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Abstract—Reducing the power consumption while maintaining
the response time constraint has been an important goal in server
system design. One of the techniques widely explored in the
literature to achieve this goal is Dynamic Voltage Scaling (DVS).
However, DVS is not efficient in modern systems where the overall
power consumption includes a large portion of static power
consumption. In this paper, we aim to reduce the static power
consumption by Dynamic Power Management (DPM) with sleep
model in addition to DVS. To maximize the sleep efficiency, we
proposePowerSleep, a smart power-saving scheme by carefully
choosing an execution speed for the server with DVS and sleep
periods while putting the system in the sleep power mode with
DPM. By modeling the system with M/G/1/PS queuing model
and further significant extensions, we present how to minimize
the mean power consumption of the server under the given
mean response time constraint. Simulation results show that our
smart PowerSleep scheme significantly outperforms the simple
power-saving scheme which adopts sleep mode.
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I. I NTRODUCTION

Power-aware design has become a prominent design issue
in server systems due to the rising energy utility bill. For
example, for a high-performance server with330 Watt power
consumption, the annual energy cost of the server is around
$214, provided that the electricity costs $0.074 per kWh. Even
without considering the cost of the power delivery subsystems
and the cooling facility, the electricity cost is significant in
maintaining a cluster with hundreds of servers. Specifically,
it has been shown that the electricity cost remains significant
even if the server does not always operate with the maximum
power consumption [1]. By 2011, data centers in U.S. are
expected to consume around100 billion kWh per year [2], in
which the annual power cost is around $7.4 billion.

At the same time, clients are very sensitive to the server
performance. Delayed response to users will have negative
effects for a hosting company including client frustrations and
revenue loss. Mean response time of requests has been an

important performance measure for servers. How to minimize
the server mean response time or to meet the mean response
time service level agreement (SLA) constraint for servers
has been an active research [3]–[6]. Recently, how to reduce
the power consumption while maintaining the mean response
time constraint has received increasing attention. Low-power
opportunity for web servers has been observed in [7], [8] to
reduce the energy consumption by applying Dynamic Voltage
Scaling (DVS) with minimal performance impact. In [9], a
queueing theoretic model was used to predict the optimal
power allocation in a variety of scenarios with DVS. An
optimal speed scaling was investigated in [10] to balance
the mean energy consumption and mean response time under
Processor Sharing (PS) scheduling.

DVS is an efficient power-saving technique in the systems
where the static power consumption is only a small portion
of the overall power consumption. However, as shown in
[11]–[13], the static power dissipation when a server is idle
could reach up to60% of the peak power, and is worsened if
the power waste in power delivery and cooling sub-systems
is counted, which could increase power consumption by
50∼100% [14]. Given the fact that average server utilization is
only 20∼30% in typical data centers [7], [11], [15], reducing
the power consumption for an idle server becomes practically
important. To overcome the idleness of the server, consolida-
tion technique is adopted in server clusters by using virtual
machines to put several servers in one machine and reduce
the number of active machines. However, a large fraction of
servers exhibit frequent but brief bursts of activity, making
dynamic consolidation and system shutdown difficult [15]. The
other common approach to reducing power consumption for an
idle server is to use Dynamic Power Management (DPM) (such
as clock gating or power gating). In other words, to reduce
the power consumption when a server is idle, we can turn
the server from the active mode to the sleep mode. However,
mode transitions between the active mode and the sleep mode
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introduce significant overheads in terms of time and energy.

In [15], a PowerNap scheme was proposed to handle the
dominant idle time by quickly transitioning in and out of a low
power sleep mode. UnderPowerNap, the server runs at the
maximum speed in executing jobs if there are jobs in queue,
and is immediately put into the sleep mode once the queue
is empty and is waken up once a new job arrives. However,
mode transitions between the active mode and the sleep
mode introduce a pure timing overhead for the server, which
degrades the performance such as the mean response time
of jobs. When the server utilization is low, thePowerNap
scheme is shown superior to the pure DVS scheme. The higher
the server utilization is, the more obvious the mode transition
overhead has an impact on the system performance. Therefore,
it is necessary in the design with the sleep mode to reduce
the mode transition overhead as much as possible. In [15],
one of the goals is to reduce each transition duration for fast
mode transitions. However, due to the hardware limitation,we
have no much space in this direction. Moreover, in general,
the more inactive hardware components are in the sleep mode,
the larger the timing overhead is required for mode transitions.
Therefore, in addition to having fast mode transitions from
the hardware aspects, we would also like to consider another
direction: reducing the mode transition frequency from the
software aspects. We could jointly consider DVS to change
the execution speed of the server and DPM to change the
power mode. We do not have to run the server at the maximum
speed in executing jobs or wake up the server so greedily like
PowerNap since the server might have to go to sleep again
after a short period of job execution.

In this paper, we proposePowerSleep, a smart power-
saving scheme. To minimize the mean power consumption
while maintaining the mean response time constraint, we care-
fully choose an execution speed for the server with DVS and
sleep periods while putting the system in the sleep power mode
with DPM. We will show thatPowerSleep outperforms
PowerNap significantly, in particular when the single mode
transition overhead is large. In the study of server performance,
M/G/1/PS server model has been shown by different research
studies that can model the modern web servers well [3],
[6], [9], [10], [16]–[18]. To make the modeling and analysis
even more accurate, in this paper, we adopt the M/G/1/PS
model with some significant extensions as the mode transition
overhead is taken into consideration.

The rest of this paper is organized as follows: Sec-
tion II shows the system model. The design framework of
PowerSleep will be described in details in Section III.
Section IV presents detailed power consumption and response
time analysis. The optimal design is described in Section V
by showing how to minimize the mean power consumption
under the given mean response time constraint. Section VI
presents performance evaluation over simulated platforms. We
will conclude the paper in Section VII.

II. SYSTEM MODEL

We use DVS and DPM for the power management in the
server. With DVS, we can choose an execution speed for the
server (with a corresponding choice of the supply voltage)
to serve jobs in the queue. We definer as the ratio of the
execution speed of the server to its maximum speed. The speed
ratio r is bounded by a lower boundrl, i.e.,rl ≤ r ≤ 1. When
the server is active, either it is (i) in therunning mode while
executing jobs, or (ii) in theidle mode at the lowest speed ratio
rl without executing any job. With DPM, the server can be set
to thesleep mode. However, there are some timing overheads
for the mode transitions between the running mode and the
sleep mode [15], during which the server is in thetransition
mode.

The power consumption in our study is the system-level
power, including the power consumed by the processor and all
other components within the server. The power consumption
depends on the mode the server is in (running, idle, sleep, or
transition), and also the execution speed in use. In this paper,
we adopt the power consumption model in [9]. The server has
the following power modes:

• Idle power mode: In the idle mode, the server consumes
the static powerPI ;

• Running power mode: In the running mode, the power
consumptionPR(r) by the server at a speed ratior is

PR(r) = α[r − rl]
γ + PI , (1)

whereγ ≥ 1. The cubic rule is widely suggested in the
literature for the processor power-to-speed relationshipin
the running mode, i.e.,γ = 3. However, in server farms
with DVS or for some applications, the linear rule could
be applied. The reader can find more details on this in
[9];

• Sleep power mode: In the sleep mode, the power con-
sumption by the server isPS , wherePS ≪ PI .

• Transition power mode: In the transition mode, the server
also consumes power, which is defined asPT . In this
paper we assume the power consumption in the transition
mode is equal to the one in the running mode, i.e.,PT =
PR(r).

The different power modes provide the space for system
designers to design efficient power-saving schemes.

The system in this work is based on the M/G/1/PS server
model. We consider a Poisson job arrival with an arrival rate
λ and we assume that jobs follow a generalized service time
distribution with a given mean valueE[S] when executing
at the maximum speed. We also assume all jobs in the
queue are served with the PS scheduling algorithm, where
PS approximates very well the Round-Robin job scheduling
algorithm used in Linux. Our methodology can be applied
to other job scheduling algorithms such as First-Come-First-
Served (FCFS) as well. We assume the mean job execution
time E[S] = 1

µ
under the maximum speed. If the server runs

at a speed ratior in the running mode, we haveE[S] = 1
rµ

.
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We denote

ρ =
λ

µ
. (2)

The relative server utilization with respect to the speed ratio
r can be written as

λE[S] =
ρ

r
, (3)

while ρ is the (absolute) server utilization with respect to
the maximum speed. Note that this paper considers a coarse-
grained model for scheduling by assuming that the execution
time is proportional to1

r
. If the memory or I/O peripheral

accesses make the frequency scaling dis-match the frequency,
speeding up the CPU frequency by a factor of2 may only
reduce the execution time by30%. The definitions in (2) and
(3) become invalid.

III. T HE DESIGN FRAMEWORK OFPowerSleep

In order to design a better power-saving strategy, we try to
answer the following questions: (i) When should the server
start to sleep? (ii) When should the server be waken up?
(iiii) What speed ratio can be set in the running state? The
straightforward scheme is to set the server to sleep once the
queue is empty and is waken up upon a new job arrival and
choose the full speed in the running state as shown in [15].
This approach works but with some limitations and it is not
efficient due to the following concerns:
C1. The transition from the running power mode into the sleep

power mode might be too costly. If the idle-queue duration
(or non-idle-queue duration) is short, the server is wasting
time in transition without taking enough duration of sleep
(or execution of jobs).

C2. The average response time threshold would be always
violated if the wake-up transition time is beyond the
average response time threshold. All jobs after the wake-
up will experience at least the wake-up transition delay.
This is another big drawback of this simple approach.

C3. The full speed might not be the best choice in saving
power. This is well-accepted in the study of pure DVS in
the literature. If we also consider DPM, how will speed
affect the power-saving design?

In the design ofPowerSleep, we introduce the following
constant parameters of time periods to overcome the above
raised concern by utilizing both DVS and DPM:

• Idle period thresholdδh: It is the minimum length of the
idle-queue duration before the server is put into the sleep
power mode, i.e., if the idle-queue duration is shorter
than δh, the server remains in the idle power mode not
in the sleep power mode, and then goes back to the
running power mode for the new job arrivals.δh is a
very important parameter to tradeoff the benefit of the
sleep power mode and the cost of the transition overhead
in(/out of) the sleep mode.

• Sleep period thresholdδe: It is the maximum length
of the period during which the server can stay in the
sleep power mode continuously. Once the sleep duration

exceedsδe, the server needs to be put back to the idle
power mode or the running power mode. This gives the
server the chance to be put back to the running power
mode precautiously so that the job can be served shortly
with reduced response time. This works better under the
long idle period of the job queue.δe is a very important
parameter to tradeoff the gain between the sleep power
mode and the response time.

• Procrastination sleep periodδx: If the job arrives earlier
before the expiration ofδe, the server will be procrasti-
nated in the sleep mode forδx period so that jobs can be
batched together to reduce the short idle periods of the
job queue. This works better under the short idle period
of the job queue.

Now we are able to address the concerns raised in the
beginning of this section: For C1 and C2,δh and δe are
introduced for these purposes respectively; for C3, we will
study the effect of the value of the speed ratior to the power
saving design in Sections IV and V;

With the above pre-determined constant parameters of time
periods (δh, δx, δe), and of speed ratior, PowerSleep can
be described as the following steps:

i) Once the queue is empty, the server intends to hold on in
the idle power mode forδh time unit;

ii) If a new job arrives before the expiration of theδh

time unit, the server will immediately serve the new job.
Otherwise, the server will be set to the sleep power mode
and then it will be enforced to stay in the sleep power
mode forδe time unit;

iii) If a new job arrives before the expiration of theδe time
unit, the server will remain in the sleep power mode for
a procrastination sleep periodδx time unit (counted from
the arrival of the new job). In other words, the job will
wait for δe time units. Otherwise, the server will be put
in the idle power mode again until a new job arrives;

iv) Once the server is in the running power mode, the server
runs at a constant speed ratior in the running power mode
serving jobs in the queue until the queue become empty;

v) Once the queue is empty, repeat Step i.

The above procedure will be looped as jobs come to and leave
the queue.

Recall that there are timing overheads for the mode transi-
tions between the running power mode and the sleep power
mode. We denoteδs andδw as the overheads for thesuspend
transition from the running power mode to the sleep power
mode and thewake-up transition from the sleep power mode
back to the running power mode respectively. In [15], it is as-
sumed that these two types of transition duration are equal,but
we consider a general case. Note that each suspend transition
could not be stopped once a suspend transition is initiated.
The wake-up transition will follow the procrastination sleep
period before serving a new job. Also note thatPowerNap
in [15] is a special case ofPowerSleep by settingr = 1,
δh = δx = 0, andδe = ∞.
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(a)

(b)

δh δx

(c)

δe

sleep suspend wakeup idle job arrival

Fig. 1. Scenarios forPowerSleep

Figure 1 illustrates the change of the power mode with
PowerSleep under different scenarios, where the X-axis is
the time line and the Y-axis is the workload in the queue. We
defineδi as the length of a preceding idle-queue duration for
a job arrival:

(a) δi ≤ δh: After a new job arrives, the server will immedi-
ately serve the new job;

(b) δh < δi < δh +δs +δe: After a new job arrives, the server
will remain in the sleep power mode for extraδx time
units, and then wake up to serve;

(c) δi ≥ δh + δs + δe: After the server is waken-up, the server
will stay in the idle power mode until a new job arrives.

In Scenario (a), since the idle-queue period is short, it is
not worth putting the server into the sleep power mode. In
Scenario (b), the new job arrives before the expiration of the
pre-definedδe period, then we adjust the sleep period with
an extra procrastination sleep periodδx. In Scenario (c), the
idle-queue period is long, then the server will stay in the idle
power mode before a new job arrives.

As we can see in Figure 1, ifδh is too short, the server
wastes time in mode transition out of sleep mode; ifδh is
too long or δe is too short, the server does not take the
advantage of the long idle-queue period; ifδe is too long and
the wakeup transition overhead is big, the mean response time
for job might be not tolerable. At the same time, the execution
speedr will also affect the idle-queue duration. Therefore,
choosing appropriate values ofδh, δx, δe, andr is the key to
the efficiency of the design ofPowerSleep.

IV. POWER CONSUMPTION AND RESPONSETIME

ANALYSIS

Recall that our objective is to minimize the power consump-
tion under the mean response time constraint. First we need to
perform the power consumption and response time analysis,
which depends on the power-saving scheme used in the server.

UnderPowerSleep, we will extend the tradition M/G/1/PS
queueing theory to consider the sleep and transition modes.

A. Extended M/G/1/PS Queue with Starter

UnderPowerSleep, the server will stay in four different
modes: running, transition, sleep, and idle. With sleep and
transition modes, the traditional queueing theory cannot be
applied directly here. Instead we adopt aQueue with Starter
model [19], [20]: the server is “turned off” whenever the queue
becomes empty. When a job arrives at an empty queue, it
cannot be served immediately; rather the server requires an
additional amount of timeTX (called astarter) to start from
“cold” before it can serve the new first job. Jobs which arrive
to a “hot” server (i.e., one with at least one job either in service
or in the queue) will join the queue and be served in turn as
in a simple queueing system. StarterTX underPowerSleep
includes the wake-up transition plus the procrastination sleep
period δx and may also include the remaining portion of a
suspend transition.

Since the server has different power consumption in differ-
ent modes, we need to obtain the probability that the server is
in each mode (running, transition, sleep, and idle), which we
define asπR, πT , πS , andπI respectively. Under theQueue
with Starter model, these probabilities can be obtained with
the following lemma:

Lemma 1: In an M/G/1 server underPowerSleep with
StarterTX , a job arrival rateλ, and a generalized service time
distribution with a given mean valueE[S], we have

πR = λE[S], (4)

πT = [1 − λE[S]]
λ[δs + δw]e−λδh

1 + λE[TX ]
, (5)

πS = [1 − λE[S]]
e−λδh [λδx + e−λδs [1 − e−λδe ]]

1 + λE[TX ]
, (6)

πI = 1 − πR − πT − πS . (7)

Proof: In order to compute the probability that the server
is in each mode, we focus on acycle in the server, which
is a time interval that begins at an instant when the queue
becomes empty and ends at the first time thereafter when the
queue is empty again, after at least one job has been served.
We will study the time spent by the server in each mode during
a cycle. Let the random variableTC have the distribution of
the length of a cycle. Also let random variablesTR, TT , TS,
andTI have the distributions of the lengths of time spent in
running, transition, sleep, and idle transition modes in a cycle
respectively. Then the probabilities can be written as

πR =
E[TR]

E[TC ]
, πT =

E[TT ]

E[TC ]
, πS =

E[TS ]

E[TC ]
, πI =

E[TI ]

E[TC ]
. (8)

In the following, we will study how to obtainE[TC ], E[TR],
E[TT ], E[TS ], andE[TI ].

Under theQueue with Starter model, we can obtain the
value of E[TC ]. We define StarterTX in a cycle TC as a
virtual job. StarterTX will be the first job in a busy period
TB including TX . Then by the relationship between the first
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job and the following busy period in [21, pp. 65], [20], we
have

E[TB] =
E[TX ] + E[S]

1 − λE[S]
. (9)

We knowTC = TB+δi, whereδi is a idle period in an ordinary
M/G/1 model, which follows the exponential distribution with
a mean value1

λ
. Therefore, the mean duration of a cycle can

be written as

E[TC ] =
E[TX ] + 1

λ

1 − λE[S]
. (10)

We know that the probability that the server is in the running
mode underPowerSleep is always equal to the server’s
server utilizationλE[S], then the mean running duration in
a cycle is

E[TR] = λE[S]E[TC ]. (11)

When δi > δh, the system will also experience transition
and sleep mode. The mean transition time is

E[TT ] =

∫

∞

δh

[δs + δw]λe−λtdt (12)

= [δs + δw]e−λδh . (13)

The mean sleep time is

E[TS ] =

∫ δh+δs

δh

δxλe−λtdt

+

∫ δh+δs+δe

δh+δs

[t − δh − δs + δx]λe−λtdt

+

∫

∞

δh+δs+δe

[δe + δx]λe−λtdt (14)

=
1

λ
e−λδh [λδx + e−λδs [1 − e−λδe ]]. (15)

We also know thatTC = TR +TS +TT +TI , then the mean
idle time can be written as

E[TI ] = E[TC ] − E[TR] − E[TS ] − E[TT ]. (16)

Applying (10), (11), (13), (15), and (16) into (8), we have
the result in Lemma 1.

With the probabilities in Lemma 1, we can easily obtain the
mean power consumption as shown in the following lemma:

Lemma 2: In an M/G/1 server underPowerSleep, the
mean power consumption of the server is

E[P ] = PR(r)πR + PT πT + PSπS + PIπI , (17)

where PR(r) defined in (1), andπR, πT , πI , and πS are
defined in Lemma 1.

Next we will investigate the response time under
PowerSleep. It is shown in [19] that the additional delay in
a queue introduced by a starter is independent of the response
time in the system without starters. Using this independence
property, it is then easy to calculate the total response time in
the system with starters: it is simply the sum of the response
time in the queue without starters plus the additional delay

RX introduced by starter. By the traditional M/G/1/PS queue
theory [22], the mean response time of a job in an M/G/1/PS
server without starters is E[S]

1−λE[S] . By [19], in an M/G/1/PS
system with a job arrival rateλ and StarterTX , the mean
additional delay introduced by Starter is

E[RX ] =
E[TX ] + 1

2λE[T 2
X ]

1 + λE[TX ]
. (18)

We summarize it in the following lemma:
Lemma 3: In an M/G/1/PS server underPowerSleep

with StarterTX , a job arrival rateλ, and a generalized service
time distribution with a given mean valueE[S], the mean
response time of a job is

E[R] =
E[S]

1 − λE[S]
+ E[RX ], (19)

whereE[RX ] is defined in (18).
With Lemmas 2 and 3, we obtain the mean power consump-

tion and mean response time. We observe that both of them
rely on the values ofE[S], E[TX ], andE[T 2

X ], which depend
on the values ofδh, δx, δe, andr. In the following, we aim
to obtain the explicit formula for each one.

B. Main Result

In order to evaluate the performance of power consumption
and response time underPowerSleep, we need to obtain
E[TX ] andE[T 2

X ] used in Lemmas 2 and 3. First we have to
find the formula for StarterTX . By the definition of a starter in
Queue with Starter, StarterTX underPowerSleep includes
the wake-up transition plus the procrastination sleep period
δx and may also include the remaining portion of a suspend
transition, which depends on the preceding idle-queue period
δi before a new job arrival. Based on the Figure 1, we observe
that there are following cases:

(a) δi ≤ δh: After a new job arrives, the server will immedi-
ately serve the new job, and there is no starter;

(b) δh < δi < δh + δs: A new job arrives during the suspend
transition, and the length of the starter isδh + δ − δi;

(c) δh + δs < δi < δh + δs + δe: A new job arrives during the
enforced sleep periodδe, and the length of the starter is
δx + δw;

(d) δh + δs + δe < δi < δh + δ + δe: A new job arrives during
the procrastination or wakeup period, and the length of
the starter isδh + δ + δe − δi;

(e) δi ≥ δh + δ + δe: A new job arrives at the idle mode, and
there is no starter.

We summarize it with the following formula:

TX =



























δh + δ − δi, if δh < δi < δh + δs

δx + δw, if δh + δs < δi < δh + δs + δe

δh + δ + δe − δi, if δh + δs + δe < δi < δh + δ + δe

0, otherwise.
(20)
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whereδ is defined as

δ = δs + δx + δw. (21)

The preceding idle-queue periodδi is the same as the idle
period defined in an ordinary M/G/1 model, which follows
the exponential distribution with a mean value1

λ
. Therefore,

for TX defined in (20), its mean value and variance can be
obtained as:

E[TX ] =

∫ δh+δs

δh

[δh + δ − t]λe−λtdt

+

∫ δh+δs+δe

δh+δs

[δx + δw]λe−λtdt

+

∫ δh+δ+δe

δh+δs+δe

[δh + δ + δe − t]λe−λtdt (22)

= e−λδh [δ −
1

λ
+

1

λ
[e−λδs [1 − e−λδe ] + e−λ[δ+δe]]],

(23)

and

E[T 2
X ] =

∫ δh+δs

δh

[δh + δ − t]2λe−λtdt

+

∫ δh+δs+δe

δh+δs

[δx + δw]2λe−λtdt

+

∫ δh+δ+δe

δh+δs+δe

[δh + δ + δe − t]2λe−λtdt (24)

= e−λδh [[δ −
1

λ
]2 +

1

λ2
[1 − 2e−λ[δ+δe]]

+
2

λ
[δx + δw −

1

λ
]e−λδs [1 − e−λδe ]]. (25)

Hence1 + λE[TX ] andE[TX ] + λ
2 E[T 2

X ] in Lemmas 2 and
3 can be written as

1 + λE[TX ] = e−λδhσ, (26)

E[TX ] +
λ

2
E[T 2

X ] = e−λδh [
λ

2
δ2 + [δx + δw]e−λδs [1 − e−λδe ]],

(27)

where

σ = eλδh + λδ − 1 + e−λδs [1 − e−λδe ] + e−λ[δ+δe]. (28)

Therefore, the probabilities defined in Lemma 1 can be
written as

πR =
ρ

r
, (29)

πT = [1 −
ρ

r
]
λ[δs + δw]

σ
, (30)

πS = [1 −
ρ

r
]
λδx + e−λδs [1 − e−λδe ]

σ
, (31)

πI = 1 − πR − πT − πS , (32)

andE[RX ] in Lemma 3 can be written as

E[RX ] =
λ
2 δ2 + [δx + δw]e−λδs [1 − e−λδe ]

σ
. (33)

Recall that we assumePT = PR(r). 1 Applying (3), (23)
and (25) into Lemmas 2 and 3, with further mathematical
manipulation, we have the following theorem:

Theorem 1 (PowerSleep): In an M/G/1/PS server un-
derPowerSleep, the mean power consumption is

E[P ] = α[r − rl]
γ [

ρ

r
+ [1 −

ρ

r
]
λ[δs + δw]

σ
] + PI

− [PI − PS ][1 −
ρ

r
]
λδx + e−λδs [1 − e−λδe ]

σ
, (34)

and the mean response time of a job is

E[R] =
1

µ[r − ρ]
+

λ
2 δ2 + [δx + δw]e−λδs [1 − e−λδe ]

σ
, (35)

whereδ andσ are defined in (21) and (28) respectively.

C. Remarks

Even though we focus in our study by far on the PS
job scheduling police and the heavy-tailed job service time
distribution, the proposed methodology can still work for other
settings. We observe that in the analysis forPowerTail,
the power consumption analysis is based on M/G/1 queueing
model and is independent of the underlying scheduling policy
and the job service time distribution. This will not hold forthe
response time analysis. We need to make some corresponding
changes.

For instance, if First-Come-First-Served (FCFS) is adopt,
with M/G/1/FCFS queueing theory, the mean response time
of a job without starters will be revised asλE[S2]

2[1−λE[S]] +E[S] if
the second momentE[S2] is also known in addition toE[S].

In the performance evaluation, we will also consider
two baseline power-saving schemes:PowerIdle and
PowerNap, both of which are special cases of PowerSleep.
With PowerIdle, only DVS is adopted to change the ex-
ecution speed. The server stays in only two different modes
alternatively: running and idle. Therefore, the power consump-
tion and the response time can be easily derived by setting
δh = ∞ in Theorem 1.PowerNap in [15] is a special case
of PowerSleep by settingr = 1, δh = δx = 0, andδe = ∞
in Theorem 1. The formulas are shown as in the following:

Corollary 1 (PowerIdle and PowerNap): In an
M/G/1/PS server underPowerIdle, the mean power
consumption is

E[P ] = α[r − rl]
γ ρ

r
+ PI , (36)

and the mean response time of a job is

E[R] =
1

µ[r − ρ]
. (37)

In an M/G/1/PS server underPowerNap, the mean power
consumption is

E[P ] = PS + [α[1 − rl]
γ + PI − PS ]

[1 − [1 − ρ]
1

λ[δs + δw]eλδs + 1
], (38)

1Other transition power consumption model can be applied here too.
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and the mean response time of a job is

E[R] =
1

µ[1 − ρ]
+

λ
2 [δs + δw]2eλδs + δw

λ[δs + δw]eλδs + 1
. (39)

In Corollary 1, underPowerIdle, we observe thatE[P ]
is an increasing function in terms ofr asγ ≥ 1, andE[R] is a
decreasing function in terms ofr. The necessary condition for
the stability of the system is that the relative server utilization
has to be less than1, i.e., r > ρ. UnderPowerNap, both
E[P ] andE[R] are constant for givenρ.

V. OPTIMAL DESIGN

In this section, we will study the optimal design for power-
saving schemePowerSleep, in order to minimize the mean
power consumption under a given mean response time con-
straint, where we choose a mean response time thresholdR̂.
The optimization problem can easily be formulated as follows:

minimize E[P ] (40a)

subject toE[R] ≤ R̂, (40b)

max{rl, ρ} ≤ r ≤ 1. (40c)

Inequality (40c) is based on the low bound ofr (rl ≤ r ≤ 1)
and the stability condition of a server (r > ρ).

The optimization problem defined in (40) can in general be
solved with a Lagrangian function

L = E[P ] + χE[R]. (41)

Through Lagrangian function (41), we notice that the fol-
lowing three problem settings are dual to each other: (i)
Minimizing the power consumption subject to response time
threshold (in this paper), (ii) Minimizing the response time
subject to power consumption budget [9], and (iii) Minimizing
the combination of the response time and power consumption
[10]. Therefore, our method can be easily applied to the other
two problem settings.

We set ∂L
∂r

= 0, ∂L
∂δh

= 0, ∂L
∂δe

= 0, and ∂L
∂δx

= 0. Together
with (40b) where the optimal value will be achieved at the
boundary, we are able to obtain5 variables (r, δh, δe, δx,
and χ. We denoter∗, δ∗h, δ∗e , and δ∗x as the corresponding
optimal values. We summarize the main result in the following
theorem:

Theorem 2 (PowerSleep): In an M/G/1/PS server un-
der PowerSleep, the minimal power consumptionE[P ∗]
under the mean response time thresholdR̂ can be achieved
with an optimal configuration ofr∗, δ∗h, δ∗e , andδ∗x.

As most commercial computers nowadays only have dis-
crete number of available speeds, it is also important to decide
the speed for execution for such cases. By sequential search,
it is quite straightforward to extend the results in SectionV
by only considering those available speeds.

UnderPowerNap, all variables (r, δh, δe, andδx) are fixed.
There is no option for optimal design. UnderPowerIdle,
based on (36) in Corollary 1,E[P ] is an increasing function
in terms ofr. Obviously the minimal power consumption is

achieved at the smallest possibler. By (40b), (40c) and (37),
we haver ≥ r∗, where

r∗ = max{rl,
1

µR̂
+ ρ}. (42)

Therefore, we have the following corollary on the optimal
result:

Corollary 2 (PowerIdle): In an M/G/1/PS server under
PowerIdle, the minimal power consumption under the mean
response time threshold̂R is E[P ∗] = α[r∗ − rl]

γ ρ
r∗

+ PI as
r∗ ≤ 1, wherer∗ is defined in (42).

The mean response time threshold will always be violated
asr∗ > 1 or R̂ > 1

µ
. The upper-bound of the feasible server

utilization is

ρu = 1 −
1

µR̂
. (43)

If r∗ ≤ 1 andR̂ ≤ 1
µ

, the feasibleρ is in [0, ρu]. By denoting
ρm = [rl −

1
µR̂

]+ as an intermediate value ofρ, we consider
the following cases for the value ofE[P ∗]:

• As ρ ∈ [0, ρm], we haver∗ = rl, thenE[P ∗] = PI keeps
constant.

• As ρ ∈ [ρm, ρu], we haver∗ = 1
µR̂

+ ρ, thenE[P ∗] =

α[r∗ − rl]
γ ρ

r∗
+ PI , which increases asρ increases.

Therefore,E[P ∗] is a non-decreasing function in terms ofρ

asr∗ ≤ 1 and R̂ ≤ 1
µ

.
Remarks: As the workload in servers changes over time,

we have to calculate the optimal solution for (40) dynamically.
To reduce the on-line overhead, one reasonable approach is
to build a look-up table so that the system only has to refer
to the table for selecting the suitable configuration without
violating the constraints. The optimal configuration withr∗,
δ∗h, δ∗e , andδ∗x for specifiedρ and R̂ can be calculated in an
off-line manner, and stored in the look-up table. In general, we
can assume that the mean response time threshold is specified
during the design time. Therefore, the look-up table only has to
be built for different requests rates or workload characteristics.
With the look-up table, the on-line overhead will become
negligible.

VI. PERFORMANCEEVALUATION

This section presents performance evaluation of the pro-
posed power-saving schemePowerSleep with optimal de-
sign, in comparison with the baseline schemePowerNap [15]
andPowerIdle. The optimal design forPowerIdle can
be obtained by settingδs = δw = 0 and PS = PI used in
PowerNap. Recall thatPowerNap in [15] is a special case
of PowerSleep by settingr = 1, δh = δx = 0, andδe = ∞.

The power consumption model used in the evaluation is
based on the power profile of servers in [9], which includes
two cases:

• Linear-power server: γ = 1, rl = 0.4, α = 100 Watt,
PI = 180 Watt, and

• Cubic-power server: γ = 3, rl = 0.4, α = 455 Watt,
PI = 150 Watt.
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As PowerSleep model requires timing overhead for mode
transition, we consider the following cases:

• δs = δw = 0.01 sec,PS = 1
5PI , and

• δs = δw = 0.1 sec,PS = 1
10PI , and

• δs = δw = 0.5 sec,PS = 1
20PI ,

where the first one has higher power consumption in the sleep
mode but requires faster transitions.

Our performance evaluation focuses on the power man-
agement of a web server with web applications. For fair
comparison, we adopt the application specification from [15],
where the mean job execution time on the server at the
maximum speed is1

µ
= 0.028 sec2. We consider two cases

by (i) fixing the mean response time constraintR̂ and varying
the server utilizationρ, and (ii) fixing the server utilization
ρ and varying the mean response time constraintR̂. For each
configuration, we report the optimal mean power consumption
underPowerNap, PowerIdle, andPowerSleep.

A. Evaluation Results by Fixing Mean Response Time Con-
straint

Figure 2 presents the optimal mean power consumption with
respect to the varying server utilizationρ underPowerNap,
PowerIdle, and PowerSleep when the mean response
time constraintR̂ is fixed as10

µ
= 0.28 sec. Correspondingly,

the optimalδ∗h, δ∗x, δ∗e , and r∗ for PowerSleep are shown
in Figure 3. Note that, whenδ∗s = δ∗x = 0, the value ofδ∗h
could be arbitrary, and hence,δ∗h is set to0 for such cases
when presenting Figure 3. Given the fact that average server
utilization is only 20∼30% in typical data centers [7], [11],
[15], in particular we also report in Table I the detailed power
consumption improvement ofPowerSleep overPowerNap
and PowerIdle for a server withδs = δw = 0.1 sec as
ρ = 0.20, 0.25, and0.30.

We first compare the power consumption under
PowerSleep andPowerNap.

• As shown in Figure 2,PowerSleep is always better
than PowerNap sincePowerNap is a special case of
PowerSleep. In particular, the improvement is sig-
nificant when δs and δw are large. For instance, as
ρ = 0.25 and δs = δw = 0.1 sec, for linear-power
servers,PowerSleep has33.7% power reduction rate
over PowerNap; for cubic-power servers, the power
reduction rate is49.6% as shown in Table I.

• However, for both linear-power and cubic-power servers,
the power consumption underPowerNap is close to that
underPowerSleep when the server utilization is either
very low (less than0.05) or very high (more than0.85).
When ρ is very low, the transition power consumption
dominates the mean power consumption. For such cases,
the server usually is put to the transition mode right after
serving one or two jobs. The procrastination idea behind
PowerSleep might help, but the low utilization also

2In [15], the mean busy interval and idle interval for the measured web
workload are0.038 sec and0.106 sec. With the traditional queueing theory,
the mean job execution time is0.038∗0.106

0.038+0.106
= 0.028 sec.
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Fig. 2. Power consumption comparison forR̂ =
10

µ
.

implies the less probability to aggregate more jobs for
joint execution. Similarly, when the server utilization is
very high, in order to aggregate jobs for joint execution
by procrastination, one has to use a higher speed ratio,
which consumes more power (especially for the cubic-
power server) for job execution. Therefore, whenρ is
very high,PowerSleep performs exactly the same as
PowerIdle, as shown in Figure 2(d) forρ ≥ 0.63,
Figure 2(e) forρ ≥ 0.31, and Figure 2(f) forρ ≥ 0.44.
This is because the optimal speed ratio is very close to
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TABLE I
POWER CONSUMPTION IMPROVEMENT OFPowerSleep OVERPowerNap AND PowerIdle FOR A SERVER WITHδs = δw = 0.1 SEC.

ρ Linear-power Server Cubic-power Server
Over PowerNap Over PowerIdle Over PowerNap Over PowerIdle

0.20 33.9% 28.5% 50.1% 33.2%

0.25 33.7% 23.0% 49.6% 27.5%

0.30 32.7% 18.3% 48.4% 22.2%

1 and there is no space for procrastination sleep period
due to the response time constraint. Therefore, as shown
in Figures 3(d), 3(e), and 3(f), the optimal solutions
would setδ∗s = δ∗x = 0. which shows the equivalence of
PowerSleep to PowerIdle whenρ is large enough.

• In the case ofδs = δw = 0.5 sec as shown in Figure 2(e)
and Figure 2(f), we observe that there are no feasible
solutions forPowerNap. by the design ofPowerNap,
the response time will include one wakeup timeδw =
0.5 sec, which is larger than the response time threshold
R̂ = 10

µ
= 0.28 sec. Under this scenario,PowerSleep

can still work.

Next, we compare the power consumption under
PowerSleep andPowerIdle.

• PowerSleep outperforms PowerIdle when the
server utilization is low as shown in Figure 2. In par-
ticular, the improvement is significant whenδs and δw

are large. For instance, asρ = 0.25 and δs = δw = 0.1
sec, for linear-power servers,PowerSleep has23.0%
power reduction rate overPowerIdle; for cubic-power
servers, the power reduction rate is27.5% as shown in
Table I. PowerIdle might outperformPowerSleep
when the server utilization is high, such as the scenarios
in Figure 2(c) with ρ > 0.8 and Figure 2(d) with
ρ > 0.55.

• When the server utilization is lower thanrl −
1

µR̂
= 0.3,

the mean power consumption underPowerIdle is a
constant since the server would like to execute at the
lower boundrl of the speed ratio. The optimal solution
of PowerIdle always tries to use the minimal speed to
meet the mean response time constraint. When the server
utilization is high than0.3, the mean power consumption
underPowerIdle becomes a linear (cubic, respectively)
function for the linear-power (cubic-power, respectively)
server. Note that the results in Figure 2 also suggests that
power management for the server should bePowerIdle
andPowerSleep dynamically, depending on the server
utilization.

The trends in Figure 3 show that the optimal solution under
PowerSleep have to jointly choose the speed ratio and the
procrastination sleep period such that the mean power con-
sumption in running, transition, and sleep modes is balanced.

We also conducted the performance comparison of
PowerSleep in this manuscript and the one in the confer-
ence version [23]. In order to differentiate them, we rename
the one in the conference version asPowerSleepNaive.
PowerSleepNaive is a special case ofPowerSleep by
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Fig. 3. Optimalδ∗
h

, δ∗x, δ∗e , andr∗ for R̂ =
10

µ
.

setting δh = 0 and δe = ∞. The performance difference
betweenPowerSleepNaive and PowerSleep depends
on the sleep transition overhead (δs, δw) and the arrival rateρ.
We have conducted a comprehensive evaluation under different
scenarios in terms of different sleep transition overheadsand
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Fig. 4. Power consumption comparison betweenPowerSleepNaive and
PowerSleep for R̂ =

10

µ
.

different arrival rates for both linear-power and cubic-power
models. Due to the similarity, here we only show the following
typical scenarios:

• δs = δw = 0.01 sec: In this scenario, the perfor-
mance is the same for bothPowerSleepNaive and
PowerSleep in either linear-power server or cubic-
power server, which is the same as shown in Figures 2(a)
and 2(b). Since the transition overhead is relatively small,
the optimal idle period threshold inPowerSleep is
set as δh = 0. Hence PowerSleep is reduced to
PowerSleepNaive.

• δs = δw = 0.2 sec: The comparison is shown in Figure 4.
In this scenario, the transition overheads (δs = δw) is
shorter than the mean response time constraintR̂ = 0.28,
but relatively large. Thenδh is positive, i.e., it is better
to keep the server in the idle power mode when the idle-
queue duration is short. We observe thatPowerSleep
outperformsPowerSleepNaive for the high arrival
rate.

• δs = δw = 0.5 sec: In this scenario, the transition
overhead (δs = δw) is larger than the mean response time
constraintR̂ = 0.28. PowerSleepNaive is infeasible
since each job shall experience at least the wake-up
transition delayδw and the mean response time inevitably
exceeds the threshold. But inPowerSleep, we could
choose a properδe and put the server back from the sleep
power mode to the idle or running power mode early and
precautiously, which results in better feasibility of the
timing constraint as shown in Figures 2(e) and 2(f).

B. Evaluation Results by Fixing Server Utilization

Given the fact that average server utilization is only
20∼30% in typical data centers [7], [11], [15], we consider
the case that the server utilization is fixed asρ = 0.25.
Figure 5 presents the mean power consumption with respect to
different mean response time constraintsR̂ underPowerNap,
PowerIdle, andPowerSleep when ρ = 0.25. R̂ varies
from R̂min to 10∗R̂min, whereR̂min is the minimum response
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Fig. 5. Power consumption comparison forρ = 0.25.

time asρ = 0.25. The trends for their corresponding optimal
r∗, δ∗h, δ∗e , and δ∗x are skipped here due to similarity with
Figure 3.

As the mean response time constraintR̂ increases, the power
consumption decreases forPowerIdle and PowerSleep
schemes but keeps constant forPowerNap. In PowerNap,
r = 1 and δx = 0 are fixed, the response time keeps
constant as the server utilization is fixed. Therefore, witha
looser mean response time constraint, there is no space for
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PowerNap to reduce power consumption. ForPowerIdle
and PowerSleep, as R̂ increases, the optimal choice of
r and δx takes effects on the power consumption. We also
observe thatPowerSleep outperformsPowerIdle for all
cases with smallδs and δw and for cases with largêR and
large δs and δw. The fundamental reason is same as the one
explained in the previous subsection.

VII. C ONCLUSION

This paper explores how to minimize the mean power con-
sumption in a server under the mean response time constraint
for reducing the power cost. We proposedPowerSleep, a
smart power-saving schemes, which applies both DVS and
DPM to put the server to a low-power sleep mode. By adopting
the extended M/G/1/PS queuing model for job arrival and
execution, we present how to jointly decide the execution
speed for jobs and the sleep period such that the mean response
time constraint is satisfied and the mean power consumption
is minimized. Simulation results reveal the effectivenessand
efficiency of the proposed schemes with comparisons to two
baseline schemesPowerNap andPowerIdle.

The focus of this paper is on one server. For systems with
multiple homogeneous servers, our approaches in this paper
can be extended to decide the number of servers to evenly
assign jobs (workload). When the number of activated servers
is small, there might not exist a feasible solution to meet the
mean response time constraint or the execution speeds are
too large so that the mean power consumption is too high.
On the other hand, when the number of activated servers is
large, the activated servers might waste too much power for
mode transitions since the server utilization might be too low.
Therefore, we have to activate a proper number of servers and
evenly distribute the server utilization. Moreover it is also not
difficult to extend the schemes and approaches in this paper to
consider systems with multiple low-power modes for idling,
e.g., standby/sleep/shutdown.
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