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Abstract

We observe that the pp wave limit of AdS5 ×M5 compactifications of type
IIB string theory is universal, and maximally supersymmetric, as long as M5

is smooth and preserves some supersymmetry. We investigate a specific case,
M5 = T 1,1. The dual N = 1 SCFT, describing D3-branes at a conifold sin-
gularity, has operators that we identify with the oscillators of the light-cone
string in the universal pp wave background. The correspondence is remarkable
in that it relies on the exact spectrum of anomalous dimensions in this CFT,
along with the existence of certain exceptional series of operators whose dimen-
sions are protected only in the limit of large ‘t Hooft coupling. We also briefly
examine the singular case M5 = S5/Z2, for which the pp wave background be-
comes a Z2 orbifold of the maximally supersymmetric background by reflection
of 4 transverse coordinates. We find operators in the corresponding N = 2
SCFT with the right properties to describe both the untwisted and the twisted
sectors of the closed string.

∗On sabbatical leave from Tata Institute of Fundamental Research, 10/2001–9/2002.



1 Introduction

According to the AdS/CFT conjecture [1, 2, 3], the chiral operators of the N =

4 supersymmetric SU(N) gauge theory are in one-to-one correspondence with the

modes of type IIB supergravity on AdS5 × S5. The massive string modes, however,

correspond to operators in long multiplets whose dimensions diverge for large ‘t Hooft

coupling as (g2
YMN)1/4. For this reason, the precise map between massive string modes

and gauge invariant operators has been difficult to construct. Recently, however,

major progress in this direction has been made by Berenstein, Maldacena and Nastase

(BMN) [4]. Their proposal is to consider states with very large angular momentum

along the great circle of S5, J ∼ √N . The metric felt by such states is the Penrose

limit of AdS5 × S5, which is [5, 6] the pp wave

ds2 = −4dx+dx− +
8∑
i=1

(dxi)
2 − µ2(dx+)2

8∑
i=1

x2
i (1)

supported by the 5-form RR field strength

F+1234 = F+5678 ∼ µ . (2)

The 5-form breaks the SO(8) symmetry of the metric down to SO(4)× SO(4). The

pp wave limit preserves 32 supercharges, as many as the AdS5×S5 background [5, 6].

This string background is remarkable in that the string theory is exactly sovable

in spite of the presence of the RR 5-form field strength. As shown by Metsaev [7] (see

also [8]), in the light-cone gauge the 8 world sheet fields describing the transverse co-

ordinates, and their fermionic superpartners, all acquire the same mass µ. Therefore,

the light-cone Hamiltonian for a single string assumes the form

p− =
∞∑

n=−∞
Nn

√√√√µ2 +
n2

(α′p+)2
, (3)

where Nn is the excitation number of the n-th oscillator.

BMN combined this formula with the AdS/CFT duality to construct the following

relation between the dimension ∆ and the R-charge J of the corresponding gauge

theory operator [4]:

∆− J =
∞∑

n=−∞
Nn

√
1 +

4πgsNn2

J2
. (4)

This formula is valid for ∆−J
J
� 1. In an ingenious construction, BMN identified

the set of single-trace operators which they argued have these dimensions and R-

charges. They suggested that this class of single-trace operators is in one-to-one

correspondence with the single string spectrum in the pp wave background (1).
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This remarkable result raises many interesting questions. The questions we would

like to ask are: Is the maximally supersymmetric gauge theory necessary for recon-

structing the full string spectrum? Can an analogous construction be carried out

with a gauge theory that has reduced supersymmetry or no supersymmetry at all?

In fact, in [4] it was pointed out that the Penrose limit of the N = 2 supersymmetric

orbifold AdS5 × S5/Z2 is a Z2 orbifold of the pp wave under xi → −xi, i = 5, 6, 7, 8.

In section 4 we consider the matching of string states in this background with the

single-trace operators of the N = 2 SU(N)× SU(N) orbifold gauge theory [11].

Furthermore, we study the Penrose limits of spaces AdS5 × T p,q which preserve

N = 1 superconformal symmetry for p = q. We will primarily consider the basic case

p = q = 1 which is dual to an N = 1 superconformal SU(N)× SU(N) gauge theory

[12]. For p = q > 1 we find a Zp orbifold of this gauge theory: an N = 1 super-

conformal SU(N)2p gauge theory which we will not discuss here in any detail. For

p 6= q the supergravity background is non-supersymmetric and is, actually, unstable

[17]. Remarkably, for p = q the Penrose limit is the maximally supersymmetric pp

wave background (1).1 This is rather puzzling since the gauge theory of [12] has only

1/4 of the maximal supersymmetry. The only logical possibility seems to be that the

operators surviving in the appropriate limit of large R-charge form a subsector with

enhanced supersymmetry. While this is difficult to prove, we will provide evidence

that this is indeed the case.

Our construction of the string states largely parallels the BMN construction. It

will be very important for us that in addition to the U(1)R symmetry the gauge

theory possesses SU(2)× SU(2) global symmetry. The correct quantum number for

classifying the string states (the analogue of ∆− J of [4]) turns out to be

H = ∆− J

2
+ J3 + J ′3 , (5)

where J is the R-charge while J3 and J ′3 are the SU(2) and SU(2)′ quantum num-

bers. We find a family of H = 0 operators: Tr(A2B2)
J .2 The insertion operators

corresponding to the 8 transverse bosons and fermions carry H = 1 and are presented

in section 3.

1For p 6= q we find a more general pp wave metric which gives, in the light-cone gauge, different
masses for the oscillators in the 1234, 56 and 78 directions.

2There also exist dibaryon operators [13] carrying H = 0: detA2 and detB2. These operators
are of no concern to our paper since they carry J = N , much greater than in the BMN scaling for
closed strings. These operators instead correspond to wrapped D3-branes [13]. Such operators and
their excitations may therefore be relevant to generalization of the BMN construction to D-branes
and open strings [14].
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It is interesting that some of the operators we have to use are not chiral. For J = 0

they have protected dimensions due to the presence of the SU(2) × SU(2) global

symmetry. For J > 0 it is likely that the dimensions are not protected. However,

we are able to use the AdS/CFT correspondence to show that these operators have

H = 1 in the limit of very large gsN . This is in accord with the expectation that there

is a subsector of the gauge theory that has enhanced symmetry in the appropriate

limit of large quantum numbers and large gsN .

2 From N = 1 to N = 4 via the Penrose limit

In this section we show that the Penrose limit of AdS5 × M5 is the same as for

AdS5 × S5 (that is, (1)) provided that M5 is a Sasaki-Einstein 5-manifold with a

certain asymptotic behavior for the Kähler potential. We apply this to AdS5 × T 11.

An AdS5 ×M5 compactification of type IIB string theory, with smooth M5, pre-

serves some supersymmetry if and only if M5 is a Sasaki-Einstein 5-manifold [9, 10].

This is equivalent to saying that it is the base of a 6-dimensional cone M6 with metric

ds2
M6 = dr2 + r2dΩ2

M5
S−E

, (6)

where M6 is Kähler and Ricci-flat, in other words a Calabi-Yau space.

In turn, a Sasaki-Einstein 5-manifoldM5
S−E is a U(1) fibration over a 4-dimensional

Kähler-Einstein space M4
K−E. Under the assumption that M5

S−E is smooth, its metric

can be written as follows [15]:

ds2
M5

S−E
=
(
dβ +

i

2
(K,i dz

i −K,̄i dz̄i)
)2

+K,ij̄ dz
idz̄j , (7)

where K(z, z̄) is the Kähler potential of M4
K−E.

We introduce a constant R and scale the coordinates zi, z̄i so that the Kähler

potential K depends only on ( z
i

R
, z̄

i

R
). For the Penrose limit, we are interested in the

behavior of the metric when R→∞. Requiring that in this limit the Kähler potential

goes like

K(z, z̄)−→ zz̄

R2
, (8)

one finds that
i

2
(K,i dz

i −K,̄i dz̄i)−→
i

2R2
(z̄idzi − zidz̄i) . (9)

Consider now the full metric of AdS5 ×M5
S−E

ds2

R2
= −dt2 cosh2 ρ+ dρ2 + sinh2 dΩ2

3 +
(
dβ +

i

2
(K,i dz

i −K,̄i dz̄i)
)2

+K,ij̄ dz
idz̄j .
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With the geometry defined in these terms, the Penrose limit is obtained by scaling

the AdS coordinate ρ = r/R and then simply taking R→∞, dropping all terms that

vanish in this limit. The metric above then becomes

ds2 = −R2dt2 + dr2 + r2dΩ2
3 +R2dβ2 + idβ(z̄idzi − zidz̄i) + dzidz̄i . (10)

Replacing

zi → eiβzi, (11)

and defining

x+ =
1

2
(t+ β), x− =

1

2
R2(t− β) , (12)

the metric is brought to the form

ds2 = −4dx+dx− − (~r 2 + ziz̄i)(dx+)2 + d~r 2 + dzidz̄i, (13)

which is identical to Eq.(1).

In the remainder of the paper we shall mainly focus on a special case of a Sasaki-

Einstein 5-manifold: T 1,1, the base of the conifold, whose metric can be written as

[16, 12]

ds2
T 1,1 =

1

9
(dψ+cos θ1dφ1 +cos θ2dφ2)

2 +
1

6
(dθ2

1 +sin2 θ1dφ
2
1 +dθ2

2 +sin2 θ2dφ
2
2) . (14)

This metric can be written in the general Sasaki-Einstein form Eq.(7) by choosing

the Kähler potential of the 4-dimensional base P 1 × P 1 to be

K(zi, z̄i) =
2

3

2∑
i=1

ln

(
1 +

3

2

ziz̄i

R2

)
. (15)

Since Eq.(8) holds for this choice of the Kähler potential it follows from the discussion

above that the Penrose limit of AdS5×T 1,1 is the same as the Penrose limit of AdS5×
S5. Recalling that the original compactification breaks 3

4
of the supersymmetries of

type IIB, we see that in the Penrose limit this supersymmetry breaking becomes

invisible, and maximal supersymmetry is restored. As we will see shortly, this has

interesting consequences for the relationship between the field theory and its dual

string.

In light of the enhancement of supersymmetry in the Penrose limit one might

suspect that SUSY is not required all. Starting with a general non-supersymmetric

AdS5 ×M5 and taking the Penrose limit, would one still end up with Eq.(1)? To

show that this is not the case, we consider AdS5 × T pq. The metric is [16, 17]

ds2 = a2(dψ+ p cos θ1dφ1 + q cos θ2dφ2)
2 + b2(dθ2

1 + sin2 θ1dφ
2
1) + c2(dθ2

2 + sin2 θ2dφ
2
2),
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where a, b and c are determined by p, q and the AdS5 radius of curvature. The precise

relation between a, b, c and p, q and R is not important for us and can be found, for

example, in [17]. ψ has periodicity 4π and φ1, φ2 have periodicity 2π.

To take the Penrose limit it is useful to find a convenient null geodesic. This can

be done by defining

ψ̃ = ψ + pφ1 + qφ2 , x+ =
1

2
(t+ aψ̃) , x− =

R2

2
(t− aψ̃) . (16)

We expand for small θ1 and θ2:

bθ1 = r1/R , cθ2 = r2/R , (17)

and take the R→∞ limit. After shifting the angular coordinates,

ϕ1 = φ1 − ap

2b2
x+ , ϕ2 = φ2 − aq

2c2
x+ , (18)

we find the following pp wave metric:

ds2 = −4dx+dx− +
4∑
i=1

dx2
i +

2∑
i=1

(dr2
i + r2

i dϕ
2
i )

−(dx+)2

(
4∑
i=1

x2
i +

a2p2

4b4
r2
1 +

a2q2

4c4
r2
2

)
. (19)

For p = q = 1, we have a = 1/3, b2 = c2 = 1/6, so that we recover the metric (13). For

p 6= q, however, not all the bosons have the same mass. Since the fermion masses are

determined solely by the 5-form, they are the same as in the supersymmetric case. We

conclude, therefore, that supersymmetry is broken even in the Penrose limit. Notice

further that the tachyons present in the AdS5 × T pq compactification [17] did not

survive the limit. Eq. (19) is, therefore, a non-supersymmetric background of type

IIB which is stable at least in perturbation theory.

T 01 is a special case, as it admits two bosonic zero modes. Taking the large p+ limit

(that is, µα
′
p+ � 1) one finds that the only light modes are the two components of

the graviton in (say) the yi directions. In other words, the low energy effective action

is pure (non-supersymmetric) gravity in four dimensions. It might be interesting to

investigate this form of non-supersymmetric “compactification” to four dimensions.

3 Field theory description of enhanced SUSY

In the previous section we saw that the Penrose limit of AdS5 × T 11 is identical to

the Penrose limit of AdS5× S5. The AdS/CFT duality implies that this should have

non-trivial consequences for the dual field theories.
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As was explained beautifully by BMN, from the dual field theory point of view

taking the Penrose limit means focusing on a particular sector of single-trace operators

of the N = 4 SYM theory while taking the ’t Hooft coupling to infinity. To be more

precise we need to focus on “almost BPS” operators with large R-charge, J , which

scales like the square-root of the ’t Hooft coupling:

λ = g2
YMN →∞, J2

λ
= finite, ∆− J = finite. (20)

These operators are the ones relevant for describing strings propagating in the pp

wave background. The demand that ∆ − J remains finite follows from keeping the

light-cone Hamiltonian finite. For example, the light-cone vacuum is identified with

TrZJ , where Z = φ1+ iφ2 carries R-charge 1 (φa are the 6 adjoint scalars fields of the

N = 4 SYM theory). For a given J this is the unique state with ∆− J = 0. The 8

transverse oscillations of the string correspond to inserting φa, a = 3, 4, 5, 6 and DkZ,

k = 1, 2, 3, 4, into the trace. The N = 4 SYM theory also has 4 doublets of adjoint

Weyl fermions; the 8 fermionic oscillators correspond to inserting them into the trace.

It is important that the above exhausts the list of operators whose single insertion

into the trace produces an operator with ∆ − J = 1. By studying their multiple

insertions, BMN argued that the resulting single-trace operators are in one-to-one

correspondence with the single string spectrum in the pp wave background (1).

The result of the previous section implies that, even though the field theory dual

to string theory on AdS5×S5 is not the same as the field theory dual to AdS5×T 11,

that particular sector must be equivalent. The aim of this section is to explain how

this comes about from the point of view of the field theory dual to AdS5×T 11 which

has only N = 1 supersymmetry. The N = 1 superconformal field theory on the

worldvolume of N D3-branes at a conifold singularity was first constructed in Ref.

[12] and has been extensively studied in subsequent works. We briefly review the

essential features of this theory here. For details, the reader is referred to Ref.[12].

The theory has a gauge group SU(N)×SU(N), along with bi-fundamental super-

fields A1, A2 and B1, B2. The superfields are doublets of the first and second factors,

respectively, of a global SU(2)×SU(2) symmetry. There is a U(1)R-symmetry under

which the chiral multiplet all have charge +1
2
, and a quartic superpotential

W = λεikεjlAiBjAkBl . (21)

This superpotential is marginal at the conformal fixed point by virtue of the fact that

the Ai, Bi acquire anomalous dimensions. Thus, in the CFT each of these fundamental

fields has dimension ∆ = 3
4
.
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The first step toward finding the relevant sector in the theory which is dual to the

pp wave is to determine the light-cone Hamiltonian, i∂x+ , in terms of the field theory

generators 3

∆ = i∂t , J = −2i∂ψ , J3 = i∂φ1 , J ′3 = i∂φ2 . (22)

We write

∂x+ =
∂t

∂x+
∂t +

∂ψ

∂x+
∂ψ +

∂φi
∂x+

∂φi
. (23)

Using the relation between the original T 1,1 coordinates in (14) and the coordinates

where the metric assumes the pp wave form (19),

t = x+ , ψ = x+ − ϕ1 − ϕ2 , φi = ϕi + x+ , (24)

we find the light-cone Hamiltonian given in (5), i.e. H = ∆ − 1
2
J + J3 + J ′3. Here J

is the U(1)R charge, and J3, J
′
3 are the diagonal generators of the two factors in the

global symmetry group SU(2)× SU(2).

In Tables 1 and 2, we make a list of the H values of the various fundamental fields

in the SCFT. Then we will construct some gauge-invariant operators and explain how

they are to be identified with the theory of strings on a pp wave background. In Table

1, Ai, Bi refer to the scalar components of the chiral superfields described above, and

χAi
, χBi

are their fermionic partners. ψ and ψ̃ are the gauginos of the two gauge

groups. Table 2 has the dimensions and charges of the complex conjugate fields.

From the tables, we see that the unique operator that should be identified with

the light-cone vacuum is Tr (A2B2)
J which has H = 0. These operators are analo-

gous to TrZJ in the maximally supersymmetric theory of Ref. [4]. Next, we turn

to operators with H = 1. Let us first consider the case J = 1. The large J case

will be discussed shortly. From the table we find the following bosonic chiral oper-

ators: TrA1B2, TrA2B1, ∂k( TrA2B2), k = 1, 2, 3, 4. These are 6 of the necessary

operators, which means that we are missing two bosonic operators.

For the fermionic operators, we find: TrχA2B2, TrA2χB2 with J = 1. As the χ

are 2-component Weyl fermions, these make 4 operators altogether. However, only

two of them are the superpartners of a bosonic operator, namely the combination

Tr (χA2B2 + A2χB2). This is the variation of TrA2B2.

So far, we have found 6 chiral bosons and 2 chiral fermions with H = 1. However,

for the correspondence with the universal pp wave to work, we must find 2 additional

bosons and 6 additional fermions. It turns out that there are precisely two non-chiral

bosonic operators with J = 0 that have H = 1. The fact that the operators are

3The factor of 2 in J is due to the periodicity of ψ being 4π.
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∆ J J3 J ′3 H ∆ J J3 J ′3 H

A1
3
4

1
2

1
2

0 1 A1
3
4
−1

2
−1

2
0 1

2

A2
3
4

1
2

−1
2

0 0 A2
3
4
−1

2
1
2

0 3
2

B1
3
4

1
2

0 1
2

1 B1
3
4
−1

2
0 −1

2
1
2

B2
3
4

1
2

0 −1
2

0 B2
3
4
−1

2
0 1

2
3
2

χA1

5
4
−1

2
1
2

0 2 χA1

5
4

1
2

−1
2

0 1
2

χA2

5
4
−1

2
−1

2
0 1 χA2

5
4

1
2

1
2

0 3
2

χB1

5
4
−1

2
0 1

2
2 χB1

5
4

1
2

0 −1
2

1
2

χB2

5
4
−1

2
0 −1

2
1 χB2

5
4

1
2

0 1
2

3
2

ψ 3
2

1 0 0 1 ψ 3
2
−1 0 0 2

ψ̃ 3
2

1 0 0 1 ψ̃ 3
2
−1 0 0 2

Table 1: Dimensions and charges for
chiral fields and gauginos

Table 2: Dimensions and charges for
complex conjugate fields

non-chiral should not come as a surprise. This is also the case with the N = 4 SYM

theory when viewed as a N = 1 theory with three chiral superfields. Consider, for

example, the operators

ZJV, ZJV , (25)

where Z = φ1 + iφ2 and V = φ3 + iφ4. From the N = 4 point of view both are

chiral with protected dimensions. However only the first one is chiral in the N = 1

language.

Indeed, much like in (25) the two extra operators with H = 1 involve the complex

conjugate components of the scalars, and can be written as

TrA2A1, TrB2B1. (26)

Unlike in (25) we do not have N = 4 supersymmetry at our disposal to fix their

dimension. The total dimension of these operators is not the naive sum of the di-

mensions of the constituents. In general we would not know how to compute their

dimensions, but it turns out [17] that they belong to the same supermultiplet as the
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currents generating the global SU(2)× SU(2) symmetry. Therefore, their dimension

is equal to its free-field value, namely ∆ = 2.4 Using the assignment of R-charge and

the other global charges for the conjugate fields, which can be found in Table 2, we

see that indeed these operators have H = 1.

Let us turn now to the fermionic operators. The bosonic operators we described

above have fermionic counterparts, whose dimension is correspondingly protected.

These are TrχA1
A2 and TrχB1

B2, which provide us 4 additional fermionic operators.

So we are still missing 2 more fermionic operators to complete the set of 8. These

can be constructed by making use of the gauginos. Acccording to the analysis of Ref.

[20], the operators Tr
(
ψ(A2B2)

J + ψ̃(B2A2)
J
)

lie in short multiplets. Moreover,

from Table 1, we see that they have H = 1. Just as for the fermions in the chiral

multiplets, here also we keep only the symmetric combination (under the interchange

of the two gauge group factors) which is a protected operator. Thus, we have found

the last 2 fermionic operators of H = 1, making up the collection of 8 operators that

we propose to identify with the fermionic oscillators of the light-cone superstring in

the pp wave background.

In light of this counting it is very natural to propose that the following 8 bosonic

and 8 fermionic operators,

Bosonic : TrA1B2(A2B2)
J , TrA2B1(A2B2)

J ,

TrA2A1(A2B2)
J , TrB2B1(B2A2)

J

∂i Tr (A2B2)
J ,

Fermionic : Tr (χA2B2 + A2χB2)(A2B2)
J ,

TrχA1
A2(B2A2)

J , TrχB1
B2(A2B2)

J ,

Tr
(
ψ(A2B2)

J + ψ̃(B2A2)
J
)
,

. (27)

are the relevant ones to describe the BMN sector. To establish this one needs to

show that these operators have H = 1 for all J . This follows immediately for the

chiral operators. However, as far as we can see, there is no field theory argument that

protects the non-chiral operators. That is, the argument used above for operators

(26) cannot be generalized to J > 0. Since the Penrose limit involves sending the ’t

Hooft coupling to infinity, it is sufficient for us to show that the operator of the form

Ok = TrA2A1(A2B2)
k, (28)

4The argument goes as follows. The global symmetry requires that there is an SU(2) triplet of
conserved currents of dimension 3. The J3 = −1 component of this triplet is A2∂µA1 − (∂µA2)A1 +
fermions. The scalar A2A1 is related by the supersymmetry generators to this current and hence has
dimension 2.
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has H = 1 in the region where the SUGRA approximation is valid. The quantum

numbers of Ok are J = k, J = 1 + (k/2), J′ = k/2 (by J we denote the angular

momentum of SU(2) and analogously for the SU(2)′). According to the AdS/CFT

correspondence,

∆ = 2 +
√

4 + (mL)2, (mL)2 = λ+ 16− 8
√
λ+ 4 , (29)

where [17]

λ = 6[J(J + 1) + J′(J′ + 1)− J2/8] , (30)

is the value of the Laplacian on T 1,1. For the operator Ok we find

(mL)2 = (3k/2)2 − 4 , (31)

so that ∆ = 2 + 3k/2, which in turn implies H = 1.

The fact that there is no apparent field theory argument to protect the dimension

of these operators suggests that there are non-trivial α
′

corrections away from the

supergravity approximation. This fits with the fact that the symmetry should be

enhanced only in the strict Penrose limit.

4 S5/Z2 Theory: Operator Spectrum and Strings

on Orbifolded PP Waves

The compactification of type IIB string theory on AdS5×S5/Z2 is an example where

the compact 5-manifold is not smooth, but has a singular S1 submanifold. This com-

pactification is dual to the theory on D3-branes transverse to a Z2 ALE singularity,

and the world-volume theory is an N = 2 SCFT.

The pp wave limit of this geometry can be obtained very simply and one finds that

the metric is the universal one, as given in Eq. (13) above. However, the coordinates

za, i = 1, 2, are identified under the Z2 action zi → −zi, and so there is an ALE

singularity that survives in the transverse space. We believe, however, that in the pp

wave case there is little physical difference between the untwisted and twisted sectors.

This is because the untwisted states have have no continuous transverse momenta;

they are essentially localized near the orbifold plane by the metric so that transverse

excitations have gaps. The same is true for the twisted sector states. We will see that

the gauge theory operators dual to the untwisted and twisted states are also very

similar.

10



Although the field content of the N = 2 Z2 orbifold gauge theory is similar to

that for AdS5×T 1,1 (and the two field theories are related by a massive perturbation,

as argued in Ref. [12]), the theory is closer to the maximally supersymmetric one

in an important aspect: the fundamental fields have no anomalous dimensions, so

we have scalars and fermions of canonical dimension ∆ = 1, 3
2

respectively. The R-

symmetry group is SU(2) × U(1). The gauge group is SU(N) × SU(N), and each

gauge multiplet contains a complex adjoint scalar, which we denote φ, φ̃. In addition

there are bi-fundamental fields which can be represented as N = 1 chiral multiplets

Ai, Bi, though in N = 2 they of course combine into hypermultiplets.

In this theory the adjoint scalars φ, φ̃ are associated with positions of the (frac-

tional) D3-branes within the orbifold fixed sixplane. We choose the U(1) subgroup

of R-symmetry to act only on these fields, but not on the hypermultiplets. Hence we

can form gauge-invariant operators Tr φJ and Tr φ̃J which have ∆ − J = 0. Each

of these appears to be independently analogous to the operators TrZJ of Ref. [4],

which at large J are identified with the vacuum state of the string. Thus we seem

to have two distinct candidates for the string vacuum. However, note that these

two operators are exchanged by the Z2 that exchanges the two gauge group factors.

This is the same group as the orbifold Z2, and it is therefore natural to associate the

symmetric combination Tr (φJ + φ̃J) with the ground state in the untwisted sector

of the string, while the antisymmetric combination Tr (φJ − φ̃J) is associated with

the ground state in the twisted sector. More precisely, the operator Tr (φJ + φ̃J)

corresponds to a graviton moving with longitudinal momentum J while the operator

Tr (φJ− φ̃J ) describes a member of the six-dimensional tensor multiplet moving with

longitudinal momentum J . More generally, we define the operator P which inter-

changes the two gauge groups, and interchanges φ with φ̃, and Ai with Bi, i = 1, 2.

Then, given any operator O, O+PO and O−PO belong to the untwisted and twisted

sectors respectively.

The operators Tr (φJ ± φ̃J) are rotated by the U(1) factor in the R-symmetry

group SU(2) × U(1). The R-symmetry does not act on the Ai, Bj, so each of these

fields has ∆−J = 1. The new feature, with respect to the maximally supersymmetric

case, is that we cannot form gauge-invariant operators out of Ai or Bj alone since they

are bi-fundamentals. Nevertheless, we can write down the following set of ‘excited’

operators where these operators appear in pairs:

On
ij =

J∑
l=0

e2πinl/J Tr(φlAiφ̃
J−lBj) ,

O
n
ij =

J∑
l=0

e2πinl/J Tr(φlBiφ̃
J−lAj) ,
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On
Aij =

J∑
l=0

e2πinl/J Tr(φlAiφ̃
J−lAj) , (32)

On
Bij =

J∑
l=0

e2πinl/J Tr(φlBiφ̃
J−lBj) .

We may form their untwisted and twisted combinations, which are, respectively, sym-

metric and antisymmetric under the Z2 symmetry P interchanging the two gauge

groups. The resulting operators correspond to ai−nã
j
−n acting on the (un)twisted light-

cone vacuum, i.e. they describe oscillation of the closed string in the zi directions,

which we recall were orbifolded by a Z2 action. For n = 0 they should correspond to

the massless string states, hence their dimensions should be protected so that these

operators have ∆ = J + 2. It may seem peculiar that non-chiral operators such as

O
n
ij should be protected, but we already noted a similar phenomenon in the N = 4

case: many of the operators that are chiral from the N = 4 point of view do not look

chiral when written in terms of N = 1 superfields.

Discussion of the oscillations of the string along the ~r directions, which arise from

AdS5, proceeds by analogy with [4]. Since the orbifold group does not act on these

directions, the corresponding oscillators do not have to appear in pairs. Each such

insertion should have unit light-cone Hamiltonian as before, and to these we associate

the four ∆ = J + 1 operators ∂k Tr (φJ ± φ̃J), k = 1, 2, 3, 4, where the ± signs are

chosen for the untwisted and twisted sectors respectively. The superpartners of these

excitations are the operators

Tr(ψφJ)± Tr(ψ̃φJ) . (33)

where ψ (ψ̃) is one of the four complex fermions from the N = 2 vector multiplet

which are the adjoints of the first (second) SU(N).

The discussion above, although somewhat sketchy, shows that it is indeed possible

to construct all the string states, in a Z2 orbifold of the pp wave by a reflection of 4

transverse coordinates, out of the gauge invariant operators of the N = 2 supercon-

formal SU(N)× SU(N) gauge theory.
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