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In vertebrates, resident and recruited macrophages are the professional 
phagocytes that rapidly clear apoptotic cells1. This functions to  
protect neighboring cells from the noxious contents of dying cells 
and prevents activation of the immune system by liberated cellular 
contents1,2. Indeed, defects in apoptotic cell clearance make mice 
and humans susceptible to the autoimmune disease systemic lupus 
erythematosus3–6. Despite the importance of apoptotic cell disposal, 
how macrophages transcriptionally coordinate this process remains 
poorly understood.

Two distinct groups of proteins facilitate the recognition and uptake 
of apoptotic cells by macrophages. First, factors secreted by macro-
phages, termed opsonins, serve as a bridge to link unique chemical  
moieties exposed on apoptotic cells to macrophage cell surface receptors3–6.  
C1q, protein S, growth arrest–specific-6, thrombospondin-1  
and milk fat globule-epidermal growth factor-8 (Mfge-8) are exam-
ples of opsonins that enhance the recognition and phagocytosis of 
apoptotic cells by macrophages4,5. Cell surface receptors that bind 
opsonins comprise the second category of proteins involved in the 
uptake of dying cells. Members of this diverse group include the mac-
rophage scavenger receptors, integrin and complement receptors, 
tyrosine kinase Mer, calreticulin and immunoglobulin and mucin 
domain–containing protein TIM-4 (refs. 4–7). In support of their 
pivotal role in apoptotic cell clearance, mice deficient in opsonins 
such as C1qa or Mfge8 or in the engulfment receptor c-mer proto-
oncogene tyrosine kinase Mertk show heightened susceptibility to 
autoimmune disease on certain genetic backgrounds8–11.

Engulfment of apoptotic cells brings large amounts of cellular 
lipids, including oxidized fatty acids and oxysterols, into the macro-
phage. We postulated that PPARs, the genetic sensors of native and 
oxidized fatty acids12,13, are ideally suited to sense this lipid influx. 
Because we and others have previously shown that PPARs regulate 
the macrophage program of alternative activation14–16, it raised the 
question of whether these lipid sensors also orchestrate tolerogenic 
responses in macrophages.

RESULTS
PPAR- orchestrates timely disposal of apoptotic cells
To investigate the role of PPARs in apoptotic cell clearance, we pro-
filed the expression of all three mouse PPARs (α, δ and γ) in primary 
bone marrow–derived macrophages (BMDMs) after apoptotic cell 
feeding (Supplementary Fig. 1a). PPAR-δ messenger RNA, but not 
PPAR-γ mRNA, was induced ~200% after apoptotic cell feeding  
(Fig. 1a), whereas PPAR-α mRNA was undetectable in macrophages 
(data not shown). Immunoblotting confirmed that ingestion of 
apoptotic cells led to a ~190% increase in PPAR-δ protein abundance  
(Fig. 1b). To exclude the contribution of apoptotic cell–derived PPAR-
δ to the signals detected in macrophages, we analyzed the expression 
of PPAR-δ protein in thymocytes. Intracellular staining failed to detect 
substantial amounts of PPAR-δ protein in thymocytes (Fig. 1c). In 
contrast, expression of PPAR-δ protein was specifically increased in 
macrophages fed apoptotic thymocytes (Fig. 1c). Moreover, we failed 
to detect expression of lymphocyte-specific proteins, such as the Src 
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kinase Lck or Cd3, in macrophages fed apop-
totic thymocytes (Supplementary Fig. 1b,d), 
whereas Lck and Cd3 proteins were readily 
detectable in thymocytes (Supplementary 
Fig. 1b,c). Lastly, phagocytosis of latex beads, 
necrotic cells or opsonized sheep red blood cells (sRBCs), which are 
taken up via distinct pathways6,17, did not induce a marked increase in 
PPAR-δ mRNA (Supplementary Fig. 1e) or protein (Supplementary 
Fig. 1f,g). Altogether, these data demonstrate that phagocytosis of 
apoptotic cells induces expression of PPAR-δ in macrophages, sug-
gesting its potential involvement in coordinating the macrophage’s 
transcriptional response to apoptotic cells.

To test this postulate, we fed BMDMs from wild-type and Ppard −/− 
mice apoptotic thymocytes and quantified phagocytosis. Because 
doublet discrimination can distinguish between engulfed and bound 
cells, we monitored engulfment of fluorescence-labeled apoptotic 
cells by flow cytometry18. Strikingly, compared to wild-type macro-
phages, in Ppard −/− macrophages phagocytosis of apoptotic cells was 
lower by ~75% and ~60% at 30 and 60 min, respectively (Fig. 1d). We 
obtained similar results when we quantified phagocytosis by micros-
copy (Supplementary Fig. 2a). Furthermore, on an individual cell basis, 
Ppard −/− macrophages were less efficient at taking up apoptotic thymo-
cytes, as evidenced by the lower percentage of cells containing more than 
two thymocytes (Supplementary Fig. 2b,c). This observed phagocytic 
defect was specific for apoptotic cells, because phagocytosis of opsonized 
apoptotic thymocytes, opsonized sRBCs or necrotic thymocytes was 
unaffected in Ppard −/− macrophages (Supplementary Fig. 2d–f). This 
impairment in phagocytosis was also independent of PPAR-δ’s known 
role in energy metabolism (Supplementary Fig. 2g)19,20.

We undertook two independent approaches to investigate apop-
totic cell clearance in vivo. First, we injected wild-type and Ppard −/− 
mice with fluorescence-labeled apoptotic thymocytes and monitored 
splenic clearance9. Although we found similar numbers of apoptotic 
thymocytes in spleens 20 min after injection (Fig. 1e), the relative 
clearance of apoptotic cells was delayed in Ppard −/− mice. At 4 h, 
approximately twofold more fluorescent cells were present in the 
spleens of Ppard −/− mice (1.38% versus 2.7%) (Fig. 1e). Similarly, 
resident peritoneal macrophages of Ppard −/− mice showed a lower 
capacity for clearance of fluorescence-labeled apoptotic cells  
(Fig. 1f). Six hours after intraperitoneal injection of apoptotic thymo-
cytes, the number of free thymocytes recovered from the peritoneum 
of Ppard −/− mice was approximately fivefold higher than in wild-
type mice (0.43% versus 2.02%) (Fig. 1f). These findings demonstrate 
that PPAR-δ promotes timely disposal of apoptotic cells in various  
macrophage populations.

PPAR- regulates opsonin gene expression in macrophages
To identify the molecular targets by which PPAR-δ regulates  
apoptotic cell clearance, we monitored expression of opsonins and 
their cognate receptors by microarray analysis. Clustering analyses 
revealed that a number of genes encoding opsonins, including C1qa, 
C1qb, C1qc, Gas6 (encoding growth arrest specific-6), Mfge8 and Thbs1 
(encoding thrombospondin-1), were downregulated in Ppard−/− 
macrophages (Fig. 2a). In contrast, the expression of macrophage 
receptors that recognize these ‘eat-me’ signals was largely unchanged, 
with the notable exception of Mertk (Fig. 2a). Quantitative PCR 
(qRT-PCR) analysis confirmed that expression of C1qa, C1qb, Mfge8, 
Mertk and Thbs1 was 60–70% lower in Ppard −/− BMDMs (Fig. 2b).  
In agreement, immunoblot analysis revealed a ~300% decrease 
in C1qb protein abundance in Ppard −/− macrophages (Fig. 2c).  
To determine whether activation of PPAR-δ can enhance opsonin 
gene expression in macrophages, we treated wild-type BMDMs with 
the PPAR-δ agonist GW0742 (ref. 21), and we monitored opsonin 
gene expression by qRT-PCR. Indeed, PPAR-δ activation induced 
C1qa, C1qb, Mfge8 and Thbs1 by ~200–300% (Fig. 2d) in a PPAR- 
δ-dependent manner (Supplementary Fig. 3b). Finally, because 
mutations in C1q are responsible for the monogenic form of systemic 
lupus erythematosus in humans22, we investigated whether C1qb is 
a direct transcriptional target of PPAR-δ. In silico analysis revealed 
a consensus PPAR-δ binding site in the C1qb gene located at ~−1.6 
kilobases. Deletion analysis of the mouse promoter affirmed that 
PPAR-δ–RXR heterodimers directly regulate C1qb gene expression 
(Fig. 2e and Supplementary Fig. 3a).

We next tested whether pharmacologic activation of PPAR-δ 
enhances phagocytosis of apoptotic cells. Notably, treatment of 
wild-type mice with GW0742 enhanced the ability of CD11b+ splenic 
macrophages to phagocytose labeled apoptotic thymocytes by ~200% 
(Fig. 3a). To extend these findings to human cells, we treated primary 
human monocyte-derived macrophages with GW0742. Both opsonin 
gene expression (Fig. 3b) and apoptotic cell uptake (Fig. 3c) were 
enhanced in human macrophages stimulated with GW0742, indicat-
ing conservation of this pathway between mice and humans.

Kupffer cells are the primary source of the opsonins that circu-
late in the serum23–25, prompting us to investigate whether opsonin 
expression was lower in livers of Ppard −/− mice. Indeed, we found 
substantially lower expression of C1qa, C1qb, Thbs1 and Mfge8  
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Figure 1 PPAR-δ orchestrates timely disposal  
of apoptotic cells. (a,b) Expression of PPAR-δ  
mRNA (a) and protein (b) in macrophages fed 
apoptotic cells. (c) Intracellular staining for  
PPAR-δ in thymocytes and macrophages fed 
apoptotic cells. Isotype control, gray histogram; 
PPAR-δ, unshaded histograms. (d) Impaired 
phagocytosis of apoptotic cells in Ppard−/− 
macrophages. Experiments were repeated five 
to six independent times, and a representative 
experiment is shown. (e,f) Delayed clearance of 
apoptotic thymocytes by splenic (e) and resident 
peritoneal (f) macrophages in Ppard−/− mice  
(n = 4 or 5). Data are presented as means ± s.e.m. 
*P < 0.05 and **P < 0.01. ACs, apoptotic cells; 
AU, arbitrary units; WT, wild-type.
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(~40–60%) in livers of Ppard −/− mice 
(Supplementary Fig. 3c). Conversely, treatment 
of wild-type mice with GW0742 increased 
hepatic opsonin gene expression by ~50–90% (Supplementary  
Fig. 3d). Congruent with these observations, circulating levels of 
C1qb (Fig. 3d) and, to a lesser extent, Mfge8 (Supplementary Fig. 3e) 
were lower in Ppard −/− mice. To determine whether the reduction in 
opsonin abundance contributes to the phagocytic defect of Ppard −/− 
macrophages, we performed a series of experiments using sera from 
wild-type and Ppard −/− mice. The observed phagocytic defect in 
Ppard −/− macrophages was largely rescued by sera from wild-type 
mice (Fig. 3e), whereas incubation of wild-type macrophages 
with Ppard −/− sera reduced their phagocytic capacity by ~35%  
(Fig. 3e). Similarly, addition of purified human C1q protein to 
Ppard −/− macrophages restored their phagocytic activity to ~90% 
of wild-type macrophages (Fig. 3f). We thus conclude that PPAR-δ 
orchestrates the prompt disposal of dying cells in mouse and human 
macrophages by inducing expression of opsonins.

PPAR-δ is a transcriptional sensor of apoptotic cells
Apoptotic cells contain large amounts of native and oxidized fatty 
acids, leading us to ask whether they might activate PPAR-δ to 
enhance their own clearance. To explore this possibility, we per-
formed transient transfection assays with the PPAR reporter gene 
(AOx-PPRE3-Luc). Treatment of transfected cells with apoptotic thy-
mocytes increased luciferase reporter gene activity only in the pres-
ence of PPAR-δ (Supplementary Fig. 4a). Moreover, reporter gene 
assays with GAL4–PPAR-δ chimeric constructs confirmed that the 
ligand-binding domain of PPAR-δ is sufficient to transduce the tran-
scriptional effects of apoptotic thymocytes (Supplementary Fig. 4b). 
Congruent with these data, apoptotic cell feeding induced expres-
sion of opsonins (C1qb, Mfge8 and Thbs1), Mertk, Tgfb1 (encoding 
transforming growth factor-β1 (TGF-β1)) and the PPAR-δ target 
gene Plin2 (encoding perilipin-2) in thioglycollate-elicited wild-type 
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Figure 3 PPAR-δ regulates phagocytosis of apoptotic cells via secretion 
of opsonins. (a) Percentage of splenic macrophages (CD11b+) containing 
CMFDA-fluorescence was quantified 1 h after intravenous injection of 
CMFDA-labeled apoptotic thymocytes (n = 4 or 5). (b,c) PPAR-δ regulates 
pathways of apoptotic cell uptake in human macrophages. Treatment of 
primary human monocyte-derived macrophages with GW0742 (100 nM) 
enhances opsonin gene expression (b) and phagocytosis of apoptotic 
cells (c). (d) Decreased concentrations of C1q in serum of Ppard−/− mice. 
Circulating C1qb was detected by immunoprecipitating C1q from serum 
followed by immunoblotting for C1qb. (e) Restoration of phagocytic 
capacity of Ppard−/− macrophages by serum from wild-type mice.  
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 macrophages (Fig. 4a), whereas the induction of all of these genes was 
diminished or absent in Ppard −/− macrophages (Fig. 4a). Moreover, 
challenge of wild-type but not Ppard −/− macrophages with apoptotic 
cells led to a ~650% increase in C1q protein abundance (C1qa, C1qb 
and C1qc) (Fig. 4b), leading us to postulate that apoptotic cells might 
enhance their own clearance via activation of PPAR-δ. To test this 
idea, we did a double-feeding experiment with BMDMs. Notably, 
priming of wild-type macrophages by apoptotic cells increased their 
phagocytic capacity by ~60%, whereas there was no significant dif-
ference in the phagocytic capacity of macrophages lacking PPAR-δ  
(Fig. 4c). Finally, this transcriptional activation of PPAR-δ by apop-
totic cells was specific, because necrotic cells and opsonized sRBCs 
failed to activate PPAR-δ (Supplementary Fig. 4c,d).

Previous work has established that phagocytosis of apoptotic cells 
suppresses autoimmune responses by releasing immunosuppressive 
cytokines (interleukin-10 (IL-10) and TGF-β) and inhibiting produc-
tion of proinflammatory cytokines (IL-12 and tumor necrosis factor-α  
(TNF-α))3,26,27. Because PPAR-δ functions as a sensor of apoptotic 
cells, we asked whether it might mediate this molecular switch 
in cytokine secretion. For these experiments, we stimulated 
 thioglycollate-elicited wild-type and Ppard −/− macrophages with 
lipopolysaccharide (LPS) in the presence or absence of apoptotic cells, 
and cytokine secretion was monitored by ELISA. As expected, apop-
totic cell feeding increased secretion of the anti-inflammatory cytokine 
IL-10 (Fig. 4d) while suppressing the release of the proinflammatory 
cytokines IL-12 and TNF-α in wild-type macrophages (Fig. 4e,f).  
Of note, this switch in cytokine secretion pattern was absent in 
Ppard −/− macrophages (Fig. 4d–f), suggesting that immunosup-
pressive effects of apoptotic cells require an intact PPAR-δ signaling  
pathway in macrophages.

Ppard−/− mice develop autoimmune disease
Defective clearance of apoptotic cells triggers immune response to 
self antigens, manifesting as lupus-like autoimmunity in mice8,9,11,28. 
Because we observed lower expression of opsonins and impaired 
clearance of apoptotic cells in Ppard −/− mice, we evaluated the onset 
of autoimmune disease in these mice. Notably, sera of Ppard −/− 
female mice (n = 9) had ~200–600% higher levels of autoantibod-
ies, including those directed against nuclear antigens (antinuclear 

 antibody, ANA; double-stranded DNA, dsDNA; single-stranded DNA, 
ssDNA) and cardiolipin, than age-matched wild-type controls (n = 7;  
Fig. 5a–d). Furthermore, these changes in autoantibody titers were 
comparable to those found in wild-type BALB/c mice treated with pris-
tane, an established model for inducing lupus-like autoimmunity29,30. 
A hallmark of systemic lupus erythematosus is the deposition of 
autoantibodies as immune complexes in the kidney, leading to inflam-
mation and destruction of the glomeruli31. Indeed, immunofluores-
cence staining revealed that the glomeruli of all Ppard −/− female mice  
(n = 7) had a ribbon-like pattern of IgG deposition, whereas the 
glomeruli of wild-type female mice were largely spared (Fig. 5e). 
Accordingly, increased urinary protein excretion, a sign of kidney 
dysfunction, was present in Ppard −/− female mice (Fig. 5f). Moreover, 
perivascular inflammation, a common histological finding in autoim-
mune kidney disease32,33, was increased by ~600% in the kidneys 
of Ppard −/− female mice (Supplementary Fig. 5a,b). We obtained 
similar results in an independent cohort of wild-type and Ppard −/− 
female mice (n = 8 per genotype; Supplementary Fig. 6).

To determine whether the lupus-like autoimmunity in Ppard −/− 
female mice results from changes in lymphocyte subsets, we analyzed 
the spleens of 13-week-old female mice before they had any evidence 
of autoimmune disease. Notably, total numbers of B cells and CD4+ 
and CD8+ T cells were not different between wild-type and Ppard −/− 
female mice (Supplementary Figs. 7a, 8a and 9b). The numbers of 
regulatory, memory, naive and activated T cells and activated B cells 
were also similar amongst the genotypes (Supplementary Fig. 7a, 
8a,b and 9a). Furthermore, spleen weights and splenic lymphocyte 
composition were similar in 14-month-old wild-type and Ppard −/− 
female mice (Supplementary Fig. 7b,c), suggesting that the autoim-
munity in these mice is not due to aberrant proliferation or activation 
of lymphocytes.

To further explore this idea, we investigated whether mice defi-
cient in Ppard specifically in their macrophages (Mac-Ppard −/− 
mice) showed similar defects in clearance of apoptotic cells. Genetic 
deletion of PPAR-δ in macrophages was sufficient to lower opsonin 
gene expression by 35–75% (Fig. 6a) and impair clearance of  
5-chloromethylfluorescein diacetate (CMFDA)-labeled apoptotic thy-
mocytes by ~350% in the spleen (Fig. 6b). Remarkably, this delay in 
clearance of apoptotic cells resulted in higher levels of autoantibodies 
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specific for ssDNA and cardiolipin in 3- to 6-month-old female Mac-
Ppard −/− mice (Fig. 6c–e; n = 8 per genotype). Because Mac-Ppard −/− 
mice were generated on the C57BL/6J background15, a strain known to 
be very resistant to spontaneous lupus-like autoimmune disease34,35, 
we injected apoptotic thymocytes in a separate cohort of mice to 
potentiate autoimmunity36,37. Injection of syngeneic apoptotic cells 
increased titers dsDNA-specific and ssDNA-specific antibodies by 
~200% (Fig. 6f,g) in Mac-Ppard −/− mice, resulting in increased 
perivascular inflammation and immune complex deposition in 
the kidney (Fig. 6h,i; n = 6 or 7 per genotype). Together, these data 

show that deletion of PPAR-δ in macrophages is sufficient to delay  
clearance of apoptotic cells, thereby providing the antigenic stimulus 
for breakdown of tolerance.

Systemic lupus erythematosus is a polygenic disease involving 
hits in multiple pathways, including B cell signaling and activa-
tion, apoptotic cell clearance and Toll-like receptor signaling38,39.  
As global or macrophage-specific deficiency of PPAR-δ primarily affects 
pathways of apoptotic cell clearance, we next investigated whether 
additional hits could potentiate autoimmunity in mice deficient 
in PPAR-δ. For these experiments, we gave cohorts of wild-type  
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in control and Mac-Ppard−/− mice (n = 3), and the presence of CMFDA-labeled cells was quantified 4 h later in spleens. (c–e) Autoantibody  
production in young Mac-Ppard−/− female mice. Serum levels of ssDNA-specific antibodies (c,d) and cardiolipin-specific antibodies (e) in 3- to 6-month-old 
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9 months after apoptotic cell injections (12-month-old mice) revealing increased perivascular inflammation (h) and immune complex deposition in the 
glomeruli (i). Scale bar, 50 µm. Data are presented as means ± s.e.m. *P < 0.05 and **P < 0.01.

Figure 6 Impaired clearance 
of apoptotic cells and 
increased autoimmunity  
in Mac-Ppard −/− mice.  
(a) Expression of opsonins in 
BMDMs from Mac-Ppard−/− 
mice. (b) Clearance of labeled 
apoptotic thymocytes in 
spleens of Mac-Ppard−/− mice. 
60 × 106 CMFDA-labeled 
apoptotic thymocytes were 
injected intravenously  
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(n = 6–8) and Ppard −/− (n = 8–10) female mice a single injection of 
pristane, which induces lupus-like autoimmune disease by activating 
B cells30. As expected, wild-type female mice treated with pristane had 
higher levels of antibodies directed against nuclear and membranous 
antigens, including antibody to cardiolipin, antinuclear antibody, 
antibody to dsDNA and antibody to ssDNA, than their saline-injected 
littermates (Supplementary Fig. 10a–d). Notably, the concentrations 
of these antibodies in sera of pristane-treated Ppard −/− female mice 
were ~200–400% higher than in pristane-treated wild-type controls 
(Supplementary Fig. 10a–d), and the penetrance of pristane-induced 
autoimmunity was increased from 28% to 77% in pristane-treated 
Ppard −/− female mice (Supplementary Fig. 10e). In agreement with 
these results, massive deposits of complement-containing immune 
complexes were only seen in the glomeruli of pristane-injected 
Ppard −/− female mice (Supplementary Fig. 10f). Furthermore, his-
tological analysis revealed that whereas glomeruli of wild-type female 
mice had mild to moderate mesangial hypercellularity (precursor 
lesions), severe endocapillary proliferative glomerulonephritis with 
necrosis and crescent formation (end-stage lesions) were the domi-
nant pathologies present in the glomeruli of Ppard −/− female mice 
(Supplementary Fig. 10g,h). Together, these data show that genetic 
deficiency of PPAR-δ delays clearance of apoptotic cells and increases 
autoantibody production, leading to immune complex–mediated 
glomerulonephritis, features reminiscent of the human disease  
systemic lupus erythematosus.

DISCUSSION
During the past decade, numerous molecules responsible for rec-
ognition and uptake of apoptotic cells have been identified. Careful 
dissection of these pathways has revealed that prompt clearance of 
apoptotic cells by macrophages is essential for prevention of auto-
immune disease. Notably, apoptotic cells are rapidly cleared by macro-
phages even during times of massive apoptosis40,41, implying that 
phagocytic programs are dynamic, allowing macrophages to adapt to 
their changing microenvironment. However, the transcription factors 
that coordinate expression of phagocytic genes remain unknown. Our 
results show that the nuclear receptor PPAR-δ functions as a sensor of 
dying cells to orchestrate the phagocytic response when macrophages 
are confronted with apoptotic cells.

After engulfment, apoptotic bodies are rapidly broken down 
into their molecular constituents. This results in a marked increase 
in the cellular pools of oxidized fatty acids and sterols, the normal  
components of the cellular membranes of apoptotic cells. Since 
PPARs and liver X receptors are sensors of modified fatty acids and 
sterols, respectively12,42, we and others have postulated that they 
might coordinate the transcriptional response of macrophages  
during apoptotic cell clearance6,43. Indeed, the evidence presented 
here provides strong support for a pivotal role of nuclear receptor 
signaling in the phagocytic response. Specifically, we demonstrate 
that apoptotic cell feeding potently induces and activates PPAR-δ, 
which then enhances the expression of opsonins, molecules that 
bridge apoptotic bodies to cell surface receptors on phagocytes.  
In addition, by sensing apoptotic cells, PPAR-δ functions as a 
 molecular switch that discriminates between the proinflammatory 
and immunosuppressive actions of macrophages. Consequently,  
global or macrophage-specific deletion of PPAR-δ delays clearance 
of apoptotic cells, leading to increased production of autoantibodies 
and progressive lupus-like autoimmune disease.

The requirement for PPAR-δ in regulation of the expression of 
opsonin genes such as C1qb provides a direct link between this 

 transcription factor, phagocytosis of apoptotic cells and development 
of autoimmune disease in mice and humans. Notably, loss of PPAR-δ  
signaling in the macrophage lowers expression of key opsonins, 
including C1qa, C1qb, Mfge8 and Thbs1. Because genetic deletion 
of C1qb and Mfge8 delays clearance of apoptotic debris by macro-
phages11,28, the concomitant reduction of these opsonins provides a 
molecular explanation for the lower uptake of apoptotic cells by mac-
rophages lacking PPAR-δ. Thus, we propose that the persistence of 
apoptotic debris and increased macrophage inflammatory responses 
to them in global or macrophage-specific Ppard −/− mice provides 
the antigenic stimulus that potentiates autoimmunity in these mice. 
Increased titers of autoantibodies and progressive renal pathology 
collectively suggest that PPAR-δ–deficient mice are a good model 
system for studying human systemic lupus erythematosus.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturemedicine/.

Accession codes. The microarray data has been deposited in the Gene 
Expression Omnibus under accession number GSE17890.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Mice. We used Ppard−/− mice, backcrossed onto the 129/SvJ strain for eight 
 generations, for these studies44. We used 129/SvJ mice (The Jackson Laboratories) 
as wild-type controls. We allowed for spontaneous development of autoim-
munity and its potentiation by systemically administering apoptotic cells to 
littermate control (Ppardflox/flox) and macrophage-specific Ppard−/− (Mac-
Ppard−/−; Ppardflox/flox; LysMCre) female mice on the C57BL/6J background15. 
We backcrossed these mice onto the C57BL/6J strain for more than ten genera-
tions, ensuring that their genetic makeup is primarily (99.9%) derived from the 
C57BL/6J strain. We prepared BMDMs from wild-type and Ppard−/− mice as 
previously described14. We prepared apoptotic targets by culturing thymocytes 
from 4- to 8-week-old wild-type mice in serum-free RPMI medium for 16–18 h  
or by treatment with dexamethasone (10 µM) for 3 h9,45. Before being fed 
to macrophages, we labeled apoptotic thymocytes by incubation with 2 µM 
CMFDA (Molecular Probes) for 30 min.

In vitro apoptotic cell uptake and clearance. For uptake assays, we added 
apoptotic thymocytes to wild-type and Ppard−/− BMDMs at a 5:1 thymocyte:
macrophage ratio for 15, 30 or 60 min. We determined apoptotic cell uptake 
and clearance by flow cytometry, which employed doublet discrimination 
to distinguish internalized from externally bound apoptotic cells. We cal-
culated phagocytic index by manually counting >200 cells per sample and 
applying the following formula: [2(number of macrophages containing one 
apoptotic cell) + (number of macrophages containing two apoptotic cells) + 
3(number of macrophages containing three apoptotic cells) + 4(number of 
macrophages containing more than four apoptotic cells)] / total number of 
macrophages counted. For studies with opsonized cells, we opsonized apop-
totic CMFDA-labeled thymocytes with CD3-specific antibody (0.5 µg per  
1 × 106 cells; Pharmingen) for 30 min at 37 °C. We resuspended sheep red blood 
cells (Colorado Scientific) in PBS (1 × 106 per µl), and opsonized with rabbit 
antibody to sheep red blood cells (1 in 200) for 1 h at 25 °C. We removed unbound 
antibody by PBS washes. We generated necrotic targets by incubation at 56 °C 
for 10 min. We confirmed cellular necrosis by Trypan blue staining. For double 
feeding experiments, we treated day 7 BMDMs, plated in six-well plates, with 
vehicle or apoptotic thymocytes (1:1) for 24 h. One day later, we rechallenged 
macrophages with CMFDA-labeled apoptotic thymocytes and quantified phago-
cytosis as described above. We performed rescue experiments with BMDMs 
of both genotypes plated in DMEM (1 g l−1) supplemented with macrophage 
colony–stimulating factor (10 ng ml−1; PeproTech) and 10% sera of wild-type 
or Ppard−/− mice. We quantified phagocytosis of labeled apoptotic cells 1 d later. 
For rescue experiments with recombinant C1q, we plated BMDMs in DMEM 

(1g l−1) supplemented with 1% FBS and macrophage colony–stimulating  
factor (10 ng ml−1). We added purified human C1q (4 µl of 1.1 mg ml−1;  
Sigma) to medium (400 µl) 1 h before feeding of CMFDA-labeled apoptotic 
thymocytes (1:2 ratio). We quantified phagocytosis as described above.

In vivo apoptotic cell uptake and clearance. For splenic uptake and clearance 
assays, we injected 6 × 107 CMFDA-labeled apoptotic thymocytes intravenously 
into 8- to 12-week-old wild-type, Ppard−/−, control or Mac-Ppard−/− mice. We 
killed the mice at the time points indicated in Figures 1e, 1f, 3a and 6b, and we 
analyzed single-cell splenocyte suspensions by flow cytometry9,10. For splenic macro-
phage uptake, we positively selected CD11b+ splenocytes with magnetic beads 
coated with antibodies to CD11b (Miltenyi) before flow cytometric analysis. We 
performed peritoneal uptake and clearance assays similarly. Briefly, we injected 
labeled apoptotic thymocytes into the peritoneal cavity of naive mice; 6 h later, we 
retrieved the population by peritoneal lavage and analyzed by flow cytometry.

In vivo models of autoimmunity. We induced autoimmunity in female wild-
type and Ppard−/− mice with a single intraperitoneal injection of 1 ml pristane 
(Sigma) at 6 months of age, and we killed the mice at 11 months of age30. We 
assessed spontaneous autoimmunity in unmanipulated female mice at 3– 
6 months (Mac-Ppard−/−) or 13–15 months (Ppard−/−) of age. We performed 
provocative challenge with exogenously administered apoptotic cells in con-
trol and Mac-Ppard−/− female mice (n = 6 or 7 per genotype), as previously 
described36. Briefly, we injected 1 × 107 apoptotic thymocytes via tail vein into 
12- to 15-week-old female mice weekly for 4 weeks. We collected serum before 
initiation of injections and 2 d after the last injection and analyzed for auto-
antibody production.

Statistical analyses. Continuous data are presented as means ± s.e.m., and we 
calculated P values with the two-tailed Student’s t test for two samples of unequal 
variance. Ordinal data are presented as proportion, and we calculated P values 
with the nonparametric Mann-Whitney U test. Statistical significance is indi-
cated by a single asterisk (P < 0.05) or two asterisks (P < 0.01).

Additional methods. Detailed methodology is described in the Supplementary 
Methods.

44. Barak, Y. et al. Effects of peroxisome proliferator–activated receptor δ on 
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