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POWERS OF THE CURVATURE OPERATOR OF SPACE FORMS
AND GEODESICS OF THE TANGENT BUNDLE

CTEIEHI OIIEPATOPA KPUBHU3HHU ITPOCTOPOBHUX ®OPM
ITEOAE3HYHI JOTHYIHOI'O PO3IIAPYBAHHA

It is well known that if T is a geodesic line of the tangent (sphere) bundle with Sasaki metric of a
locally symmetric Riemannian manifold, then all geodesic curvatures of the projected curve y=me T’

are constant. In this paper, we consider the case of tangent (sphere) bundle over the real, complex and
quaternionic space forms and give a unified proof of the following property: all geodesic curvatures of
projected curve are zero starting from kj, kg and ky, for the maI complex and quaternionic space

forms, respectively.

BijoMo, o sikigo ™ — reojieanyiia Jinis JiorHuIoro (cd)epruriolo) posmapyBaiiis 3 MeTpHKOIO
Cacaki JIOKQIBIIO-CHMETPHYIIOND PIMAIIONBA MITOIOBHILY, TO BCi I'80)ie3HYIl KPHBH3IIM CITPOEKTOBAHOT
Kpupoi Y=m e [ exoncramramn. Y janiid crarri posriuntyTo nunajiok (cepuyrioro) JI0THYNOTO
POSLIAPYBAIIITS 1Ta)( JIiCIIHMM, KOMILIEKCIIHMH T4 KBATepHioMIMMK NMpocToposuMi dpopMaMu i ma-
Befeno yllitbii(oliallc Jonejlems nacrymiol BiiacTHsocTi: nei reojiesnyill KpUBH3IH CHIpoeK TOBANOT
KpHBOI JIOPiBIIOIOTH 1,10, TIounnaloun 3 ky, k, ta kj; bijmonijmo st pifciol, KoMmieKcioi 1a

Kparepiiotoi ¢popm.

Introduction. K. Sato [1] and S. Sasaki [2] proved that the projection to the base
space of any nonvertical geodesic line on the tangent or the tangent sphere bundle of a
real space form M"(c) is a curve of constant curvatures k; and k, and zero
curvatures ks, ..., k,_. P. Nagy [3] essentially generalized this result. He considered
the case of general locally symmetric base manifold and have proved that the geodesic
curvatures of projection of any (nonvertical) geodesic line on the tangent sphere bundle
are all constant. Nevertheless, it was still interesting to find a clearer description of
projections of geodesics for the case of classical symmetric spaces of rank one. The
second author made a first step in this direction and proved that the projection to the
base space of any nonvertical geodesic line on the tangent or tangent sphere bundle of'a
complex space form CP" is a curve of constant curvatures kj,..., ks and zero

curvatures kg, ..., K, ;.

== Inis this paper, we make a contribution in more clear understanding of trcomelry of
projected geodesics in the case of tangent (sphere) bundle of almost all classical locally
symmetric spaces, namely, spheres, complex and quaternionic projective spaces and
their noncompact duals from a unified viewpoint using the recurrent pr oper ties of
powers of the curvature operator of these spaces. This apploach allows to give also a
unified proof of the results from [1, 2, 4].

We also use an easily proved result [5] stating that the geodesics of tangent or
tangent sphere bundle with Sasaki metric have the same projections to the base
manifold.

Remark on notations. Thlouurhout the paper, (-,-) and |-| mean the scalar
product and the norm of vectors with respect to the cmresPOnding metrics.

1. Summary of main results. Let (M"(c), g) be a Riemannian manifold of
constant curvature ¢, let (Mg”(c); J; g) be a Riemannian manifold with complex
structure J of constant holomorphic curvature ¢ and let (M4”(c); Ji,J5,J5;8) bea
Riemannian manifold with quaternionic structure (J;, J5, J3) of constant quaternionic
curvature ¢.- For the sake of brevity, we denote' by M (c) one of these space forms
with corresponding standard metrics and will refer to M (c) as to a space form of
constant curvature ¢. The main result is the following statement:
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Theorem 1.1. Let M (c) be a space form of constant curvature ¢ # 0. Let T'
be nonvertical geodesic line on the tangent or tangent sphere bundle over M(c).
Let y=moT be the projection of T to M (c). Then the geodesic curvatures k,
ky, ... of ¥ are all constant and

(a) ks=...=k,_| =0 forthe real space form,
(b) kg=...=ky,_, =0 forthe complex space form,
(©) kjg=...=ky,_| =0 for the quaternionic space form.

As the referee noted, the result of Theorem 1.1 can be expressed in more clear
geometrical terms, namely, the projected curve y=mo I' lies in a totally geodesic s?
or Ha, in a totally geodesic CP® or CH? andin a totally geodesic QP3 or

QH3 for the real, complex, and quaternionic space form, respectively. These
assertions can be derived from (6), (10) and (14).
The proof of Theorem 1.1 is based on the recurrent property of powers of curvature

operator of spaces under consideration. Let Ry, be the curvature operator of M (c).
Define a power of curvature operator R¥y recurrently in the fo]lowing way:
~I
RGyZ = REy (RyyZ), p > 1.
The basic tool for our considerations is a following chain of lemmas:

Lemma 1.1. Let Ryy be the curvature operator of the real space form (M"(c),
g). Then, forany X and Y, ' '

(=b%c*) Ry for p=2s—1;
(~b*c*Y 'R}y for p=2s,

-
Réy = s 2 1,

where b=|X A Y| is anorm of bivector X A 'Y.
Lemma 1.2. Let Ryy be the curvature operator of the nonflat complex space

form (M"(c); J; g). Denote by b=|X A Y| the norm of a bivector X AY and
m={(X,JY). Then, forany X and Y, .
Lin(JR%y, Ry, J)  for p=2s-1; B
RYy = , £,
Lin(Rgy, JRyy, E)  for p=2s,
where E s the identity operator and Lin means a linear combination of

corresponding operators with coefficients being polynomials in 1/c, b, m.
Lemma 1.3. Let Ryy be the curvature operator of the nonflat quaternionic

space form (M”(c); Jy,J3,J3; 8). Denote by b= |X A Y| the norm of a bivector
XAY. Set m=(X,J,Y), my=(X,11Y), my=(X,J53Y), m?= mf + m% + m._:j,
J=mJ| +myJy+ myJy. Then, forany X and Y,
Lin(7 Ry, Rxy,J Rxy, Ryy.J)  for p=2s—1;
Lin(R%y,J Ryy, R¢y.J Ryy. E)  for p=2s,
where E s the identity operator and Lin means a linear combination of
corresponding operators with coefficients being polynomials in 1/¢, b, m.
2. Necessary facts and proof of the main result. Let (M", g) be a Riemannian
manifold and let TM" be its tangent bundle. Denote by (u',...,u") a local

RYy = 523,
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coordinate system on M". Then, in each tangent space of M”, the natural coordinate
frame {B,faul,..., d/ou" } form a local basis. Let & be any tangent vector over the
given local chart. Then £ can be decomposed as

s 1_8'“ u_a__
ol o +...+ & v

The parameters (u',...,u" E', ..., E") form the so-called natural induced
coordinate system in TM". The Sasaki metric line element do”> with respect to this
coordinate system is

do® = ds* + |DE|?, ()

where ds” is aline element of M”, DE is the covariant differential of & with respect
to Levi — Civita connection on M", and |-| means the norm with respect to
Riemannian metric on M",

The tangent sphere bundle T M" can be considered as a:hypersurface in the
tangent bundle defined by the condition |&|= 1. We will consider T,M" as a
submanifold in TM" with the induced metric.

With respect to the natural coordinate system, each curve ' on TM" can be
represented.as I'(o) = {ul(c),...,.u”(o’);.,&'(a)......I;"(o)-} with respect to- the arc-
length parameter o and can be interpreted as the vector field E(o) =
= El(0)a/du' + ...+ E"(c)d/u" along the projected curve y=mnoT = (ul(cr),
oy (o). If & is a unit vector field, then T lies in T, M" and represents an
arbitrary curve in T, M".

Denote by () the covariant derivative along 7y with respect to parameter o. Then
I' is a geodesic line on TM" or T, M" if y and & satisfy, respectively, the system of

equations
Y’ = RegY' Y’ = RegY'
T™": { B 35 T M": { gf )
£ =0, g = -p%,
where |:)2 = |n‘:j,’|2 and Rﬁ,g is the curvature operator of M" based on bivector
E' AL

It follows from (2) that p = const in both cases. Denote by s the arclength
parameter on y. Then it follows from (1) that

s . i, 3)

do

so that 0 <p < 1. According to the latter inequality, the set of geodesics of TM" “and

T, M" can be splitted naturally into 3 classes, namely,

horizontal geodesics (p = 0) generated by parallel (unit) vector fields along the
geodesics on the base manifold;

vertical geodesics (p =1) represented by geodesics on a fixed fiber;

. umbilical geodesics correspondingto 0 < p <.1.

In what follows, we will consider the properties of projections of umbilical
geodesics.

Lemma 2.1 (cf. (2]). Let (M", g) be a locally symmetric Riemannian manifold
and let Ryy be its curvature operator. Let Y= 7o' be a projection of geodesic
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line on TM" or T;M" to the base space. Then, for the derivatives of Y of order
p, we have

(p) (p-1)

Y= R'ug'Y g*g"{

and, as a consequence, all geodesic curvatures of y are constant.

Proof. The equalities follow from parallelism of curvature tensor of M" and
equations (2). Moreover, from the evident identity

Sl S

for all p> 1, we conclude that |7(”)| = const for all p > 1 and, therefore, by
induction, all the geodesic curvatures of y are constant,
Proof of Theorem 1.1. Case (a). Denote by e, ..., e, ; the Frenet frame of .

Using the Frenet formulas for the curve with constant geodesic curvatures and keeping
in mind (3), it is easy to see that

'Y(‘,r i} (1 )Ir_l!.zk'kz kl‘._gel‘_l + Lil'l {8], 83, sany 82_‘._3},
4)
Y2 = (1-p>)kiky ... kos_ i €35 + Lin { €5, 45 ..., €352}

for all F2q (with formal setting kUE 1). Setting s=1, 2 in even derivatives, we see
that

B = (1-pH)ky ey,

) (5)
= (I —p-)klk2k3€4 + Lin (82).
On the other hand, applying Lemma 2.1, Lemma 1.1, and Lemma 2.1 again, we get
1™ = Rly’ = —b P Reyy’ = —b )

Using (5), we get
(1 —pz)klkzka,ﬂd_ + Lin (82) =0
and, therefore, k3 =0, which completes the proof.

- Note that b is constant along 7, since

b2 = (& AER) = (p*IEP-(&.E)*) = 2p°(E &) - 2(E.E)p” = 0.

Case (b). Denote by e, ..., e, the Frenet frame of y. Similar to the case (a)
considerations, the Frenet formulas give :
Y2 = (1-p) " 2 kiky . kyy_gen,y + Lin{eg, €3, €553},
0]

= (1-p>)'kiky... kyy_ €35 + Lin {3, €4, ..., €35_2}
forall s=1. Setting s =1, 2,-3,4 in odd derivatives, we get
. 5 B i,
7‘3) = (1 -p2)3’-k,k2e3 + Lin (e)),
> B (8)
= (1-p2)*"%k, ... kyes + Lin (e, e3),

'Y{?) — (l—p-) -kl”'kﬁe'? + Lin (8[,83,85).
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Onrthe other.hand, applying Lemma.2.1, Lemma 1.2, and Lemma: 2.1 again, we get

Y% = Rfey” = Lin (REg, J R, E)Y = Lin (v, ¥, y),
)
Y7 = Rg’,gy’ 2 Lin(Ré,g_,JR&,E, E)y = Lin(y®), W), ).
Excluding J Y(l) from- (9), we arrive at the equation _
| 1) = Lin (Y, v). (10)

Using (8), we:get
(1—p*)""?ky .. .kgeq + Lin (e, e5,€5) = 0
and conclude that kg =0, which completes the proof.
Note that the coefficients of all linear combinations are constants:.
Indeed, by Lemma. 1.2, the.coefficients are polynomialsin 1/¢; b=|&" A &| and
m = (&, JE). The value. b is constant along 7y by the same reasons as in case (a).
The value m is constantalong v, since

m’ = (&, JE)" = (§”,JE) + (&,J&) = 0.
Case (c). Denote by ey, ..., ey, the Frenet frame of y. As above, the Frenet

formulas give

Y& = (1-p?Y " 2hky .. kyy_sea; + Lin{ey, €3, ..., €55 3},

11
Y(Z.\’) = (1= p‘z.)'\'k\kl“‘ kyy_jey, +Lin{ey, €4, ..., 85 5} a
for all &= 1. Setting s =1, 2, 3, 4, 5, 6 imodd derivatives, we. get
Y = (1-pH)' e,
¥®) = (1-p*)>?k kyey + Lin (e)),
¥ = (1-p%)*"2k; ... kyes + Lin (e}, e3),
(12)

‘Y(?) = (1 —pz).?!?'ki [ kse? + Lill (31: (:"'3, 35)'
7(9) = (1'—p-2)'9"2k| ... kgey + Lin (e, 5, s, e7),

Y= —pz)"”lkl ..kigey + Lin (e, e3, es, ey, eg).

Applying again Lemma 2.1, Lemma 1.3, and then Lemma 2.1, we get
7 = Ry’ = Lin(Rlg, I Rey, Rep, I Reg, E)Y =
= Lin (%, 2y v, 9v2, v),
¥ = Ry’ = Lin (R, I REe, Rie,J Reg, E)Y =
= Lin (¢®, 24, 2L 792, v), (13)
v = Ry = Lin(Ree, TRy, REg,J R, E)Y =
= Lin (v**, 79, v, 7v, ).

Excluding j'\{(z) and jﬂ{(‘” from (13), we arrive at the equation
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,Y(.”) - LII'I. (Y(gj‘ Y(T)l .Y(s)‘ 7(3)?7,)' (14)
Using (12), we get '
(1=p)" 2k, ... kypey; +Lin (e, e3, 5, €7, €9) = 0

and conclude that k5 =0, which completes the proof.
Note that the coefficients of all linear combinations are constants. Indeed, by

Lemma 1.3, the coefficients are polynomialsin 1/¢c, b =|§ A&| and m =

= 4 m? +m% +m3. The value b is constant along Y by the same reasons as in case
(a). The values m;, m,, my are all constant along v, since

mi = (&, J;8)" = (8", J;€) + (€. J;&") = 0

for i=1,2,3.
3. Proofs of basic lemmas. Proof of Lemma 1.1. The curvature operator Ryy

of the real space form (M"(c),g) has the following expression:
, RyyZ = c[(Y,Z)X - (X, Z)Y].
Then
RyyZ = c[(Y,RyyZ)X (X, RyyZ )Y | ="
= Y (Y. Z)X - (X, Z)Y)X — (XY, Z)X —(X, Z)Y)Y] =
= P[(YZ)((X V)X (X, Z)|YPX = (Y, Z)| XPY)+(X, Z)X X, Y)Y | = |
= cz[(Y,Z)((X,Y)X—lXIIY)+{X,Z)((X,Y)Y—I}’FX]] =
= ¢[(Y.Z)RyyX +(X, Z)RyxY .
Therefore,
RyyZ = c[(Y, Ry Z)RyyX + (X, Ryy Z) RyxY] =
= AN ZXX V)= (X, Z)|YP)(X. V)X~ | XPY) +
+ (L Z)XP (X, ZNX, V)X, Y)Y -|YPX)] =
= S~V Z)X(XPIYP = (X, ¥ )+ (X, Z)Y (| XP|YP - (X, Y)*)] =
= —c*b?RyyZ,

where, evidently, b*>=|XP|YP = (X, Y)? is the square norm of X A Y.
We now can find the other powers for Ryy inductively.
Proof of Lemma 1.2. The curvature operator Ryy of the complex space form

(M>"(c); J; g) has the following expression:
RyyZ = %{(Y. ZYX ~AX, ZYY +{ Y ZVIX ~{ IR ZY TV 42 X, JY I Z).
Introduce the unit sphere-type operator § acting as
S(Z) ¥ SyyZ = (Y, Z)X - (X, 2)Y,
and the operator 3‘(2] acting as

§2z) & S,x9Z = (JY,Z)IX - (X, Z)JY.
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Finally, if we denote m = (X, JY), then the curvature operator under consideration

akes the form

Since |X A Y|=|(JX) A (JY)], the operators S and S satisfy
§* = —b28,

vhere b2:|XA Y[?'.

§3 = _b2s,

RyyZ = i-[.s+s"+2mj]z.

s)

_n what follows. we need a “table of products” for the operators § and 3 (see

Table 1
S § J
S 52 mJS J8
S mJS 52 IS
JS J§ —~E
Indeed,

(88)(2) = SxySsxsyZ = Sx(IV, Z)IX-(JX,Z)JY] =
= WAIY, ZYIX={IX, ZYINIX — (X IV, ZYIX ~{IX, Z)IVYY =
(Y, IXHIY, ZYX+{IX, ZH X, IYYY =
= mI[(JY,Z)JX =(JX,Z)IY] = (mJS)2),
(85)2) = SyxnSxyZ = Spxiy (Y. Z)X —(X,Z)Y] =
= (BT ZIX AR ZINTX — (IX AV EIX (X ZYNYIY. &
= (JY, XY, Z)IX +{X,ZWJX, Y)Y =
= mJ[(Y,Z)X—(X,Z)Y]) = (mJS)2),
(SIN2Z) = SyyJZ = (Y,IZ)X - (X, JZ)Y =
= J[(IY,Z)IX=(IX,Z)IY] = (JE)D),
($I)2) = Sxsy)Z = (JY,JZYIX - JX,JZ)]Y =
= J(Y,Z)X~-(X.Z)Y] = (JS§)(2),

ind the other entries of the table can be found in a similar way.
1t follows from Table 1 that -J(S+§') = (S+ §)J and, hence,

(5+8)° =52+ 8+ S5 + 85 = 5% + & + mI(s+85),

(s+8) = (S+3)[$>+8 +mi(s+3)]

Il

=5+ 8 + 85 + 58 + my(s+3)

2

= —b%5 = b>§ + (85)S + (88)§ + mI(s+3)

2

= —b*(S+8) + mJ(* +82) + mJ(S+3)
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= —b%(s+3) + mJ[(s+§)2 —mJ(S+§)] + mi(s+8) =

2

= (m*=b*)(S+8) + 2mI(5+35)
Thus,
a3 A 22
(s+38)" = Lin(s+3, s(s+8)). (16)
On the other hand, setting for brevity Ryy =R, we derive the following relations from
(15):
o .
S+ 8§ = -R-2mJ = Lin(R, J),
c
a7
(s+8)* = Lin(R% JR, E).
Comparing (16) and (17), we conclude
(5+35)° = Lin[Lin(R J), JLin(R% JR. E)] = Lin(JR* R, J).
On the other hand, the first relation in (17) implies
- 3
(s+3) = (EJ R® + Lin(JR R, J).
c

Finally,

R* = Lin (JR R, J).
It is easy to trace that the coefficients of all linear combinations are polynomials in
1/c, b, m. To complete the proof, we should note that

R* = R®R = Lin(JR% R, /)R = Lin(JR> R? JR) =
= Lin[JLin(JR? R, J), R*, JR] = Lin(R* JR, E),

which- allows to find all powers of R inductively.
Proof of Lemma 1.3. The curvature operator Ry y of the quaternionic space form

(MM(C); Jy,J5,J5; g) has the following expression:
RyyZ = f—l[(Y.Z)X—(X,Z)Y+(JlY,Z)J,X—(J,X.Z)J,Y +
+ (oY, Z) o X — (o X, Z) oY +(J3Y, Z)J3 X = (53X, Z) ZY +
+ 2 X, WY)W Z+2X, LY ) Z+2( X, J3Y ) ZZ],
where J|, Jy, J5 are operators of quaternionic structure
_J1J2=J’3, f3J3=J!, J3‘1| =.12,
=B XHY)==(xy, i=13
Introduce the unit sphere-type operator S acting as
52) & SxyZ = (Y, Z)X — (X, 2)Y,

the operators S;(Z) acting as

SHZ) & SpxivZ = (LY, Z)IX - (X, 2) )Y, i=13,
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>OWERS OF THE CURVATURE OPERATOR OF SPACE FORMS AND GEODESICS ...

ind the operator S(Z) actirig as
8(z)

[

Si(Z) » SHt2) + 502

1239

Jinally, denote m; = (X, J;Y), i=13, m>=m? + my + m3, I =mJ, + myJs +
- m3J3. Then the curvature operator under consideration takes the form

-

RyyZ = E[S+.§'+2)’]Z. (18)
Since |X A Y| = |(J:X) A (J;Y)], i=T1,3, the operators S and S; satisfy
§% = —p%s, S =-bSs, i=13,
vhere b=|X A Y|%. )
Sor the operators § and S, the table of products is Table 2.
Table 2
hY S| S, S, J Jy Js
S e mJ, 8, mqJy S, m3J3Sy [ J;S) J 8, J1 84
S| myJ,§ St —myJyS,y | —mydy 8y Ji S J2 83 J3S,
S, myJyS | —=m3yJ3S) 5 —mJ Sy | J, 8 S8 J3 8
Sy | maJyS | —madyS, | —myJy S, 58 J1 Sy L8 J5S
J S/ SJ 83/, AYWA -E Js —Jy
Jy A S5/, S/, Si /s —Jq -E J|
J3 S3J5 Sy J4 §,J3 S/; Jy -Ji -E

Jne can find the expressions for products S§S;, §;S, SJ; similarly to Table 1 making
“ormal replacements §—)S,— and J —J;. As for the other entries, we have

(S182)(Z) = SpxsySnxsyZ = Spxny[{2Y, ZYLX (X, Z) Y] =
(LY ALY, ZYI X = (I X, Z) )Y ) | X —
(IR UEY, 2V X~ X ZY BN =

= (L)Y, LXN LY, ZYIWX + (L X, LY (X, Z)])Y =

= L[{(X, BY WY, Z)X = (X, LY LX, Z)Y] =
= =S o [m3 (oY, Z)JoX = m3(JaX, Z)J5Y ] = (—=m3J35,)(2),
($101(2) = SpxsrhZ = (I I ZYIX = (X L Z) Y =
= L[(Y, Z)X=(X,Z)Y] = (J;5)(2), |
($11)2) = Spxsprd2Z = (LY, [LZ)I\ X = (J;}X, LZ)J\Y =
= LZ[(Y,Z)X (X, Z)Y] =
= ~ Bl BY,Z)LX-(LXZVY] = (LSH2)

ind so on.
We see from Table 2 that
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(S+8)T = (S+8,+ 8, +83)(mJ, + myJy+ msJ3)
= mlJlSI + m2J3S2 + .’H3J3S-_;‘ + mlJ'lS <+ mQJ’3S3 + M3J352 + m]JlS3 +

+ .\‘?13.!3:5‘ + JH3J3S! + m]J182 + m;J’le + m3J3S

= (myJy + myJy+ maJ3)(S+8) + 8, +83) = J(S+38).

Therefore, the operators (S+8)7 commute and, hence, for the operator R
= c{ (S+ §) +27 }!4. the usual formula for powers can be applied:

R" = (E)" 5 [TJ(S+§)*"’2’(J)‘.

4 I=0
The powers for 7 can be found trivially, since
9% = mlIE & mymy (S Jy+ Jod)) + mymy (1 Js + 03 ) + maJ3 +
+ mymy (JoJy +J3J5) + m%J;;z = '—me - m%E - m;TE = —m?'E,
¥ 2 2 2 2 )
where mj + my + my =m~.
As for the powers of S+ §, the following proposition gives the answer:
Proposition 3.1. The operator S + $ possesses the recurrent property
5 - 4
(S+8) = 20>+ m*)(S+8)° = B2 -m>)(s+3),
mi + m: + mi =(X,J,¥)* + (X, L,V)* +(X,

where ng|XA Y|2 and m* =

i . .
" Proof. The proof is technical and, in what follows, we will use some auxiliary

operator products. Namely,
s§ =55, §s=75

S7S = —-m?S, 887 = —-m>S,

S(st+53+83) = 8%3, 85* =757,
(19)

§s9 = 989, 898 =75>%
=85+ 83+5-87+7s,

(st +s2+53) = -b*8 - (S} + 52 +2)7 4 952

The proof is straightforward. Applying Table 2, we get
S8 = S(S,+8,+83) = mJyS; + myJsS, + m3J3Sy =

= mS8J| + mySJy + mySSy = S7.

In a similar way, we find
*§S = (SI +SZ+S3)S = mlliS + szgS + .’H}Ja_S = ]S,

8§ = (S + S+ S3)(S +85+83) = ST+ 83 + 8§ + 85,8 + 85,8+ 55 +
+ 8383 + 538, + 838, = S7 + 3 + S5 — mySyJy — mySyJ, —
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— m3Sydy — mySydy — mySyy —m Sy = St + S2 + 82— 87 + m8,J,
+ mySydy + mySyly = ST+ S+ S - 87 + 95,
SIS = S(mJy+ myJy+ m3J3)S = (mJ| S| +myJy8; + myJ38,)8 =
= —m2S - m2S — m2S = —m?S,
$87 = 8§77 = —m>S,
S(SP+53+83) = mSI\S| + mySJyS; + mySJySy =
=y S2U, + myS®Uy + myS2Iy = 7,
$98 = (S, + 8y +S3)(mJ, + myJy+ m3J3)S = (m,J,S+myJySy +
+ myJySy + myJ Sy + myJoS +maJ3S) +mJ Sy +myJy S| +m3J3S)S =
=75+ myJamayJ3S + myJamyJo S + myJyms3J3S +
+ myJym J|S + myJ myJyS + maJomJ| S = 52
S(SE+S3+83) = (S +8,+8)(SF+53+83) = S0 + 85 + & +
882 458+ S+ LRSS 458 =
= ;bzg =g Sy S — sty —maJa St = m,-.;"Sg -
- ngzSiz - m|J|S§' =
=-b>§ - ni3.5‘19'13 Y . m;,S%JE, - m 83J, - m:,_S—fJ’g - m S;TJ'J, =

—b?8 — (SE+ST+83)T + m STy + myS3Jy + mySiUy =

1l
|
<

28 + (S2+S2+83)7 + m 1,87 + myaS® + myJ3S? =
= —b"8 + (SE+S3+83)7 + J8%.
We now are ready to find the powers of (S+.§'). Using (19), we get
(5+8)° =5 +58+ 85+ 82 =52 +57+75+ 57 + S5 + 8 -
87 +95=8+57+295-89+ St + 83 + S
Multi;.:]ying'lhe result by S+ S and applying again (19), we find
(5+8) = (S+3)[S*+57 +275-87 + 57 +53 +§}] =
= 5% + §27 + 2575 — $§7 + S(S? +53 +52) + 8§57 + §s7 +
+2898 - 827 + §(SP+83+83) =
= —b%S + §*7 = 2m*S + m2S + 527 + 75% + 957 + 28958 -
— [(st+53+53)-87 +38]7 + [-6*3—(s?+83 +83)7 +98%] =

= —(b2+m®)S + 2579 + 95% + 957 + 29S* — (ST +S3 +83)7 + §7° -
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-JST - b8 - (S} +53+83)7 + J8% =
= —(b>+m>)S + 287 + 478 - 2(S2 + 53 +83)7 - m*§ - b2§ =

= —(b*+m)(S+8) + 2577 + 495% - 2( + 5} +S3)7.
Continue the process

(5+8)" = (S+8)[-F +m>)(s+8)+28%F +495° ~ 22+ +82)7 | =

~(b* +m*)(S+8)" + 25°7 + 4875 — 25(S? + 53 +53)7 + 285%7 +
+ 4875 - 28 (2 + 52 +53)7 = —(b2+ m*)(S+8)” - 26287 - 4m*s? -
- 2897 + 29577 + 498> - 2[-b?8 - (St + S} +83)7 + 387 ]y =

= —(b2+m?)(S+38)” - 26787 — 4m>S? + 2m>S* + 295%7 -

— 4678 + 26787 + 28(S + 53 +53)9% - 29577 =

~(b*+m)(S+38)" - 26287 — 2m>S* — 4b%IS +
+ 26789 — 2m® (S + 53 + 53)

_(b2 + mI)QS + S‘)z =
- 2;}12[.5'2 +S87 +278 —Sj + (SI?' +S% +S32)] *
+ @m?-267)(8T +295- §7) = —(b*+3m*)(S+8)" +

| + Zm*=2b>)(8T+255- §9).
"Finally,

(5+3)° = (S+8)[-0? +3mD)(5+3)" + @m® - 26™)(57 +275-87) | =
= —(b2+3m*)(s+8) +
+ (2mz-253)[335 +2575 - 587 + 8§57 +2875-§27 ] =
| = —(b>+3m)(s+8) +
+(2m*-2b%)[ 877 —2;::13'—353 +787 +278* (St +83 +53-87+78)7 ]| =
- —(b3+3m?')(8’+§)3 +

+ (2m*-26>)[ 2T —m*S+ 789 +278 - (ST + 83 +83)7 + 8§92 - 98T | =

~(b*+3m?)(s+8) +

+ (m?—b*)[ 2527 +478> - 2(S] + 53 + 53)7 —2m?S—2m*8] =

Z(b2+3m>)(S+8) + (m*-bP)x

x (2827 +475% = 2(S + 53 + 53)7 — (m* + b>)(S + 8) + (6> —m?)($+ §) ] =
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3 53 3 "
= —(6*+3mM)(5+8) + (m?-bD)[(S+3) +* -m¥)(5 +5)] =

= =262+ mH)(5+3)’ = (b*-m*)(5+3)

which completes the proof.
Thus,

(s+38)" = Lin((s+3)’,5+3). (20)

On the other hand, setting for brevity Ryy= R, we derive the following relation from
(18):

4

S+ 8 =-=R-27=Lin(RY). (21)

¢
~ Since (S+§) and 7 commute, (18) implies the commutation of R and J. Taking

this and ]3 = —-m>E into account, we derive the following relations from (21)
. 3

(S+.S')3 = (‘—‘) R* + Lin(JR R, 7), (22)

c

a3 4\ s ; 4 53 sn2
(s+8)" = [ =] R® + Lin(JR®, R°, IR, R, 7). (23)
c

It follows from (20), (21), and (22) that
(s+5)° = Lin[Lin(R* 782 R.7), Lin(R.7)] = Lin (R®, JR% R, ).
Finally, (23) implies
R® = Lin(JR* R®, JR% R.J).
It is easy to trace that the coefficients of all linear combinations are polynomials in
1/¢, b, m. To complete the proof, we should note that
R® = R°R = Lin(JR*, R*,.JR*> R.7)R = Lin(JR>, R* JR> R JR) =
= Lin[JLin(JR*, R JR* RJ), R*, JR*, R* I R] =

= Lin(R*, R, R, JR, E),
which allows to find all powers of R inductively.
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