed layers, caused by remobilization of the seafloor,

overlain by dilute clouds that outrun the dense layer. Seabed remobilization probably results

from disturbance and liquefaction of loose-packed canyon-floor sand. Surprisingly, not all

flows correlate with major perturbations such as storms, floods or earthquakes. We therefore

provide a new view of sediment transport through submarine canyons into the deep-sea.
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T
urbidity currents deposit many of the largest sediment
accumulations on Earth1–3, and sculpt the deepest canyons
on our planet4,5. These sediment gravity flows are impor-

tant because they flush globally significant volumes of sediment6,7

and organic carbon8,9 into the deep ocean, thereby affecting
global geochemical cycling10 and deep-seafloor ecosystems11.
They break valuable seabed pipelines, and communications cables
that carry >95% of global data12, while their thick deposits host
important oil and gas reserves13.

Turbidity currents are challenging to measure1,14–16 because
they occur underwater, are destructive, and it is difficult to predict
when and where they will occur. Successive seafloor cable breaks
show that frontal velocities of oceanic turbidity currents can be
up to 19 m s−1 17,18. However, understanding the anatomy of
these flows requires profiles of both velocity and sediment con-
centration, ideally at multiple locations along their path to cap-
ture how flows evolve. While millions of such profiles exist for
rivers6,19, velocity profiles from turbidity currents have been
measured in only ten sites worldwide1. There are even fewer
direct measurements of sediment concentration in turbidity
currents, even at a single height above the seabed1.

Due to the challenges of measuring turbidity currents, our
understanding of their anatomy is based primarily on the inter-
pretation of their deposits in the geologic record, laboratory
experiments, and computational20 or analytical21 models. How-
ever, similar deposits can be formed by different flow types1,22,23.
Laboratory experiments24 may not capture the dynamics of more
powerful oceanic turbidity currents25 because of the uncertainties
in scaling. Numerical models depend on key assumptions or
boundary conditions, such as mass exchange with the bed20

which may be uncertain.
The fundamental structure of turbidity currents has remained

unresolved despite being essential input for modeling and pre-
dicting turbidity current dynamics, their impact on seafloor
infrastructure, and the architecture of their deposits. In particular,
it is important to determine whether turbidity currents are dilute
sediment suspensions, as is the case for most rivers; or whether
turbidity currents are driven by near-bed layers with high (>10%)
sediment concentrations. There are fundamental differences in

how dilute suspensions, and flows with dense near-bed layers (i.e.,
debris flows or granular flows) behave, and what their deposits
look like22,23,25–27. For example, near-bed sediment concentra-
tions strongly affect the basic mechanism(s) that keep sediment
aloft, basal friction coefficients, and rates of bed erosion; all of
which determine driving forces, flow velocity, runout, and impact
forces on seabed structures.

A second key question about turbidity currents is how they are
triggered. Previous studies have mostly inferred that turbidity
currents need a major external trigger, such as an earthquake,
storm, or river flood1,28, although flows may be delayed for hours
to several days after a flood peak12,37, or resulted from a com-
bination of low tides and high river discharge29. This inference is
important because it forms the basis for predicting when turbidity
currents occur, and their recurrence intervals, which is important
for hazard assessments30. Monitoring was conducted in Monterey
Canyon, offshore California, because previous work demonstrates
that multiple turbidity currents occur each year16,31 and canyon
morphology32, and recent seafloor deposits31,33,34 are already well
characterized.

Here we present the first results from an ambitious monitoring
study that reveals the detailed anatomy and timing of turbidity
currents, and how they evolve between sites spread over a long
(50 km) distance. Turbidity currents and their impact on seafloor
morphology are characterized using a dense array of >50 sensors
deployed for an 18-month period (Fig. 1), combined with precise
mapping of seafloor change. We provide data that show turbidity
currents in Monterey Canyon contain a fast and dense near-bed
layers. We also document the occurrence of turbidity currents
without major external triggers.

Results
Monitoring array. An array of sensors that included six moor-
ings spaced from 285 to 1850 mwd (meters water depth) covering
a 50 km stretch of the canyon axis, were deployed in Monterey
Canyon (Fig. 1). On each mooring, a downward-looking Acoustic
Doppler Current Profiler (ADCP) (300 kHz frequency) was
mounted 65 to 70 m above the seafloor, and usually equipped
with a pressure sensor that recorded water depth. The ADCP-
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measured profiles of water column velocity and backscatter (a
proxy for sediment concentration35,36) at 1 m vertical intervals,
every 30 s. In addition, three upward looking ADCPs were
deployed on a seabed frame (Seafloor Instrument Node (SIN))
located just upstream of the deepest mooring; these ADCPs had
three different frequencies (300, 600, and 1200 kHz) in order to
constrain sediment concentration profiles derived from back-
scatter. ADCPs are ineffective for measuring the bottom few
meters of a turbidity current33, therefore novel sensors were
designed and deployed to overcome this: (i) Benthic Event
Detectors (BEDs) are motion sensors encased in boulder-sized
housings that are initially buried in the seafloor and then carried
within flows; (ii) one of these motion sensors along with an
Acoustic Monitoring Transponder (AMT), that also measures
motion, was mounted on top of an 800-kg tripod frame with 1.5-
m-long legs. Two segments of the canyon floor in the proximal
(190 to 560 mwd) and distal parts of the sensor array (1300 to
1885 mwd) were mapped six times with exceptional vertical
precision (10 cm) using Autonomous Underwater Vehicles
(AUVs) to document morphological change.

Anatomy of flow events. The ADCP array detected 15 turbidity
currents, based on sudden changes in velocity and backscatter
within the water column (Fig. 2). Data from the ADCP-moorings
demonstrate that turbidity currents began with a thin (<10 m),
fast (typically >2 m s−1), and dense layer for a short duration
(3–10 min). Most flows lasted <30 min at the head of the array
(MS1 in Fig. 1) and died out within the canyon (Fig. 3). Fourteen
of the flows originated in the uppermost Monterey Canyon (<290
mwd). One event was only detected by the moorings at 1290 and
1450 mwd, which are below the intersections with Soquel Can-
yon, a tributary that merges with Monterey Canyon in ~995 mwd
(Figs. 1, 2). The three flows that traversed the full sensor array to
>1850 mwd (Fig. 3) evolved into thicker (>30 m) and longer
duration (4–6 h) flows farther downstream (Fig. 2).

The front of each turbidity current caused an abrupt increase in
water pressure that slowly declined (over 4 to 120min) but did not
always return to initial values. We infer that mooring cables were
initially pulled abruptly downwards, before returning back to
vertical as the flow waned. Irreversible pressure changes represent
increases in water depth, and down-canyon transportation of
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moorings (including 450 kg anchors) (Supplementary Data 1). The
most marked such event occurred on 15 January 2016 when the
shallowest mooring moved 7.1 km at an average speed of 4.5m s−1.

Flow front (transit) velocities between instruments. The transit
velocity of a flow front (Fig. 2) is calculated from its arrival time
at sequential sensors and their deployment positions along the
canyon thalweg (Supplementary Data 2). Transit velocities
between successive moorings commonly exceed maximum
ADCP-measured velocities (Fig. 2). Near-bed ADCP measure-
ments are compromised during the first 1–2 min of an event by
erratic mooring movements (including tilt and down-canyon
displacement) and by reflections from the channel flanks in the
narrow sections of the canyon. The fastest reliable ADCP-
measured velocities commonly occurred several minutes after
arrival of the flow front, within a high backscatter zone near the
seafloor (Fig. 2).

Repeated remobilization of objects buried within the seabed.
The turbidity currents were capable of transporting very heavy
objects. The 800 kg AMT-tripod-frame moved down-canyon six-
times. It moved 4.2 km on 15 January 2016 and was found on its
side half-buried in the seabed. Upon re-deployment, it moved 0.9
km on 24 November 2016 (Fig. 4) and was again found on its side
buried with only one foot sticking above the seafloor (Fig. 4b)
entombed in an at least 2 m thick sediment layer. On both
deployments, the AMT temperature sensor made measurements
every 45 min, and ceased to record tidal oscillations once the
AMT-frame had been transported (Fig. 4d, Supplementary
Data 3). This damping of the tidal temperature signal (Fig. 4d)
indicates burial of the AMT-frame beneath the seabed, although
the frame might have been re-exhumed for short periods between
temperature measurements. Pressure measurements show that

the 2-m tall AMT-tripod-frame moved five times after it was
buried (Fig. 4d). Such movement of buried objects demonstrates
remobilization of the seabed.

Transit velocities of 4.8 to 5.3 m s−1 (Fig. 4c) during the 24
November 2016 turbidity current were calculated from the
distance traveled by the event between boulder-like BEDs spaced
along the canyon axis in 208 to 327 mwd. These transit velocities
exceed the maximum current velocity (3.9 m s−1) measured by
the ADCP on the mooring deployed at 290 mwd during this
event.

The velocity of individual BEDs is calculated from the change
in pressure over time (Fig. 4c, Supplementary Data 4) converted
to distance traveled based on the canyon thalweg bathymetry
(Supplementary Data 5). For example, on 24 November 2016, the
AMT-tripod-frame with in-water density >6 g cm−3 moved at
4.0 m s−1, and the nearest two BEDs with in-water densities
of 2.1 g cm−3 moved with average velocities between 2.7 and 4.0
m s−1, despite their different size, shape and density. The BED
and AMT-tripod-frame velocities were slower than the transit
velocities. The synchronous movements of BEDS show flows can
be active over distances of several kilometres (Fig. 4c).

Seafloor change and deposits. Repeat mapping surveys in the
upper canyon show that substantial morphological change
occurred in the areas where the heavy objects moved (Fig. 5).
These maps show a 150–300 m wide swath of the active canyon
channel characterized by abundant crescent-shaped bedforms
with amplitudes of 1–3 m and wavelengths of 20–80 m. Changes
in the position of these 1–3 m high bedforms led to widespread
vertical changes of ±3 m between surveys (Fig. 5), and vertical
changes exceeded 3 m in a few places. This narrow swath of
bathymetric change, which is composed of poorly sorted coarse
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sand, gravel and mud-clasts31,33,34, is where movement of the
heavy objects took place (Fig. 5).

The repeat mapping survey towards the end of the sensor array
(at ~1800 mwd; Fig. 5) contains similar large bedforms32.
However, these bedforms at ~1800 mwd experienced limited
(<0.5 m) crest-erosion, and lee side deposition, despite the fast
(up to 3.3 m s−1; Fig. 2) velocities of some flows. In contrast to the
AMT frame in the upper canyon, the SIN frame located on the
seabed at 1850 mwd was not buried, and its temperature sensors
continued to record tidal oscillations.

Discussion
The passage of turbidity currents within Monterey Canyon was
measured with unprecedented precision (Fig. 2), enabling new
insights into flow triggering and their internal structure. Fourteen
events originated in Monterey Canyon in less than 290 mwd. The
event which was first detected in 1290 mwd may have come from
Soquel Canyon tributary (Fig. 2). Previous work mainly suggests
that major events, such as river floods37, earthquakes38, or
anomalously-large wave heights39 trigger turbidity
currents28,29,40. None of the flows documented here are linked to
earthquakes (>Mw 2.0) and only the last event occurred when
there was any significant discharge occurring in the Salinas River
(Fig. 3c), which has been engineered to enter the ocean directly at
the head of Monterey Canyon under low flow conditions. Four-
teen of the fifteen flows occurred in the winter months (Fig. 3).

These events typically coincide with large storm wave heights
(Fig. 3b), which may have triggered seabed failure in the upper
canyon. However, one of the most powerful flows (1 September
2016), which ran out at speeds of up to 5 m s−1 (Fig. 2) through
the whole sensor array (Fig. 3), occurred in a period without large
wave heights, floods or earthquakes. This event suggests that
turbidity currents do not always require major external triggers.
Small perturbations (e.g., normal wave heights) may cause sea-
floor failure that produces powerful and long runout flows
(Figs. 2, 3).

Flow-front transit velocities between moorings and BEDS
reached up to 7.2 m s−1, and typically exceeded the highest
velocities measured by ADCPs (Figs. 2, 4). This key observation
indicates that the fastest part of the flow is located within ≤2 m
above the seabed, where ADCP measurements are compro-
mised41, or within underlying remobilized seafloor.

Although sediment concentrations were not measured directly,
our observations support the existence of a dense (i.e., ≫10%26,42

volume) remobilized layer for the following reasons. First, rafting
and entombment within a dense layer of flowing sediment
explains the successive exhumation, movement and burial of
heavy objects (Fig. 4d). Similar successive down-canyon move-
ments and burial were observed previously with prototypes of the
BEDs31. It seems less likely that an entirely dilute flow, perhaps
with a thin bedload layer, could transport these sometimes
exceptionally heavy objects. If the 800 kg AMT-frame was
entombed in a dense layer, then the thickness of that dense layer
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is at least comparable to its diameter (2 m). Second, temperature
sensors on the heaviest object (800 kg AMT frame) ceased
recoding tidal fluctuations, suggesting the AMT was most likely
entombed within the remobilized bed, although it could have
been exhumed for short periods between these measurements
(Fig. 4c). Third, objects with very different size, shape and den-
sities moved at broadly similar speeds down-canyon behind the
flow front (Fig. 4b). This includes an irregularly shaped 800 kg
AMT-frame, and much smaller and less dense BEDs (Fig. 4b).
This is more consistent with rafting than being dragged beneath a
dilute flow, where such objects with different size, shape and
densities would be expected to travel at different speeds. Finally,
flows that moved heavy objects are often <15 m thick, as docu-
mented by ADCP data (Fig. 4a). If these flows are entirely dilute,
they are unlikely to displace entire >80 m high moorings with
450 kg anchors (Figs. 1, 2). Their motion is better explained by
the anchors being rafted in a dense layer, rather than by drag on
the mooring cable from a relatively-thin, dilute flow.

We lack detailed in situ seabed measurements of how dense
remobilized layers originate. However, the floor of Monterey
Canyon often comprises loose-packed sand that is susceptible to
failure and liquefaction22,43. Indeed, liquefaction of canyon floor
sand has been observed to be induced by vibration during coring
operations (see ref. 44 supplementary video), or by divers45.
Detailed measurements from partially water-saturated sediment
below terrestrial debris flows with similar (4–15 m s−1) speeds are
also informative46,47. They emphasize how contractive shear
displacement of loose-packed substrates, and liquefaction, have a
key role in substrate remobilization, as well as reducing basal
friction46,47. Sudden undrained loading produces high pore
pressures beneath the front of these large-scale subaerial debris

flows, which erode the partly-water-saturated substrate at their
front, such that the debris flow accelerates and is self-sustaining.
The substrate on the floor of Monterey Canyon is fully water-
saturated, and for reasonable values of sand permeability and
basal shear rates, high pore pressures are likely to develop during
flows47. We thus infer that liquefaction of loose-packed sand may
have an important role in producing the fast-moving dense
remobilized layer at the base of the turbidity current.

Models of submarine flows with a dense remobilized layer
(Fig. 6a) must be consistent with the existence of crescent-shaped
bedforms, which are ubiquitous along the floor of Monterey
Canyon (Fig. 5)32,48. These bedforms have heights of 1 to 3 m,
and wavelengths of 20 to 80 m (Fig. 5). Similar bedforms occur in
many other sandy submarine canyons and channels
worldwide32,48–50. They have been attributed to flow instabilities
(termed cyclic steps) that develop within supercritical flows,
which lead to hydraulic jumps and trains of up-slope migrating
bedforms30,35,49–53. What is unknown is whether the bedforms
are preserved during the dense sediment current processes
observed here, which appear to remobilize the bed potentially
through liquefaction.

The motion data recorded by the BEDs, as they were carried
down canyon, provide important information about when bed-
forms are present (Figs. 4, 7). The movements of individual BEDs
probably reflect conditions a short distance behind the flow front
(Fig. 6). Pressure records indicate BEDs often experienced vertical
oscillations with amplitudes of 1–3m, even for the BED attached
to the 800 kg AMT-frame (Fig. 7). The high density of this AMT-
frame (>6 g cm−3) suggests that it would move along the base of
the flow. The amplitude and wavelengths of these vertical oscil-
lations (Fig. 7b) are broadly similar to crescent-shaped bedforms
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(Fig. 5). Thus, these oscillations suggest that the AMT-frame
traveled over bedforms, which were thus not wiped-clean by
frontal plowing or other erosional processes (Fig. 6).

Suitable in situ physical properties measurements (e.g., pore
pressure44,45) to determine exact processes of erosion and bed-
form generation near the flow front were not collected. However,
field-observations and detailed laboratory experiments show that
cyclic steps and up-slope migrating bedforms can form beneath
supercritical flows with very high (20–40% volume) sediment
concentrations54,55, as well as beneath dilute supercritical
flows48–52. Previous work notes that bedform migration below
dense near-bed layers can be accompanied by local bed lique-
faction54, and bedform dimensions may be controlled by prop-
erties of this dense near-bed layer55. We therefore propose that
the frontal part of the flow liquefies (and possibly also
mechanically erodes) the sandy canyon-floor, helping to sustain a
dense near-bed layer below which bedforms persist and develop.
Our time-lapse surveys are also too infrequent to distinguish
between models in which the flow-front wipes out pre-existing
bedforms, and new bedforms are created; or flow simply modifies
these pre-existing bedforms (Fig. 6). Bedforms may be sculpted
further by the dilute trailing body of the event, which itself may
be supercritical (Fig. 6).

We conclude with a model (Fig. 6) for the evolution and anat-
omy of turbidity currents, based on these novel field data. Turbidity
currents are initiated in the upper canyon mainly by failure within
the loosely packed sand in the canyon axis or within sediment
draping the flanks of the canyon (Fig. 6c). The failure and
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liquefaction creates a dense fast-moving layer (dense remobilized
layer) that accelerates downslope (Fig. 6b; Fig. 6c Stages 1 and 2).
Erosion and liquefaction of canyon-floor sand behind the flow front
produces a self-sustaining, fast and dense basal layer, which drives
the overall flow-event. Migration of the crescent-shaped bedforms
underneath the dense remobilized layer, as a consequence of sub-
strate erosion on the lee side and deposition on the down-canyon
stoss side, explains the ±3m amplitude bathymetric change
observed between repeat AUV surveys (Fig. 5).

Shear between the dense remobilized layer and overlying water
causes mixing (Fig. 6b; Fig. 6c Stages 2 and 3) that generates an
overlying dilute, turbulent sediment-suspension (Fig. 6a; V2 and
V3). A few minutes (~2–5 min) after arrival of the flow front, the
velocity of the dense remobilized layer declines (Fig. 6b; V4). This
is demonstrated by relaxation of the mooring cable after its initial
abrupt pull down. While the initial powerful, fast, dense, remo-
bilized layer dies out, the dilute turbulent sediment flow that it
spawns can last for hours (Figs. 2 and 6b; Fig. 6c Stage 4).

Turbidity currents have previously been compared to rivers.
However, our work suggests that this comparison is not always
justified, as their basic structure can be fundamentally
different56,57. Rivers are almost always entirely dilute sediment
suspensions, with dense bedload layers that are only a few grains
thick58. Rivers lack the dense remobilized layers that are several
meters thick, which we document in these turbidity currents
(Fig. 6). These dense basal layers can carry exceptionally heavy
(800 kg) objects, at speeds of >4 m s−1 approaching that of the
flow front, for kilometres. This study also shows that powerful
turbidity currents do not need major external triggers. It thus
documents a new view of submarine flows that dominate sedi-
ment transfer via canyons into the deep-sea.

Methods
Field program. The Coordinated Canyon Experiment deployed an array of
moorings and other instruments for an 18-month period from October 2015 to
April 2017 within Monterey Canyon (Fig. 1). All the moored instruments were
recovered and redeployed in April 2016 and October 2016.

Mooring data. Six of the moorings carried oceanographic instruments and were
deployed within the axis of Monterey Canyon at water depths of 285, 527, 830,
1285, 1450, and 1850 m (Fig. 1). These moorings included downward-looking
Teledyne RDI Workhorse 300 kHz ADCPs mounted 65 to 70 m above the seafloor.
ADCPs measured profiles of velocity and acoustic backscatter (a function of
sediment concentration and grain size) through the flows at sampling rates of 7-
ping ensembles every 30 s. It is important and non-trivial to determine which
ADCP-measured velocities are reliable, especially near the front of flows when the
moorings were experiencing rapid physical movements and when high sediment
concentrations make the definition of the bottom ambiguous41. The maximum
ADCP-measured velocity during an event was defined as the maximum down-
canyon velocity measured with all four beams for at least one ping in the ensemble.
During some flow events, maximum ADCP-measured velocities, determined using
the above criteria, occur below the depth of maximum backscatter intensity (Fig. 2).
Pressure was also recorded on three ADCPs.

Seafloor Instrument Node. A SIN (Fig. 1) deployed at 1840 mwd carried 300, 600,
and 1200 kHz upwards-looking Teledyne RDI Workhorse ADCPs at sampling
rates of 14-, 28- and 54-ping ensembles every 10 s respectively. These ADCPs were
positioned ~0.5 m above the seabed and recorded on a common time base.

Motion and displacement sensors. Novel BED instruments were developed by
MBARI to record seabed motion during down-canyon transport in flow events.
BEDs contain accelerometers along three orthogonal axes, a time recorder, and a
pressure sensor inside a pressure case rated to 500 mwd (Fig. 3). Rotation > 2° s−1

triggers a recording rate of 50 Hz until the BED stops rotating. Remotely operated
vehicles were used to partially bury BEDs within the canyon floor at water depths
between 200 and 400 m (Fig. 1b). BEDs are usually housed in 44.5 cm diameter
spheres or cubes of syntactic foam, ballasted to a density of 2.1 g cm−3. Built-in
acoustic beacons and modems allow for BEDs to be located, and data to be
downloaded, even when BEDs are buried in sediment to depths of >1 m. BEDs
transport velocities during flow events were calculated from the internally recorded
duration of motion and a 10-s running average of pressure (i.e., depth), which were
converted to distance traveled based on canyon thalweg depths33.

A third instrument package was a Sonardyne AMT and a BED (Fig. 4) mounted
on a tripod consisting of a 2-m-long post with three 1.5-m-long legs and a central
bottom locomotive wheel to provide stability. The 800 kg AMT-tripod-frame was
deployed in the canyon axis at ~300 mwd in October 2015 and again in October 2016.
Every 45min, the AMT measured pressure, temperature, pitch, heave, and roll.

MBARI-developed AUVs carrying Reson 400-kHz multibeam sonars conducted
mapping surveys of Monterey Canyon floor and its lowermost flanks between water
depths of 190–560m and 1300–1885m. These pre-programmed AUV missions
provided exceptionally high-resolution bathymetric grids with 0.10m vertical and 1m
horizontal resolution59. AUV surveys were repeated six times between October 2015
and April 2017 (Fig. 3). Maps showing changes in seafloor morphology were
constructed from differences in bathymetry between successive surveys.

Data availability
The authors declare that the data supporting the findings of this study are available

within the Supplementary Data files and at https://doi.org/10.1594/IEDA/324529.
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