
Powerset Convolutional Neural Networks

Chris Wendler
Department of Computer Science

ETH Zurich, Switzerland
chris.wendler@inf.ethz.ch

Dan Alistarh
IST Austria

dan.alistarh@ist.ac.at

Markus Püschel
Department of Computer Science

ETH Zurich, Switzerland
pueschel@inf.ethz.ch

Abstract

We present a novel class of convolutional neural networks (CNNs) for set functions,
i.e., data indexed with the powerset of a finite set. The convolutions are derived
as linear, shift-equivariant functions for various notions of shifts on set functions.
The framework is fundamentally different from graph convolutions based on the
Laplacian, as it provides not one but several basic shifts, one for each element in
the ground set. Prototypical experiments with several set function classification
tasks on synthetic datasets and on datasets derived from real-world hypergraphs
demonstrate the potential of our new powerset CNNs.

1 Introduction

Deep learning-based methods are providing state-of-the-art approaches for various image learning
and natural language processing tasks, such as image classification [22, 28], object detection [41],
semantic image segmentation [42], image synthesis [20], language translation / understanding [23, 62]
and speech synthesis [58]. However, an artifact of many of these models is that regularity priors
are hidden in their fundamental neural building blocks, which makes it impossible to apply them
directly to irregular data domains. For instance, image convolutional neural networks (CNNs) are
based on parametrized 2D convolutional filters with local support, while recurrent neural networks
share model parameters across different time stamps. Both architectures share parameters in a way
that exploits the symmetries of the underlying data domains.

In order to port deep learners to novel domains, the according parameter sharing schemes reflecting
the symmetries in the target data have to be developed [40]. An example are neural architectures for
graph data, i.e., data indexed by the vertices of a graph. Graph CNNs define graph convolutional
layers by utilizing results from algebraic graph theory for the graph Laplacian [9, 51] and message
passing neural networks [18, 47] generalize recurrent neural architectures from chain graphs to
general graphs. With these building blocks in place, neural architectures for supervised [16, 18, 50],
semi-supervised [25] and generative learning [52, 59] on graphs have been deployed. These research
endeavors fall under the umbrella term of geometric deep learning (GDL) [10].

In this work, we want to open the door for deep learning on set functions, i.e., data indexed by
the powerset of a finite set. There are (at least) three ways to do so. First, set functions can be
viewed as data indexed by a hypercube graph, which makes graph neural nets applicable. Second,
results from the Fourier analysis of set functions based on the Walsh-Hadamard-transform (WHT)
[15, 33, 54] can be utilized to formulate a convolution for set functions in a similar way to [51].
Third, [36] introduces several novel notions of convolution for set functions (powerset convolution)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

as linear, equivariant functions for different notions of shift on set functions. This derivation parallels
the standard 2D-convolution (equivariant to translations) and graph convolutions (equivariant to
the Laplacian or adjacency shift) [34]. A general theory for deriving new forms of convolutions,
associated Fourier transforms and other signal processing tools is outlined in [38].

Contributions Motivated by the work on generalized convolutions and by the potential utility of
deep learning on novel domains, we propose a method-driven approach for deep learning on irregular
data domains and, in particular, set functions:

• We formulate novel powerset CNN architectures by integrating recent convolutions [36] and
proposing novel pooling layers for set functions.

• As a protoypical application, we consider the set function classification task. Since there is
little prior work in this area, we evaluate our powerset CNNs on three synthetic classification
tasks (submodularity and spectral properties) and two classification tasks on data derived
from real-world hypergraphs [5]. For the latter, we design classifiers to identify the origin
of the extracted subhypergraph. To deal with hypergraph data, we introduce several set-
function-based hypergraph representations.

• We validate our architectures experimentally, and show that they generally outperform
the natural fully-connected and graph-convolutional baselines on a range of scenarios and
hyperparameter values.

2 Convolutions on Set Functions

We introduce background and definitions for set functions and associated convolutions. For context
and analogy, we first briefly review prior convolutions for 2D and graph data. From the signal
processing perspective, 2D convolutions are linear, shift-invariant (or equivariant) functions on
images s : Z2 → R; (i, j) 7→ si,j , where the shifts are the translations T(k,l)s = (si−k,j−l)i,j∈Z2 .
The 2D convolution thus becomes

(h ∗ s)i,j =
∑

k,l∈Z2

hk,lsi−k,j−l. (1)

Equivariance means that all convolutions commute with all shifts: h ∗ (T(k,l)s) = T(k,l)(h ∗ s).

Convolutions on vertex-indexed graph signals s : V → R; v 7→ sv are linear and equivariant with
respect to the Laplacian shifts Tks = Lks, where L is the graph Laplacian [51].

Set functions With this intuition in place, we now consider set functions. We fix a finite set
N = {x1, . . . , xn}. An associated set function is a signal on the powerset of N :

s : 2N → R;A 7→ sA. (2)

Powerset convolution A convolution for set functions is obtained by specifying the shifts to which
it is equivariant. The work in [36] specifies TQs = (sA\Q)A⊆N as one possible choice of shifts for

Q ⊆ N . Note that in this case the shift operators are parametrized by the monoid (2N ,∪), since for
all s

TQ(TRs) = (sA\R\Q)A⊆N = (sA\(R∪Q))A⊆N = TQ∪Rs,

which implies TQTR = TQ∪R. The corresponding linear, shift-equivariant powerset convolution is
given by [36] as

(h ∗ s)A =
∑

Q⊆N

hQsA\Q. (3)

Note that the filter h is itself a set function. Table 1 contains an overview of generalized convolutions
and the associated shift operations to which they are equivariant to.

Fourier transform Each filter h defines a linear operator Φh := (h ∗ ·) obtained by fixing h in (3).
It is diagonalized by the powerset Fourier transform

F =

(
1 0
1 −1

)⊗n

=

(
1 0
1 −1

)

⊗ · · · ⊗

(
1 0
1 −1

)

, (4)

2

signal shifted signal convolution reference CNN

image (si,j)i,j (si−k,j−l)i,j∈Z

∑
k,l hk,lsi−k,j−l standard standard

graph Laplacian (sv)v∈V (Lks)v∈V (
∑

k hkL
ks)v [51] [9]

graph adjacency (sv)v∈V (Aks)v∈V (
∑

k hkA
ks)v [44] [55]

group (sg)g∈G (sq−1g)g∈G

∑
q hqsq−1g [53] [13]

group spherical (sR)R∈SO(3)
(sQ−1R)R∈SO(3)

∫
hQsQ−1Rdµ(Q) [12] [12]

powerset (sA)A⊆N (sA\Q)A⊆N

∑
Q hQsA\Q [36] this paper

Table 1: Generalized convolutions and their shifts.

where ⊗ denotes the Kronecker product. Note that F−1 = F in this case and that the spectrum is
also indexed by subsets B ⊆ N . In particular, we have

FΦhF
−1 = diag((h̃B)B⊆N), (5)

in which h̃ denotes the frequency response of the filter h [36]. We denote the linear mapping from h
to its frequency response h̃ by F̄ , i.e., h̃ = F̄ h.

Other shifts and convolutions There are several other possible definitions of set shifts, each com-
ing with its respective convolutions and Fourier transforms [36]. Two additional examples are
T ⋄
Qs = (sA∪Q)A⊆N and the symmetric difference T •

Qs = (s(A\Q)∪(Q\A))A⊆N [54]. The associated
convolutions are, respectively,

(h ∗ s)A =
∑

Q⊆N

hQsA∪Q and (h ∗ s)A =
∑

Q⊆N

hQs(A\Q)∪(Q\A). (6)

Localized filters Filters h with hQ = 0 for |Q| > k are k-localized in the sense that the evaluation
of (h ∗ s)A only depends on evaluations of s on sets differing by at most k elements from A. In
particular, 1-localized filters (h ∗ s)A = h∅sA +

∑

x∈N h{x}sA\{x} are the counterpart of one-hop
filters that are typically used in graph CNNs [25]. In contrast to the omnidirectional one-hop graph
filters, these one-hop filters have one direction per element in N .

2.1 Applications of Set Functions

Set functions are of practical importance across a range of research fields. Several optimization tasks,
such as cost effective sensor placement [27], optimal ad placement [19] and tasks such as semantic
image segmentation [35], can be reduced to subset selection tasks, in which a set function determines
the value of every subset and has to be maximized to find the best one. In combinatorial auctions,
set functions can be used to describe bidding behavior. Each bidder is represented as a valuation
function that maps each subset of goods to its subjective value to the customer [14]. Cooperative
games are set functions [8]. A coalition is a subset of players and a coalition game assigns a value to
every subset of players. In the simplest case the value one is assigned to winning and the value zero
to losing coalitions. Further, graphs and hypergraphs also admit set function representations:

Definition 1. (Hypergraph) A hypergraph is a triple H = (V,E,w), where V = {v1, . . . , vn} is a
set of vertices, E ⊆ (P(V) \ ∅) is a set of hyperedges and w : E → R is a weight function.

The weight function of a hypergraph is a set function on V by setting sA = wA if A ∈ E and
sA = 0 otherwise. Additionally, hypergraphs induce two set functions, namely the hypergraph cut
and association score function:

cutA =
∑

B∈E,B∩A 6=∅,
B∩(V \A) 6=∅

wB and assocA =
∑

B∈E,B⊆A

wB . (7)

2.2 Convolutional Pattern Matching

The powerset convolution in (3) raises the question of which patterns are “detected” by a filter
(hQ)Q⊆N . In other words, to which signal does the filter h respond strongest when evaluated at a

3

given subset A? We call this signal pA (the pattern matched at position A). Formally,

pA = argmax
s:‖s‖=1

(h ∗ s)A. (8)

For pN , the answer is pN = (1/‖h‖)(hN\B)B⊆N . This is because the dot product 〈h, s∗〉, with
s∗A = sN\A, is maximal if h and s∗ are aligned. Slightly rewriting (3) yields the answer for the
general case A ⊆ N :

(h ∗ s)A =
∑

Q⊆N

hQsA\Q =
∑

Q1⊆A

∑

Q2⊆N\A

hQ1∪Q2

︸ ︷︷ ︸

=:h′

Q1

sA\Q1
. (9)

Namely, (9) shows that the powerset convolution evaluated at position A can be seen as the convolution
of a new filter h′ with s restricted to the powerset 2A evaluated at position A, the case for which we
know the answer: pAB = (1/‖h′‖)h′

A\B if B ⊆ A and pAB = 0 otherwise.

Example 1. (One-hop patterns) For a one-hop filter h, i.e., (h ∗ s)A = h∅sA +
∑

x∈N h{x}sA\{x}

the pattern matched at position A takes the form

pAB =

1
‖h′‖ (h∅ +

∑

x∈N\A h{x}) if B = A,
1

‖h′‖h{x} if B = A \ {x} with x ∈ A,

0 else.

(10)

Here, h′ corresponds to the filter restricted to the powerset 2A as in (9).

Notice that this behavior is different from 1D and 2D convolutions: there the underlying shifts
(translations) are invertible and thus the detected patterns are again shifted versions of each other. For
example, the 1D convolutional filter (hq)q∈Z matches p0 = (h−q)q∈Z at position 0 and pt = T−tp

0 =
(h−q+t)q∈Z at position t, and, the group convolutional filter (hq)q∈G matches pe = (hq−1)q∈G at the
unit element e and pg = Tg−1pe = (hgq−1)q∈G at position g. Since powerset shifts are not invertible,
the detected patterns by a filter are not just (set-)shifted versions of each other as shown above.

A similar behavior can be expected with graph convolutions since the Laplacian shift is never
invertible and the adjacency shift is not always invertible.

3 Powerset Convolutional Neural Networks

Convolutional layers We define a convolutional layer by extending the convolution to multiple
channels, summing up the feature maps obtained by channel-wise convolution as in [10]:

Definition 2. (Powerset convolutional layer) A powerset convolutional layer is defined as follows:

1. The input is given by nc set functions s = (s(1), . . . , s(nc)) ∈ R
2N×nc ;

2. The output is given by nf set functions t = LΓ(s) = (t(1), . . . , t(nf)) ∈ R
2N×nf ;

3. The layer applies a bank of set function filters Γ = (h(i,j))i,j , with i ∈ {1, . . . , nc} and
j ∈ {1, . . . , nf}, and a point-wise non-linearity σ resulting in

t
(j)
A = σ(

nc∑

i=1

(h(i,j) ∗ s(i))A). (11)

Pooling layers As in conventional CNNs, we define powerset pooling layers to gain additional
robustness with respect to input perturbations, and to control the number of features extracted by the
convolutional part of the powerset CNN. From a signal processing perspective, the crucial aspect of
the pooling operation is that the pooled signal lives on a valid signal domain, i.e., a powerset. One
way to achieve this is by combining elements of the ground set.

4

input conv1 pool1 conv2 pool2 MLP

22 x 524 x 1 23 x 523 x 324 x 3

Figure 1: Forward pass of a simple powerset CNN with two convolutional and two pooling layers.
Set functions are depicted as signals on the powerset lattice.

Definition 3. (Powerset pooling) Let N ′(X) be the ground set of size n − |X| + 1 obtained by
combining all the elements in X ⊆ N into a single element. E.g., for X = {x1, x2} we get
N ′(X) = {{x1, x2}, x3, . . . , xn}. Therefore every subset X ⊆ N defines a pooling operation

PX : R2N → R
2N

′(X)

: (sA)A⊆N 7→ (sB)B:B∩X=X or B∩X=∅. (12)

In our experiments we always use P := P {x1,x2}. It is also possible to pool a set function by
combining elements of the powerset as in [48] or by the simple rule sB = max(sB , sB∪{x}) for

B ⊆ N \ {x}. Then, a pooling layer is obtained by applying our pooling strategy to every channel.

Definition 4. (Powerset pooling layer) A powerset pooling layer takes nc set functions as

input s = (s(1), . . . , s(nc)) ∈ R
2N×nc and outputs nc pooled set functions t = LP (s) =

(t(1), . . . , t(nc)) ∈ R
2N

′

×nc , with |N ′| = |N | − 1, by applying the pooling operation to every
channel

t(i) = P (s(i)). (13)

Powerset CNN A powerset CNN is a composition of several powerset convolutional and pooling
layers. Depending on the task, the outputs of the convolutional component can be fed into a multi-layer
perceptron, e.g., for classification.

Fig. 1 illustrates a forward pass of a powerset CNN with two convolutional layers, each of which is
followed by a pooling layer. The first convolutional layer is parameterized by three one-hop filters
and the second one is parameterized by fifteen (three times five) one-hop filters. The filter coefficients
were initialized with random weights for this illustration.

Implementation1 We implemented the powerset convolutional and pooling layers in Tensorflow [1].
Our implementation supports various definitions of powerset shifts, and utilizes the respective Fourier
transforms to compute the convolutions in the frequency domain.

4 Experimental Evaluation

Our powerset CNN is built on the premise that the successful components of conventional CNNs
are domain independent and only rely on the underlying concepts of shift and shift-equivariant
convolutions. In particular, if we use only one-hop filters, our powerset CNN satisfies locality and
compositionality. Thus, similar to image CNNs, it should be able to learn localized hierarchical
features. To understand whether this is useful when applied to set function classification problems,
we evaluate our powerset CNN architectures on three synthetic tasks and on two tasks based on
real-world hypergraph data.

Problem formulation Intuitively, our set function classification task will require the models to learn
to classify a collection of set functions sampled from some natural distributions. One such example
would be to classify (hyper-)graphs coming from some underlying data distributions. Formally, the

set function classification problem is characterized by a training set {(s(i), t(i))}mi=1 ⊆ (R2N × C)
composed of pairs (set function, label), as well as a test set. The learning task is to utilize the training

set to learn a mapping from the space of set functions R2N to the label space C = {1, . . . , k}.

1Sample implementations are provided at https://github.com/chrislybaer/Powerset-CNN.

5

https://github.com/chrislybaer/Powerset-CNN

4.1 Synthetic Datasets

Unless stated otherwise, we consider the ground set N = {x1, . . . , xn} with n = 10, and sample
10, 000 set functions per class. We use 80% of the samples for training, and the remaining 20% for
testing. We only use one random split per dataset. Given this, we generated the following three
synthetic datasets, meant to illustrate specific applications of our framework.

Spectral patterns In order to obtain non-trivial classes of set functions, we define a sampling proce-
dure based on the Fourier expansion associated with the shift TQs = (sA\Q)A⊆N . In particular, we

sample Fourier sparse set functions, s = F−1ŝ with ŝ sparse. We implement this by associating each
target “class” with a collection of frequencies, and sample normally distributed Fourier coefficients
for these frequencies. In our example, we defined four classes, where the Fourier support of the first
and second class is obtained by randomly selecting roughly half of the frequencies. For the third
class we use the entire spectrum, while for the fourth we use the frequencies that are either in both of
class one’s and class two’s Fourier support, or in neither of them.

k-junta classification A k-junta [33] is a boolean function defined on n variables x1, . . . , xn that
only depends on k of the variables: xi1 , . . . , xik . In the same spirit, we call a set function a k-junta if
its evaluations only depend on the presence or absence of k of the n elements of the ground set:

Definition 5. (k-junta) A set function s on the ground set N is called a k-junta if there exists a subset
N ′ ⊆ N , with |N ′| = k, such that s(A) = s(A ∩N ′), for all A ⊆ N .

We generate a k-junta classification dataset by sampling random k-juntas for k ∈ {3, . . . , 7}. We do
so by utilizing the fact that shifting a set function by {x} eliminates its dependency on x, i.e., for
A with x ∈ A we have (T{x}s)A = sA\{x} = (T{x}s)A\{x} because (A \ {x}) \ {x} = A \ {x}.
Therefore, sampling a random k-junta amounts to first sampling a random value for every subset
A ⊆ N and performing n− k set shifts by randomly selected singleton sets.

Submodularity classification A set function s is submodular if it satisfies the diminishing returns
property

∀A,B ⊆ N with A ⊆ B and ∀x ∈ N \B : sA∪{x} − sA ≥ sB∪{x} − sB . (14)

In words, adding an element to a small subset increases the value of the set function at least as
much as adding it to a larger subset. We construct a dataset comprised of submodular and "almost
submodular" set functions. As examples of submodular functions we utilize coverage functions [26]
(a subclass of submodular functions that allows for easy random generation). As examples of what
we informally call "almost submodular" set functions here, we sample coverage functions and perturb
them slightly to destroy the coverage property.

4.2 Real Datasets

Finally, we construct two classification tasks based on real hypergraph data. Reference [5] provides
19 real-world hypergraph datasets. Each dataset is a hypergraph evolving over time. An example is
the DBLP coauthorship hypergraph in which vertices are authors and hyperedges are publications.
In the following, we consider classification problems on subhypergraphs induced by vertex subsets
of size ten. Each hypergraph is represented by its weight set function sA = 1 if A ∈ E and sA = 0
otherwise.

Definition 6. (Induced Subhypergraph [6]) Let H = (V,E) be a hypergraph. The subset of vertices
V ′ ⊆ V induces a subhypergraph H ′ = (V ′, E′) with E′ = {A∩V ′ : for A ∈ E and A∩V ′ 6= ∅}.

Domain classification As we have multiple hypergraphs, an interesting question is whether it is
possible to identify from which hypergraph a given subhypergraph of size ten was sampled, i.e.,
whether it is possible to distinguish the hypergraphs by considering only local interactions. Therefore,
among the publicly available hypergraphs in [5] we only consider those containing at least 500
hyperedges of cardinality ten (namely, DAWN: 1159, threads-stack-overflow: 3070, coauth-DBLP:
6599, coauth-MAG-History: 1057, coauth-MAG-Geology: 7704, congress-bills: 2952). The coauth-
hypergraphs are coauthorship hypergraphs, in DAWN the vertices are drugs and the hyperedges
patients, in threads-stack-overflow the vertices are users and the hyperedges questions on threads
on stackoverflow.com and in congress-bills the vertices are congresspersons and the hyperedges
cosponsored bills. From those hypergraphs we sample all the subhypergraphs induced by the

6

stackoverflow.com

hyperedges of size ten and assign the respective hypergraph of origin as class label. In addition to this
dataset (DOM6), we create an easier version (DOM4) in which we only keep one of the coauthorship
hypergraphs, namely coauth-DBLP.

Simplicial closure Reference [5] distinguishes between open and closed hyperedges (the latter are
called simplices). A hyperedge is called open if its vertices in the 2-section (the graph obtained
by making the vertices of every hyperedge a clique) of the hypergraph form a clique and it is
not contained in any hyperedge in the hypergraph. On the other hand, a hyperedge is closed if
it is contained in one or is one of the hyperedges of the hypergraph. We consider the following
classification problem: For a given subhypergraph of ten vertices, determine whether its vertices form
a closed hyperedge in the original hypergraph or not.

In order to obtain examples for closed hyperedges, we sample the subhypergraphs induced by the
vertices of hyperedges of size ten and for open hyperedges we sample subhypergraphs induced by
vertices of hyperedges of size nine extended by an additional vertex. In this way we construct two
learning tasks. First, CON10 in which we extend the nine-hyperedge by choosing the additional
vertex such that the resulting hyperedge is open (2952 closed and 4000 open examples). Second,
COAUTH10 in which we randomly extend the size nine hyperedges (as many as there are closed ones)
and use coauth-DBLP for training and coauth-MAG-History & coauth-MAG-Geology for testing.

4.3 Experimental Setup

Baselines As baselines we consider a multi-layer perceptron (MLP) [43] with two hidden layers
of size 4096 and an appropriately chosen last layer and graph CNNs (GCNs) on the undirected
n-dimensional hypercube. Every vertex of the hypercube corresponds to a subset and vertices are
connected by an edge if their subsets only differ by one element. We evaluate graph convolutional
layers based on the Laplacian shift [25] and based on the adjacency shift [44]. In both cases one layer
does at most one hop.

Our models For our powerset CNNs (PCNs) we consider convolutional layers based on
one-hop filters of two different convolutions: (h ∗ s)A = h∅sA +

∑

x∈N h{x}sA\{x} and

(h ⋄ s)A = h∅sA +
∑

x∈N h{x}sA∪{x}. For all types of convolutional layers we consider the follow-
ing models: three convolutional layers followed by an MLP with one hidden layer of size 512 as
illustrated before, a pooling layer after each convolutional layer followed by the MLP, and a pooling
layer after each convolutional layer followed by an accumulation step (average of the features over all
subsets) as in [18] followed by the MLP. For all models we use 32 output channels per convolutional
layer and ReLU [32] non-linearities.

Training We train all models for 100 epochs (passes through the training data) using the Adam
optimizer [24] with initial learning rate 0.001 and an exponential learning rate decay factor of 0.95.
The learning rate decays after every epoch. We use batches of size 128 and the cross entropy loss. All
our experiments were run on a server with an Intel(R) Xeon(R) CPU @ 2.00GHz with four NVIDIA
Tesla T4 GPUs. Mean and standard deviation are obtained by running each experiment 20 times.

4.4 Results

Our results are summarized in Table 2. We report the test classification accuracy in percentages (for
models that converged).

Discussion Table 2 shows that in the synthetic tasks the powerset convolutional models (∗-PCNs)
tend to outperform the baselines with the exception of A-GCNs, which are based on the adjacency
graph shift on the undirected hypercube. In fact, the set of A-convolutional filters parametrized
by our A-GCNs is the subset of the powerset convolutional filters associated with the symmetric
difference shift (6) obtained by constraining all filter coefficients for one-element sets to be equal:
h{xi} = c with c ∈ R, for all i ∈ {1, . . . , n}. Therefore, it is no surprise that the A-GCNs perform
well. In contrast, the restrictions placed on the filters of L-GCN are stronger, since [25] replaces the
one-hop Laplacian convolution (θ0I + θ1(L− I))x (in Chebyshev basis) with θ(2I −L)x by setting
θ = θ0 = −θ1.

An analogous trend is not as clearly visible in the tasks derived from real hypergraph data. In
these tasks, the graph CNNs seem to be either more robust to noisy data, or, to benefit from their
permutation equivariance properties. The robustness as well as the permutation equivariance can

7

Patterns k-Junta Submod. COAUTH10 CON10 DOM4 DOM6

Baselines

MLP 46.8 ± 3.9 43.2 ± 2.5 - 80.7 ± 0.2 66.1 ± 1.8 93.6 ± 0.2 71.1 ± 0.3
L-GCN 52.5 ± 0.9 69.3 ± 2.8 - 84.7 ± 0.9 67.2 ± 1.8 96.0 ± 0.2 73.7 ± 0.4

L-GCN pool 45.0 ± 1.0 60.9 ± 1.5 - 83.2 ± 0.7 65.7 ± 1.0 93.2 ± 1.1 71.7 ± 0.5
L-GCN pool avg. 42.1 ± 0.3 64.3 ± 2.2 82.2 ± 0.4 56.8 ± 1.1 64.1 ± 1.7 88.4 ± 0.3 62.8 ± 0.4
A-GCN 65.5 ± 0.9 95.8 ± 2.7 - 80.5 ± 0.7 64.9 ± 1.8 93.9 ± 0.3 69.1 ± 0.5
A-GCN pool 56.9 ± 2.2 91.9 ± 2.1 89.8 ± 1.8 84.1 ± 0.6 66.0 ± 1.6 93.8 ± 0.3 70.7 ± 0.4
A-GCN pool avg. 54.8 ± 0.9 95.8 ± 1.1 84.8 ± 1.9 64.8 ± 1.1 65.4 ± 0.7 92.7 ± 0.6 67.9 ± 0.3

Proposed models

∗-PCN 88.5 ± 4.3 97.2 ± 2.3 88.6 ± 0.4 80.6 ± 0.7 62.8 ± 2.9 94.1 ± 0.3 70.5 ± 0.3
∗-PCN pool 80.9 ± 0.9 96.0 ± 1.6 85.1 ± 1.8 82.6 ± 0.4 62.9 ± 2.0 94.0 ± 0.3 70.2 ± 0.5
∗-PCN pool avg. 75.9 ± 1.9 96.5 ± 0.6 87.0 ± 1.6 80.6 ± 0.5 63.4 ± 3.5 94.4 ± 0.3 73.0 ± 0.3
⋄-PCN - 97.5 ± 1.4 - 83.6 ± 0.4 68.7 ± 1.3 93.7 ± 0.2 69.9 ± 0.3
⋄-PCN pool - 96.4 ± 1.7 - 84.8 ± 0.3 68.2 ± 0.8 93.6 ± 0.3 70.3 ± 0.4
⋄-PCN pool avg. 54.8 ± 1.9 96.6 ± 0.7 80.9 ± 2.9 83.3 ± 0.5 67.0 ± 2.0 94.8 ± 0.3 73.5 ± 0.5

Table 2: Results of the experimental evaluation in terms of test classification accuracy (percentage).
The first three columns contain the results from the synthetic experiments and the last four columns
the results from the hypergraph experiments. The best-performing model from the corresponding
category is in bold.

be attributed to the graph one-hop filters being omnidirectional. On the other hand, the powerset
one-hop filters are n-directional. Thus, they are sensitive to hypergraph isomorphy, i.e., hypergraphs
with same connectivity structure but different vertex ordering are being processed differently.

Pooling Interestingly, while reducing the hidden state by a factor of two after every convolutional
layer, pooling in most cases only slightly decreases the accuracy of the PCNs in the synthetic tasks
and has no impact in the other tasks. Also the influence of pooling on the A-GCN is more similar to
the behavior of PCNs than the one for the L-GCN.

Equivariance Finally, we compare models having a shift-invariant convolutional part (suffix "pool
avg.") with models having a shift-equivariant convolutional part (suffix "pool") models. The difference
between these models is that the invariant ones have an accumulation step before the MLP resulting
in (a) the inputs to the MLP being invariant w.r.t. the shift corresponding to the specific convolutions
used and (b) the MLP having much fewer parameters in its hidden layer (32 · 512 instead of
210 · 32 · 512). For the PCNs the effect of the accumulation step appears to be task dependent.
For instance, in k-Junta, Submod., DOM4 and DOM6 it is largely beneficial, and in the others it
slightly disadvantageous. Similarly, for the GCNs the accumulation step is beneficial in k-Junta and
disadvantageous in COAUTH10. A possible cause is that the resulting models are not expressive
enough due to the lack of parameters.

Complexity analysis Consider a powerset convolutional layer (11) with nc input channels and nf

output channels. Using k-hop filters, the layer is parametrized by np = nf + ncnf

∑k

i=0

(
n
i

)

parameters (nf bias terms plus ncnf

∑k

i=0

(
n
i

)
filtering coefficients). Convolution is done efficiently

in the Fourier domain, i.e., h ∗ s = F−1(diag(F̄ h)Fs), which requires 3
2n2

n+2n operations and 2n

floats of memory [36]. Thus, forward as well as backward pass require Θ(ncnfn2
n) operations and

Θ(nc2
n + nf2

n + np) floats of memory2. The hypercube graph convolutional layers are a special
case of powerset convolutional layers. Hence, they are in the same complexity class. A k-hop graph
convolutional layer requires nf + ncnf (k + 1) parameters.

5 Related Work

Our work is at the intersection of geometric deep learning, generalized signal processing and set
function learning. Since each of these areas is broad, due to space limitations, we will only review
the work that is most closely related to ours.

Deep learning Geometric deep learners [10] can be broadly categorized into convolution-based
approaches [9, 12, 13, 16, 25, 55] and message-passing-based approaches [18, 47, 50]. The latter
assign a hidden state to each element of the index domain (e.g., to each vertex in a graph) and make
use of a message passing protocol to learn representations in a finite amount of communication steps.

2The derivation of these results is provided in the supplementary material.

8

Reference [18] points out that graph CNNs are a subclass of message passing / graph neural networks
(MPNNs). References [9, 16, 25] utilize the spectral analysis of the graph Laplacian [51] to define
graph convolutions, while [55] makes use of the adjacency shift based convolution [44]. Similarly,
[12, 13] utilize group convolutions [53] with desirable equivariances.

In a similar vein, in this work we utilize the recently proposed powerset convolutions [36] as the
foundation of a generalized CNN. With respect to the latter reference, which provides the theoretical
foundation for powerset convolutions, our contributions are an analysis of the resulting filters from
a pattern matching perspective, to define its exact instantiations and applications in the context of
neural networks, as well as to show that these operations are practically relevant for various tasks.

Signal processing Set function signal processing [36] is an instantiation of algebraic signal processing
(ASP) [38] on the powerset domain. ASP provides a theoretical framework for deriving a complete
set of basic signal processing concepts, including convolution, for novel index domains, using as
starting point a chosen shift to which convolutions should be equivariant. To date the approach
was used for index domains including graphs [34, 44, 45], powersets (set functions) [36], meet/join
lattices [37, 61], and a collection of more regular domains, e.g., [39, 46, 49].

Additionally, there are spectral approaches such as [51] for graphs and [15, 33] for set functions
(or, equivalently, pseudo-boolean functions), that utilize analogues of the Fourier transform to port
spectral analysis and other signal processing methods to novel domains.

Set function learning In contrast to the set function classification problems considered in this work,
most of existing set function learning is concerned with completing a single partially observed set
function [2–4, 7, 11, 30, 54, 56, 63]. In this context, traditional methods [2–4, 11, 30, 56] mainly
differ in the way how the class of considered set functions is restricted in order to be manageable.
E.g., [54] does this by considering Walsh-Hadamard-sparse (= Fourier sparse) set functions. Recent
approaches [7, 17, 31, 57, 60, 63] leverage deep learning. Reference [7] proposes a neural architecture
for learning submodular functions and [31, 63] propose architectures for learning multi-set functions
(i.e., permutation-invariant sequence functions). References [17, 57] introduce differentiable layers
that allow for backpropagation through the minimizer or maximizer of a submodular optimization
problem respectively and, thus, for learning submodular set functions. Similarly, [60] proposes a
differentiable layer for learning boolean functions.

6 Conclusion

We introduced a convolutional neural network architecture for powerset data. We did so by utilizing
novel powerset convolutions and introducing powerset pooling layers. The powerset convolutions
used stem from algebraic signal processing theory [38], a theoretical framework for porting signal
processing to novel domains. Therefore, we hope that our method-driven approach can be used to
specialize deep learning to other domains as well. We conclude with challenges and future directions.

Lack of data We argue that certain success components of deep learning are domain independent
and our experimental results empirically support this claim to a certain degree. However, one cannot
neglect the fact that data abundance is one of these success components and, for the supervised
learning problems on set functions considered in this paper, one that is currently lacking.

Computational complexity As evident from our complexity analysis and [29], the proposed method-
ology is feasible only up to about n = 30 using modern multicore systems. This is caused by the fact
that set functions are exponentially large objects. If one would like to scale our approach to larger
ground sets, e.g., to support semisupervised learning on graphs or hypergraphs where there is enough
data available, one should either devise methods to preserve the sparsity of the respective set function
representations while filtering, pooling and applying non-linear functions, or, leverage techniques for
NN dimension reduction like [21].

Acknowledgements

We thank Max Horn for insightful discussions and his extensive feedback, and Razvan Pascanu
for feedback on an earlier draft. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 805223).

9

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In Symp. Operating
Systems Design and Implementation (OSDI), pages 265–283, 2016.

[2] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Roughgarden. Sketching
valuation functions. In Proc. Discrete Algorithms, pages 1025–1035. SIAM, 2012.

[3] M. F. Balcan and N. J. A. Harvey. Learning submodular functions. In Proc. Theory of computing,
pages 793–802. ACM, 2011.

[4] M. F. Balcan, F. Constantin, S. Iwata, and L. Wang. Learning valuation functions. 2012.

[5] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and J. Kleinberg. Simplicial closure and
higher-order link prediction. Proc. National Academy of Sciences, 115(48):E11221–E11230,
2018.

[6] C. Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

[7] J. Bilmes and W. Bai. Deep submodular functions. arXiv preprint arXiv:1701.08939, 2017.

[8] R. Branzei, D. Dimitrov, and S. Tijs. Models in cooperative game theory, volume 556. Springer
Science & Business Media, 2008.

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[10] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[11] S.-S. Choi, K. Jung, and J. H. Kim. Almost tight upper bound for finding Fourier coefficients
of bounded pseudo-Boolean functions. Journal of Computer and System Sciences, 77(6):
1039–1053, 2011.

[12] T. Cohen, M. Geiger, J. Köhler, and M. Welling. Convolutional networks for spherical signals.
arXiv preprint arXiv:1709.04893, 2017.

[13] T. S. Cohen and M. Welling. Group equivariant convolutional networks. In Proc. International
Conference on International Conference on Machine Learning (ICML), pages 2990–2999, 2016.

[14] S. De Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on
computing, 15(3):284–309, 2003.

[15] R. De Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing,
pages 1–20, 2008.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. pages 3844–3852, 2016.

[17] J. Djolonga and A. Krause. Differentiable learning of submodular models. In Advances in
neural information processing systems (NIPS), pages 1013–1023, 2017.

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. pages 1263–1272, 2017.

[19] D. Golovin, A. Krause, and M. Streeter. Online submodular maximization under a matroid
constraint with application to learning assignments. arXiv preprint arXiv:1407.1082, 2014.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems
(NIPS), pages 2672–2680, 2014.

[21] T. Hackel, M. Usvyatsov, S. Galliani, J. D. Wegner, and K. Schindler. Inference, learning and
attention mechanisms that exploit and preserve sparsity in CNNs. In German Conference on
Pattern Recognition, pages 597–611. Springer, 2018.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proc. IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[23] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

[25] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
2017.

[26] A. Krause and D. Golovin. Submodular function maximization. In Tractability: Practical
Approaches to Hard Problems, pages 71–104. Cambridge University Press, 2014.

[27] A. Krause and C. Guestrin. Near-optimal observation selection using submodular functions. In
AAAI, volume 7, pages 1650–1654, 2007.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems (NIPS), pages 1097–
1105, 2012.

[29] Y. Lu. Practical tera-scale Walsh-Hadamard transform. In Future Technologies Conference
(FTC), pages 1230–1236. IEEE, 2016.

[30] E. Mossel, R. O’Donnell, and R. P. Servedio. Learning juntas. In Proc. Theory of computing,
pages 206–212. ACM, 2003.

[31] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs. arXiv preprint arXiv:1811.01900,
2018.

[32] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proc. International conference on machine learning (ICML), pages 807–814, 2010.

[33] R. O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[34] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst. Graph signal
processing: Overview, challenges, and applications. Proc. IEEE, 106(5):808–828, 2018.

[35] A. Osokin and D. P. Vetrov. Submodular relaxation for inference in Markov random fields.
IEEE Trans. pattern analysis and machine intelligence, 37(7):1347–1359, 2014.

[36] M. Püschel. A discrete signal processing framework for set functions. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4359–4363, 2018.

[37] M. Püschel. A discrete signal processing framework for meet/join lattices with applications
to hypergraphs and trees. In Proc. International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5371–5375, 2019.

[38] M. Püschel and J. M. F. Moura. Algebraic signal processing theory: Foundation and 1-D time.
IEEE Trans. Signal Processing, 56(8):3572–3585, 2008.

[39] M. Püschel and M. Rötteler. Algebraic signal processing theory: 2-D hexagonal spatial lattice.
IEEE Trans. Image Processing, 16(6):1506–1521, 2007.

[40] S. Ravanbakhsh, J. Schneider, and B. Poczos. Equivariance through parameter-sharing. In
Proc. International Conference on Machine Learning (ICML), pages 2892–2901, 2017.

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in neural information processing systems (NIPS), pages
91–99, 2015.

[42] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In Proc. International Conference on Medical image computing and
computer-assisted intervention, pages 234–241, 2015.

[43] F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[44] A. Sandryhaila and J. M. F. Moura. Discrete signal processing on graphs. IEEE Trans. Signal
Processing, 61(7):1644–1656, 2013.

[45] A. Sandryhaila and J. M. F. Moura. Discrete signal processing on graphs: Frequency analysis.
IEEE Trans. Signal Processing, 62(12):3042–3054, 2014.

[46] A. Sandryhaila, J. Kovacevic, and M. Püschel. Algebraic signal processing theory: 1-D
nearest-neighbor models. IEEE Trans. on Signal Processing, 60(5):2247–2259, 2012.

[47] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009.

11

[48] R. Scheibler, S. Haghighatshoar, and M. Vetterli. A fast Hadamard transform for signals with
sublinear sparsity in the transform domain. IEEE Trans. Information Theory, 61(4):2115–2132,
2015.

[49] B. Seifert and K. Hüper. The discrete cosine transform on triangles. In Proc. International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5023–5026, 2019.

[50] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver
from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

[51] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains. IEEE Trans. Signal Processing, 30(3):83–98, 2013.

[52] M. Simonovsky and N. Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pages
412–422, 2018.

[53] R. S. Stankovic, C. Moraga, and J. Astola. Fourier analysis on finite groups with applications
in signal processing and system design. John Wiley & Sons, 2005.

[54] P. Stobbe and A. Krause. Learning Fourier sparse set functions. In Artificial Intelligence and
Statistics, pages 1125–1133, 2012.

[55] F. P. Such, S. Sah, M. A. Dominguez, S. Pillai, C. Zhang, A. Michael, N. D. Cahill, and
R. Ptucha. Robust spatial filtering with graph convolutional neural networks. IEEE Journal of
Selected Topics in Signal Processing, 11(6):884–896, 2017.

[56] A. M. Sutton, L. D. Whitley, and A. E. Howe. Computing the moments of k-bounded pseudo-
Boolean functions over Hamming spheres of arbitrary radius in polynomial time. Theoretical
Computer Science, 425:58–74, 2012.

[57] S. Tschiatschek, A. Sahin, and A. Krause. Differentiable submodular maximization. In
Proc. International Joint Conference on Artificial Intelligence, pages 2731–2738. AAAI Press,
2018.

[58] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. W. Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. SSW, 125,
2016.

[59] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo. Graphgan:
Graph representation learning with generative adversarial nets. In Conference on Artificial
Intelligence, 2018.

[60] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter. SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pages 6545–6554, 2019.

[61] C. Wendler and M. Püschel. Sampling signals on Meet/Join lattices. In Proc. Global Conference
on Signal and Information Processing (GlobalSIP), 2019.

[62] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural
language processing. IEEE Computational intelligence magazine, 13(3):55–75, 2018.

[63] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep
sets. In Advances in neural information processing systems (NIPS), pages 3391–3401, 2017.

12

