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Abstract: Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription
factors involved in various physiological and pathological processes within the skin. PPARs regulate
several processes in one of the most aggressive skin cancers, melanoma, including proliferation, cell
cycle, metabolic homeostasis, cell death, and metastasis. In this review, we focused not only on the
biological activity of PPAR isoforms in melanoma initiation, progression, and metastasis but also
on potential biological interactions between the PPAR signaling and the kynurenine pathways. The
kynurenine pathway is a major pathway of tryptophan metabolism leading to nicotinamide adenine
dinucleotide (NAD+) production. Importantly, various tryptophan metabolites exert biological activ-
ity toward cancer cells, including melanoma. Previous studies confirmed the functional relationship
between PPAR and the kynurenine pathway in skeletal muscles. Despite the fact this interaction has
not been reported in melanoma to date, some bioinformatics data and biological activity of PPAR
ligands and tryptophan metabolites may suggest a potential involvement of these metabolic and
signaling pathways in melanoma initiation, progression, and metastasis. Importantly, the possible
relationship between the PPAR signaling pathway and the kynurenine pathway may relate not only
to the direct biological effect on melanoma cells but also to the tumor microenvironment and the
immune system.

Keywords: peroxisome proliferator-activated receptor; melanoma; kynurenine pathway; kynurenine;
kynurenic acid; proliferation; cell death; cell cycle; metabolism

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription
factors. Together with receptors for steroids, vitamin D, retinoid X receptor, and thyroid
hormone, PPARs belong to the family of nuclear hormone receptors [1,2]. So far, three
isoforms of PPARs have been identified: PPARα, PPARγ, and PPARβ/δ. Each of them is
encoded by different genes [3] and demonstrates diversity in ligand specificities, tissue
distribution, and biological role [4–6]. PPARα is detected in metabolically active tissues,
such as the liver, heart, brown adipose tissue, skeletal muscle, kidneys, and intestinal
mucosa. This receptor is involved in β-oxidation of fatty acids; its activation leads to a
decrease in lipid level [1,4,7]. PPARG gene, coding PPAR

1 

 

ƴ , is expressed in white and brown
adipose tissue, liver, spleen, heart, sebaceous glands, pancreas, prostate, retina, keratinocytes,
dendritic cells, activated macrophages, and lymphocytes [1,2,4]. PPAR

1 

 

ƴ contributes to lipid
storage, maturation, and differentiation of adipocytes and glucose homeostasis. Importantly,
this isoform has a regulatory effect on inflammatory processes [1,2,4]. PPARγ occurs in
two isoforms: PPAR

1 

 

ƴ 1 and PPAR

1 

 

ƴ 2 [1,2,4,8]. PPAR

1 

 

ƴ 1 is expressed in most cells, whereas
expression of PPAR

1 

 

ƴ 2 is limited to adipocytes [9]. Importantly, PPAR

1 

 

ƴ 2 is a more potent
transcription factor than the second isoform. Interestingly, previous studies identified three
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messenger RNA (mRNA) of PPARG gene due to its separate promoters and 5′ exons [10].
However, PPAR

1 

 

ƴ 1 and PPAR

1 

 

ƴ 3 encode the same protein, PPAR

1 

 

ƴ 1. PPARD gene, coding
PPARβ/δ, is expressed mainly in the liver, gastrointestinal tract, kidneys, skin, abdominal
adipose tissue, and skeletal muscles. This receptor is responsible for glucose homeostasis,
proliferation and differentiation of adipocytes, and lipid metabolism in the brain [1,2,4].

2. PPARs in the Skin

PPARs are essential in various physiological and pathological processes within the
skin. They are involved not only in skin metabolic homeostasis but also in melanogen-
esis, cell proliferation, differentiation, apoptosis, immune response, and inflammation,
presenting both pro- and anti-inflammatory activity within the skin and pilosebaceous
unit. Genetic analysis indicated the expression of PPARA, PPARD, and PPARG genes in
various skin cells (Figure 1); however, previous studies revealed that gene expression is
not directly correlated to the protein level of these receptors [11]. All three PPAR isoforms
were found in the epidermis, among which PPARβ/δ is a prevalent subtype. Nevertheless,
increased expression of all PPARs’ isoforms was reported during the differentiation of
keratinocytes [1]. Mao-Qiang et al. [12] demonstrated that topical application of PPARy
activators, ciglitazone and troglitazone, to mouse skin stimulated epidermal differentiation.
In accordance with in vivo study, ciglitazone increased the expression of genes coding
involucrin and transglutaminase 1, markers of differentiations, in human keratinocytes [12].
Increased expression of keratinocyte differentiation markers was also observed after expo-
sure to non-selective PPARβ/δ agonist and PPARβ/δ-selective ligand [2,13]. Activation of
PPARα and PPARβ/δ has been reported to play a crucial role in skin barrier function by
regulating differentiation and lipid synthesis in keratinocytes [14].
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Figure 1. RNA expression of PPARA, PPARD, and PPARG in the single type clusters based on
the Human Protein Atlas [15]. The data show gene expression in different cell types within the
skin representing the following clusters: melanocytes c-13, fibroblasts c-1, basal keratinocytes c-5,
suprabasal keratinocytes c-6, Langerhans cells c-0, endothelial cells c-4. The results are presented
as normalized transcript expression values (nTPM—normalized transcripts per million), calculated
for each gene in every sample (values <0.1 are not visualized). All information concerning the
bioinformatics analysis of clustering of single cell transcriptomic data and single cell transcriptomic
datasets is available at the Human Protein Atlas website (https://www.proteinatlas.org/about/
assays+annotation (accessed on 17 January 2023)).

Previous studies revealed that PPARs are also involved in melanocyte proliferation
and melanogenesis. Kang et al. [16] reported that activation of PPAR

1 

 

ƴ and PPARα by
ciglitazone and WY-14643, respectively, inhibited the proliferation of melanocytes in a
dose-depended manner but simultaneously increased melanin biosynthesis. Additionally,
Lee et al. [17] confirmed increased pigmentation after the administration of PPAR

1 

 

ƴ agonist,
ciglitazone, in cultured human melanocytes and cultured skin. Moreover, ciglitazone
enhanced the migration of human melanocytes [17].

On the other hand, the possible involvement of PPARs was implicated in the patho-
genesis of psoriasis, atopic dermatitis, acne vulgaris, lichen planopilaris, actinic keratosis,
and skin cancers including squamous cell carcinoma and melanoma [1,2,4,18]. However,
this review will be focused on the biological role of PPARs in melanoma.

https://www.proteinatlas.org/about/assays+annotation
https://www.proteinatlas.org/about/assays+annotation
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3. PPARs and Melanoma

Melanoma (malignant melanoma) is one of the most aggressive skin cancer, character-
ized by increasing incidence and high mortality in humans, which makes melanoma the
15th most common cancer in the world [19–21]. Surgical resection of melanoma in its early
stages is associated with a 90% 5-year survival rate. However, advanced melanoma tends
to metastasize more likely than other skin cancers, with the lung being the most common
localization for distant metastases [22]. The presence of metastases is a negative factor for
overall treatment outcome and survival rate [20,21].

Eastham et al. reported that all PPAR genes were expressed in melanocytes and
melanoma cells [11]. Notably, the protein levels of PPARα and PPARγ were higher in mouse
and human melanoma cells than in normal melanocytes [11]. Interestingly, there was no
significant correlation between gene expression and protein level of PPARα. Additionally,
the differences in the protein level of PPARβ in melanocytes and various types of melanoma
were demonstrated. PPARβ was localized in the nucleus in melanocytes, whereas its
localization pattern in melanoma samples was more heterogeneous [23]. Moreover, the
protein level of PPARβ was lower in superficial spreading melanomas than in nodular
melanomas and melanoma metastasis [23].

PPARs are involved in various processes in melanoma, including melanogenesis [16,24].
Melanoma pigmentation and fully functional melanogenic apparatus are significantly associated
with increased resistance to radio- and chemotherapy [25]. The protein expression of PPARs
was also investigated in melanoma. Mössner et al. confirmed the presence of PPAR

1 

 

ƴ in primary
melanoma, its metastases, and human melanoma cell lines, including MM-201, MM-254, KAII,
and MM-358 [26]. Moreover, Grabacka et al. demonstrated a negative correlation between
PPARα and melanin synthesis in murine melanoma cells B16F10 [25].

PPARs are also involved in cell cycle regulation and proliferation of melanoma cells.
The majority of studies are focused on PPARγ activity towards melanoma cells. Agonists
of PPARγ, including ciglitazone, troglitazone, rosiglitazone, pioglitazone and 15d-PGJ2
inhibited proliferation of melanoma cell lines representing different stages of cancer pro-
gression [11,26–28]. The crucial role of PPARγ in the proliferation of melanoma cells has
been previously reported by Smith et al. [29]. Disruption in the PPARγ signaling pathway
by siRNA led to attenuation of antiproliferative activity of thiazolidinediones: troglitazone
and halofenate [29]. Importantly, the antiproliferative potential of PPARγ agonists has
also been observed in vivo [30–32]. Dana et al. reported that PPAR

1 

 

ƴ agonist pioglitazone
significantly reduced melanoma cell proliferation and tumor size in mice [33]. Additionally,
treatment of nude mice with ciglitazone dramatically inhibited human melanoma xenograft
development [30]. Previous studies revealed that the anticancer potential of PPARγ ligands
resulted from the negative regulation of the cell cycle [34].

The antiproliferative activity of PPAR ligands resulted from various molecular mecha-
nisms. It was suggested that activation of PPAR

1 

 

ƴ inhibited the proliferation of melanoma
cells and induced apoptosis via inhibiting the Toll-like receptor-4 (TLR-4)-dependent NF-κB
pathway [33]. Paulitschke et al. supported previous reports of PPARγ agonists describing
both a direct anti-tumor and a broad spectrum of anti-stromal, anti-angiogenetic, and
immuno-modulating activities [35]. On the contrary, Meylan et al. demonstrated that
PPARγ activation by rosiglitazone might be associated with carcinogenesis [36]. Activation
of PPARγ led to reduced expression of thioredoxin-interacting protein (TXNIP) in human
melanoma A375 cells. Similarly, patients with primary or metastatic melanoma had signifi-
cantly lower expression of TXNIP within the lesion compared to benign melanocytic naevi
and healthy control. Thus, it was suggested that reduced TXNIP expression is associated
with melanoma progression and exerts a pro-tumorigenic effect [36].

The role of PPARβ/δ in carcinogenesis remains inconclusive since previous studies con-
firmed both pro-tumorigenic and anti-tumorigenic effects of PPARβ/δ activation [22,23,37].
Activation of PPARβ/δ by either GW501516 or GW0742 was demonstrated to inhibit the
proliferation of human melanoma UACC903 and A375 cells as well as mouse melanoma
B16F0 cells [23,37]. Additionally, Lim et al. reported that inhibition of PPARβ/δ signaling



Int. J. Mol. Sci. 2023, 24, 3114 4 of 26

by 10h antagonist led to the transformation of B16F10 melanoma cells from typical shape
to elongated mesenchymal-like structure, which is characteristic for invasive melanoma
cells [22]. Moreover, PPARβ/δ inhibition promoted the gene and protein expression of
matrix metalloproteinase 9 (MMP-9) and increased the adhesion of mouse melanoma B16F10
to endothelial cells leading to enhanced motility and invasiveness, which are crucial for
melanoma metastasis. Furthermore, the protective role of PPARβ/δ signaling in the devel-
opment of melanoma progression and metastasis was demonstrated in vivo [22].

The role of PPARα in melanomagenesis is still not fully elucidated. PPARα is mainly
expressed in adipocytes, heart and skeletal muscles, and gastrointestinal tract tissues [24].
However, this receptor was also detected in cancer cells, including melanoma (SK-MEL-30
and WM-115 cell lines) [38]. The involvement of PPARα in carcinogenesis is discussed
in the field of metabolism of essential elements such as lipids, glucose, and amino acids,
and modulation of the immune response [24]. There are no studies concerning the direct
effect of PPARα on the proliferation of melanoma cells; however, clinical studies con-
firmed the beneficiary effect of multi-modal therapy, including agonists of PPARα, on
melanoma progression [39].

PPARs are involved not only in melanoma cell proliferation but also in cell cycle
regulation. Importantly, previous studies suggested that the antiproliferative activity
of PPAR agonists rather resulted from cell cycle arrest than induction of apoptosis in
melanoma cell lines [26]. On the contrary, Placha et al. reported that PPAR

1 

 

ƴ agonist could
also exert its biological action on melanoma cells by induction of apoptosis [28]. Thus,
further studies are necessary to clarify this issue.

The biological activities of PPARs in melanoma are summarized in Table 1.

Table 1. The biological activities of PPARs in melanoma.

PPAR
Isoform

PPAR Ligand/PPAR
Activity Biological Effect Research Model Literature

Cell cycle regulation

PPARβ/δ overexpression
Cell cycle arrest;

Decreased fraction of G1 and S phase;
Increased fraction of G2/M phase

Human melanoma
UACC903 cells [40]

PPARγ overexpression
Cell cycle arrest;

Decreased fraction of G1 and S phase;
Increased fraction of G2/M phase

Human melanoma
UACC903 cells [40]

PPARγ Troglitazone (agonist) Cell cycle arrest;
Increased fraction of G1 phase

Human melanoma
MM-201 cells [26]

PPARγ Ciglitazone (agonist)

Cell cycle arrest;
Increased fraction of G0/G1 phase;
Decreased expression of cyclin D1,

Increased expression of p21 Waf1/Cip1
Reduced hyperphosphorylation of pRb

Human melanoma
A375 cells [30]

PPARγ 15d-PGJ2 (agonist)

Cell cycle arrest;
Increased fraction of G2/M phase;

Increased expression of p21 Waf1/Cip1;
Increased expression and/or

phosphorylation of p53

Human melanoma
A375, M24met, and

1205Lu cells
[35]

PPARγ Rosiglitazone (agonist) Cell cycle arrest in G1 phase Human melanoma
A375 cells [41]
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Table 1. Cont.

PPAR
Isoform

PPAR Ligand/PPAR
Activity Biological Effect Research Model Literature

PPARγ

Ciglitazone
(agonist)

9-cis-retinoic acid
(a retinoid X receptor

(RXR) ligand)

Cell cycle arrest;
Increased fraction of G0/G1 phase;

Decreased fractions of S and G2/M phase

Mouse melanoma
S91 cells [42]

PPARγ

Troglitazone
(agonist)

Halofenate
(selective modulator)

Decreased expression of cyclin D1;
Increased expression of p21 Waf1/Cip1

Human melanoma
MM96L cells [29]

Signaling pathways

PPARα Fenofibrate
(agonist)

Inhibition of Akt and extracellular
signal-regulated kinase (ERK) l/2

Mouse melanoma
B16F10 cells [43]

PPARα Fenofibrate
(agonist) Up-regulation of p38 MAPK Mouse melanoma

B16F10 cells [44]

PPARγ

Troglitazone
(agonist)

Halofenate
(selective modulator)

Down-regulation of β-catenin Human melanoma
MM96L cells [29]

PPARγ Rosiglitazone
(agonist)

Down-regulation of the expression and
phosphorylation of ERK 1/2

Human melanoma
A375 cells [41]

Cell death

PPARα Fenofibrate
(agonist)

Sensitization of melanoma cells to
proapoptotic drug staurosporine

Mouse melanoma
B16F10 cells [43]

PPARγ overexpression Increased apoptosis
ectopic xenografts

derived from
UACC903-Migr1 cells

[40]

PPARγ Troglitazone
(agonist) No effect on apoptosis Human melanoma

MM-201 cells [26]

PPARγ Ciglitazone
(agonist)

Induced apoptosis;
Activation of caspase-9

cleavage of PARP

A375
melanoma tumor

xenograft development
in mice

[30]

PPARγ Rosiglitazone
(agonist)

Induced apoptosis;
Increased expression of p53, Reduced

expression of Bcl-2

Human melanoma
A375 cells [41]

PPARγ

rosiglitazone
(agonist)
T0070907
(inhibitor)

No effect on apoptosis and necrosis
Human melanoma

WM4265.2-BrM1 and
WM4265.2-BrM2 cells

[45]

Migration, invasiveness, and metastasis

PPARα Fenofibrate
(agonist)

Inhibition of migration and
colony formation

Mouse melanoma
B16F10 cells and

human melanoma
SkMel188 cells

[43]

PPARβ/δ 10h
(antagonist)

Increased motility and invasiveness;
Increased expression of MMP9;

Increased pulmonary extravasation of
B16F10 cells

Mouse melanoma
B16F10 cells

C57BL/6 mouse model
[22]
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Table 1. Cont.

PPAR
Isoform

PPAR Ligand/PPAR
Activity Biological Effect Research Model Literature

PPARβ/δ GW501516
(agonist)

Increased migration and invasion of
A375SM cells, but not A375P cells;

Increased expression of fibronectin and
type I collagen;

Increased expression of Snail in
A375SM cells;

Decreased expression of E-cadherin in
A375SM cells

Human melanoma
A375P and

A375SM cells
[46]

PPARγ 15d-PGJ2
(agonist) Decreased migration

Human melanoma
A375 and

M24met cells
[35]

PPARγ
polyunsaturated fatty

acids/Activation
by astrocytes

Pro-metastatic effect,
Increased proliferation of metastatic

melanoma cells

patient-derived
xenografts; brain tropic

melanoma cells;
human melanoma

WM4265.2, WM793,
and WM1366 cells;
mouse melanoma

Yumm1.7 cells

[45]

3.1. PPARs’ Ligands in Melanoma Treatment

Despite several in vitro and in vivo studies revealing the beneficiary potential of
PPARs ligands in the inhibition of melanoma initiation, progression, and metastasis, clin-
ical studies did not bring such optimistic conclusions in the sole use of PPAR ligands in
melanoma therapy. However, so far, only a few studies have evaluated PPAR agonist in the
treatment of melanoma. Reichle et al., in a phase II clinical trial, evaluated the efficacy of
pioglitazone and rofecoxib combined with sequentially added angiostatic chemotherapy
for 19 patients with stage IV melanoma [47]. The median progression-free survival was
2.8 months. Importantly, one patient achieved complete remission, and one patient partial
remission. According to the authors, treatment with a PPAR

1 

 

ƴ agonist and cyclooxygenase-
2 (COX-2) inhibitor might increase the susceptibility of melanoma cells to chemotherapy
by up-regulating pro-apoptotic mechanisms. Since tumor-promoting inflammation is a
typical feature of cancer, pioglitazone seems to be a promising agent due to its ability to
decrease plasma C-reactive protein (CRP) levels by inhibiting interleukin 1 (IL1) expression.
Reichle et al. demonstrated in the melanoma group that patients, who achieved a reduced
plasma CRP level, improved progression-free survival [47]. In another study, combined
therapy, including pioglitazone, etoricoxib, low-dose trofosfamide, and temsirolimus for
stage IV melanoma, was shown to control both metastatic growth in cutaneous and uveal
melanoma [48]. Currently, a phase II clinical trial is conducted in patients with advanced
melanoma for whom monotherapy with Pembrolizumab or Nivolumab would be rec-
ommended according to the stage of the disease. The study aims to evaluate whether
adding metformin or rosiglitazone, a PPARy agonist, will act synergistically with anti-PD-1
monoclonal antibody and compare if the response rate will be higher than with PD-1
monoclonal antibody [49].

3.2. PPARs in the Immune Response to Melanoma

Melanoma is considered one of the most immunogenic tumors. Possible mechanisms
allowing melanoma to escape from immune control include:

- defective recognition of melanoma cells leading to inadequate activation of melanoma
infiltrating lymphocytes,

- defective expression of immune checkpoint receptors,
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- up-regulation of immune checkpoint ligands programmed cell death ligand 1 (PD-L1)
and PD-L2 resulting in inhibition of T cell function,

- release of pro-apoptotic molecules by melanoma cells,
- up-regulation of immune suppressive populations, e.g., myeloid-derived suppressor

cells (MDSCs), regulatory T cells (Tregs)
- release of pro-apoptotic molecules by melanoma cells [50],
- dysfunction of antigen processing and presentation [51].

Previous studies suggested that PPARs might be involved in the regulation of some of
those processes in melanoma [24]. The PPARγ signaling pathway has recently been shown
to control MDSCs expansion and T-cell proliferation. It was reported that genetic ablation
of LAL gene led to the inactivation of PPARγ, increased MDSCs, and decreased T cell
population, resulting in inflammation. Zhao et al. demonstrated that activation of PPARγ
by 9-HODE impaired stimulatory effects of MDSCs on tumor growth and metastasis in
LAL−/− mice. A similar result was observed in the proliferation and migration of tumor
cells in vitro [52].

Wu et al. investigated the antitumor effect of PPARγ antagonist GW9662 and anti-
PD-L1 (aPD-L1) immunotherapy in a B16 murine melanoma [53]. Mice were divided into
the following groups: treated with vehicle only (control), aPD-L1 alone, GW9662 alone,
or a combination of PD-L1 and GW9662. However, gender differences were revealed
in the clinical effect. The tumor size was reduced in female mice treated with aPD-L1,
but the survival rate did not improve. GW9662 did not demonstrate any effect, whereas
combined therapy of GW9662 and aPD-L1 decreased tumor growth and increased the
survival rate. However, the combined treatment did not inhibit tumor growth in male
mice. The inhibitory effect on tumor growth was observed only in the male group treated
with aPD-L1. These findings follow clinical observation demonstrating worse and more
aggressive course of melanoma in male patients [54]. Considering the positive correlation
between obesity and melanoma progression, the authors compared results between obese
and lean mice. In obese female mice, the effect was less pronounced than in lean females,
whereas no reaction to the treatment was observed in obese male mice [53]. These findings
might help provide the optimal immunotherapy for patients with melanoma.

Further studies defining the role of PPARs in the regulation of immune response in
melanoma are necessary and might have clinical implications in the future.

4. PPARs and the Kynurenine Pathway
4.1. The Kynurenine Pathway

The kynurenine pathway is a major pathway of tryptophan metabolism (Figure 2).
Approximately 95% of dietary tryptophan is metabolized in this pathway leading to nicoti-
namide adenine dinucleotide (NAD+) production. Indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO) are considered rate-limiting enzymes of the kynurenine
pathway catalyzing the first reaction of tryptophan conversion. Gene analysis revealed
that melanoma expresses all genes coding enzymes of the kynurenine pathway (Figure 4).
Kynurenine is a key metabolite of the kynurenine pathway, which is metabolized by
kynurenine aminotransferases (KATs) to kynurenic acid or by kynurenine monooxygenase
(KMO) to 3-hydroxykynurenine. There are four isoforms of KAT coding by KYAT1, AADAT,
KYAT3, and GOT2 genes. KATs are also involved in the synthesis of xanthurenic acid. In
the main pathway, kynureninase (KYNU) catalyzes the conversion of 3-hydroxykynurenine
to 3-hydroxyanthranilic acid but also the transformation of kynurenine to anthranilic acid.
In the following steps, 3-hydroxyanthranilic acid is metabolized by 3-hydroxyanthranilate
3,4-dioxygenase (3HAO) to 2-amino-3-carboxymuconic acid-6-semialdehyde. Quinolinic
acid, a product of a non-enzymatic reaction, is a direct substrate for the synthesis of NAD+
catalyzed by quinolinate phosphoribosyltransferase (QPRT) [55].
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Figure 2. Simplified scheme of kynurenine pathway. The selected tryptophan metabolites and en-
zymes are shown in the scheme. AFMID—kynurenine formamidase, 3-HAO—3-hydroxyanthranilate
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Importantly, all tryptophan metabolites possess the biological activity and play a
role in various physiological and pathological processes. However, this review will focus
on the potential role in carcinogenesis, cancer progression, and metastasis. Tryptophan
metabolites may exert direct and indirect effects on melanoma progression and metastasis.

Tryptophan metabolites modulate the immune response, which may be crucial in
cancer initiation and progression. Picolinic acid and kynurenic acid have anti-inflammatory
activity, whereas kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quino-
linic acid possess pro-inflammatory properties [55]. However, tryptophan metabolites also
modify the immune response to cancer cells. Previous studies suggested that kynurenic
acid regulated the immune response in melanoma via the interaction with IL-10, IL-7, and
TNF receptor superfamily member 12A (TNFRSF12A) [56–58], whereas anthranilic acid
might regulate the Th1/Th2 regulatory conversion by interaction with the IL-12-related
and the Toll-like receptor (TLR) signaling pathways [58]. The role of 3-hydroxyanthranilic
acid has not been fully revealed. Fallarino et al. reported that 3-hydroxyanthranilic acid
induced selective apoptosis of Th1 [59]; however, other studies showed enhanced apop-
tosis of T-, B- and natural killer cells (NK) in response to this tryptophan metabolite [60].
3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quinaldic acid inhibited the prolif-
eration of allogeneic T cells and suppressed Th1 cells [55]. Additionally, kynurenine is a
potent immunosuppressive agent promoting the differentiation of Treg cells and prevent-
ing the differentiation of cytotoxic T cells, which provides an immunologically privileged
microenvironment for cancer cells [61].

Importantly, tryptophan metabolites also directly affect cancer cells, including melanoma.
Kynurenine significantly inhibited the proliferation of melanoma A375, SK-MEL-3, and
RPMI-7951 cells modulating the protein expression of cell cycle regulators [62]. Surpris-
ingly, although the antiproliferative effect of kynurenic acid was previously reported in
colon cancer, renal cancer, and glioblastoma cell lines [63–65], kynurenic acid exerted only
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a slightly inhibitory effect on DNA synthesis in melanoma SK-MEL-3 cells but not in other
melanoma cell lines [62]. Unfortunately, a limited number of publications have focused
on the biological effects and molecular interactions of other tryptophan metabolites in
melanoma. However, previous studies revealed that tryptophan metabolites exerted a
biological effect on different types of cancer and might be involved in carcinogenesis. There-
fore, it cannot be excluded that similar mechanisms may occur in melanoma. Although
the direct effect of anthranilic acid on melanoma cell proliferation has not been studied
so far, its elevated concentration in peritoneal lavage was reported in advanced gastric
cancer [66]. Additionally, analogs and derivatives of anthranilic acid possess anticancer
activity inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway and
inducing apoptosis of cancer cells [67]. Gan et al. [68] revealed that 3-hydroxyanthranilic
acid might also have anticancer properties. It sensitized hepatocellular carcinoma cells
to sorafenib decreasing the activity of Akt kinase and inducing apoptosis of cancer cells.
The molecular mechanism of the activity of xanthurenic acid has not been studied so far;
however, its concentration in serum from patients diagnosed with non-small cell lung
cancer was significantly decreased compared to healthy control [69]. Although a limited
number of studies focused on the biological activity of 3-hydroxykynurenine towards
cancer cells, the involvement of KMO, the enzyme catalyzing the reaction of kynurenine
conversion to 3-hydroxykynurenine, in carcinogenesis and cancer progression has been
reported [70]. The overexpression of KMO was reported in breast cancer, colorectal can-
cer, and hepatocellular carcinoma [70]. Importantly, the overexpression of KMO led to
the expression of various genes involved in the proliferation, survival, invasiveness, and
metastasis of cancer cells [71]. Similarly, quinolinic acid stimulated the expression of genes
involved in cancer cell proliferation and survival via the MAPK signaling pathway [72].

4.2. The PPAR Signaling Pathway and the Kynurenine Pathway

Previous studies confirmed the functional link between PPARs and the kynure-
nine pathway in skeletal muscles. Agudelo et al. [73] revealed that activation of the
PPARα/δ pathway in muscles led to overexpression of KATs, which converted kynurenine
to kynurenic acid (Figure 3). The key element in this crosstalk was peroxisome proliferator-
activated receptor gamma coactivator-1 alpha 1 (PGC-1α1). The interaction between the
PGC-1α1/PPARα/δ pathway and the kynurenine pathway in skeletal muscles proved the
hypothesis that physical exercises might modify mood and, more importantly, physical
activity might be considered a new therapeutic approach to the treatment of depression [73].
Unfortunately, the relationship between the PPAR pathway and the kynurenine pathway
in tissues other than skeletal muscles in physiological or pathological conditions has not
been revealed.
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Figure 3. The simplified scheme of interaction between the PPAR pathway and the kynurenine
pathway in skeletal muscles [73]. PGC-1α1 may interact with various transcription factors, including
PPARs, and plays a crucial role in the interaction between the PPAR pathway and the kynurenine
pathway. In skeletal muscles, PGC-1α1 induces the expression of KATs, which convert kynurenine to
kynurenic acid. KATs—kynurenine aminotransferases, PGC-1α1—peroxisome proliferator-activated
receptor gamma coactivator-1 alpha 1, PPARs—peroxisome proliferator-activated receptors.
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5. Potential Interaction of the PPAR Signaling Pathway and the Kynurenine Pathway
in Melanoma

Gene expression data revealed that there might be a possible link between the PPAR
signaling pathway and the kynurenine pathway in melanoma. Although PPAR isoforms
have been previously related to cancer progression and some studies considered PPAR as a
negative prognostic marker [74–77], surprisingly, PPARG is down-regulated in human skin
cutaneous melanoma (SKCM) in comparison to corresponding normal tissue (Figure 4C).
However, there were no significant differences in the expression profile of other PPAR
genes. Indeed, the involvement of the PPAR pathway in cancer promotion and progression
is ambiguous and has been recently deeply reviewed by Wagner and Wagner [77]. The
data obtained from the Human Protein Atlas confirmed that PPARγ is weakly expressed in
melanoma tissue [78]. Notably, PPARGC1A gene coding PGC-1α is also down-regulated in
melanoma (Figure 4D). On the other hand, various kynurenine pathway-related genes are
overexpressed in SKCM compared to healthy control, including IDO1, TDO, KMO, KYNU,
and QPRT (Figure 4E,G,M,N,P). Surprisingly, the expression of genes coding KATs, key
elements of direct interaction between the PPAR pathway and the kynurenine pathway,
is not modified. Importantly, previous studies reported that mutations in genes coding
KATs in melanoma were correlated with a reduced survival rate [58]. Unfortunately, this
data does not verify whether overexpression of the kynurenine pathway-related genes
in melanoma is involved in the increased demand for energy sources (NAD+) in the
cancer tissue or the production of tryptophan metabolites influencing tumor tissue or
tumor microenvironment.
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Figure 4. Expression pattern of genes coding proteins involved in the PPAR pathway ((A) PPARA,
(B) PPARD, (C) PPARG, (D) PPARGC1A) and enzymes of the kynurenine pathway ((E) IDO1, (F) IDO2,
(G) TDO2, (H) AFMID, (I) KYAT1, (J) AADAT, (K) KYAT3, (L) GOT2, (M) KMO, (N) KYNU, (O) HAAO,
(P) QPRT) in human skin cutaneous melanoma (SKCM) (red; N = 461) in comparison to normal
control tissue (skin) (blue; N = 558). Gene expression data from the TCGA and GTEx datasets
were retrieved and analyzed by GEPIA2 [79]. Differences in gene expression levels were statistically
assessed using ANOVA. * p < 0.01 and fold-change threshold (|Log2FC| cutoff) of 1. TPM, transcripts
per million.

Previous studies revealed the functional connection between the PPAR pathway and
induction of the expression of KATs’ genes via PGC-1α activation [73]. Gene expression
data suggest some link between the PPAR and the kynurenine pathways in melanoma;
however, further studies are necessary to verify whether the functional connection between
these pathways, similar to those in muscles, is also present in melanoma or melanoma
environment. It cannot be excluded that the PPAR pathway and the kynurenine pathway
may interact with each other in melanoma in different manners.

Although no studies confirm the direct link between the kynurenine pathway and
the PPAR pathway in melanoma, some biological effects of tryptophan metabolites are
similar to those observed after the activation of PPARs. In this review, we will focus on
selected cellular processes in cancer cells, including melanoma, to identify the fields where
the kynurenine pathway and the PPAR pathway may interact (Figure 5).
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5.1. Metabolism

Metabolic plasticity is a characteristic feature of cancer cells that easily adapt to nutrient
restrictions or other environmental conditions, including hypoxia or pH changes [80,81].
On the other hand, up-regulation and activation of oncogenic pathways in cancer cells lead
to disruption in cytosolic and mitochondrial metabolic pathways [82,83].

The main route of the kynurenine pathway is involved in the production of NAD,
an essential redox cofactor. Appropriate NAD level is necessary to maintain intracellular
redox homeostasis; however, it is also crucial for all biological processes dependent on
NAD-related enzymes (i.e., poly-ADP-ribose polymerases (PARPs), sirtuins, NAD gly-
cohydrolase), including DNA plasticity and repair, cell adaptation to stress, cell death,
and proliferation, or immune response [84,85]. Most of these processes are disrupted
in melanoma; thus, regulation of NAD production in cancer cells is crucial for cancer
promotion, progression, and metastasis.

NAD is synthesized from tryptophan via the kynurenine pathway. Quinolinic acid is
considered a precursor of NAD de novo synthesis [86]. It should be noted that QRPT, coding
a final and rate-limiting enzyme of kynurenine pathway, is overexpressed in melanoma
(Figure 4P). This observation suggests that the kynurenine pathway in melanoma is directly
involved in NAD production to meet the growing energy demands of cancer cells.

Despite no studies focusing on PPARs and NAD in melanoma, the functional network
between PPAR pathway, kynurenine pathway, and NAD has been previously reported in acute
kidney injury [87]. Functional interaction between PGC-1α and NAD in skin physiology has
also been recently studied. PGC-1α is a transcriptional coactivator involved in the regulation of
metabolism and mitochondrial function in several tissues and organs [88,89]. Wong et al. [90]
reported that PGC-1α plays an essential role in NAD homeostasis during skin aging. NAD
is involved in the regulation of cell growth under physiological stress conditions in the skin
interacting with the p53/p21 signaling pathway. Importantly, PGC-1α sustains the level of
NAD, which is crucial for epidermal repair [90].

5.2. PGC-1α

PPARs interact with coactivators, such as PGC-1 family: PGC-1α, PGC-1β, and PGC-
1-related coactivator (PRC) [91]. PGC-1α is a critical transcriptional coactivator involved in
the regulation of mitochondrial metabolism; however, it controls various tissue-specific
processes, including angiogenesis, adipogenesis, glucose metabolism, and cell survival,



Int. J. Mol. Sci. 2023, 24, 3114 13 of 26

by interaction with transcription factors and nuclear receptors [92]. PGC-1α is involved
in mRNA splicing since it possesses the characteristic RNA recognition motif and argi-
nine/serine domain [91]. Importantly, PGC-1α interacts not only with PPARs but also with
other nuclear receptors, including estrogen receptors (ERs) and nuclear respiratory factor
(NRF) 1 and 2 [93].

PGC-1α plays an important role in the regulation of physiological processes within
the skin. A recent study indicated the crucial role of PGC-1α in epidermal repair [90]. Addi-
tionally, Shoag et al. reported that this transcriptional coactivator regulated the production
of melanin interacting with microphthalmia-associated transcription factor (MITF) [94].

The role of PGC-1α in carcinogenesis remains controversial. Due to various processes
regulated by PGC-1α, its role in cancer depends on tissue requirements and, in most cases,
is still unclear. Similarly, the expression pattern of PGC-1α is tumor-type dependent. There
is no unequivocal expression trend in melanoma since previous studies reported increased
and decreased PGC1A gene expression [92]. Additionally, the role of PGC-1α in melanoma
has not been fully revealed. PGC-1α, inducing oxidative metabolism, stimulates the prolif-
eration and survival of melanoma cells, but on the other hand, it inhibits invasiveness and
melanoma metastasis [95–97]. It was also reported that this transcriptional coactivator stim-
ulated melanogenesis by interaction with MITF [98]. Importantly, MITF/PGC-1α positive
melanomas are more resistant to ROS-induced apoptosis due to enhanced mitochondrial
oxidative metabolism and detoxifying properties of cancer cells [98,99]. PGC-1α may also
be involved in the chemoresistance of melanoma cells [89]. PGC-1α increases the expression
of ROS detoxifying genes favoring tumor cell survival [99].

Previous studies confirmed that activation of the PGC-1α/PPAR pathway might
benefit the immune response to cancer cells [100]. Additionally, it should be noted that
microenvironmental conditions might modify the biological effect of the activation of
PGC-1α in other types of cancer [92]. It cannot be excluded that this mechanism may also
be applied to melanoma.

PGC-1α is the direct link between PPARs and the kynurenine pathway, as previously
confirmed in skeletal muscles [73]. Allison et al. [101] reported that overexpression of PGC-
1α was correlated with overexpression of all KAT isoforms. Thus, the interaction between
PGC-1α and the kynurenine pathway has both functional and genetic levels. Although this
dependence has not been confirmed in melanoma to date, it cannot be excluded that similar
interactions between tryptophan metabolites and PGC-1α are also present in melanoma.

5.3. Cellular and Molecular Effects
5.3.1. Proliferation

The biological role in cancer cell proliferation of PPARs has been extensively studied,
and PPARγ activity in melanoma is especially well-documented. Various PPARγ agonists
exert antiproliferative activity towards melanoma in vitro and in vivo [27,30–32]. Previous
studies revealed that PPAR

1 

 

ƴ agonists, including troglitazone, rosiglitazone, and 15d-PGJ2,
inhibited the proliferation of human melanoma cell lines in a dose-dependent manner and
induced cell cycle arrest, whereas no effect was observed in melanoma cells exposed to
PPARα agonist WY-14643 [26]. Similar results were obtained by Freudlsperger et al., who
reported the inhibitory effect of rosiglitazone, pioglitazone, ciglitazone, and troglitazone
on melanoma cell lines derived from both primary (UISO-Mel6, G361) and metastatic
melanoma (MV3, MeWo, Lox, Fem-X1) [27]. Among all PPAR

1 

 

ƴ agonists, the most potent
antiproliferative effect was demonstrated by ciglitazone [27]. The authors observed that
glitazones in a concentration higher or equal to 30 mmol/L exerted an inhibitory effect
on melanoma cell lines, but in lower concentration (3 mmol/L) slightly stimulated cell
proliferation. Therefore, it was suggested that the dose-dependent effect of glitazones
should be considered in planning in vivo studies to avoid possible stimulatory effect on
malignant melanoma [27].

Importantly, PPARγ seems to play an important role not only in the regulation of
the proliferation of melanoma cells but there is also the direct link to the tumor-stroma
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interactions [35]. Paulitschke et al. reported that 15d-PGJ2, one of the PPARγ agonists,
affected the proliferation of tumor-associated fibroblasts [35]. Interactions with tumor-
associated fibroblasts and endothelial cells suggest that PPARγ is involved in melanoma
proliferation and angiogenesis, leading to melanoma progression and metastasis [35]. Even
though the beneficial effect of PPARγ in cancer has been confirmed in several studies, the
recent one brings a new perspective to the matter. Peng et al. [32] reported that irreversible
PPARγ antagonist MM902 inhibited the proliferation of cancer cells, including melanoma
LOX-IMVI and MALME-3M cells. Additionally, the beneficiary effect of PPARγ antagonist
was also confirmed in in vivo studies, where MM902 inhibited tumor growth in the mouse
xenograft model of melanoma [32].

The role of PPARα and PPARβ/δ in cancer cell proliferation is more controversial [22].
Borland et al. [40] reported that PPARβ/δ had similar antiproliferative activity to PPARγ in
melanoma in vitro and in vivo and could have a beneficial effect in the chemoprevention of
primary and metastatic melanoma. Moreover, disruption of PPARβ/δ signaling pathway
by either antagonist or gene knock-down led to melanoma progression [22], whereas
activation or overexpression of PPARβ/δ inhibited cell cycle progression in the G2/M
phase of melanoma cells in ectopic xenografts [40].

The molecular studies addressed various molecular mechanisms for the antiprolifera-
tive activity of PPAR agonists, including regulation of the cell cycle, signaling pathways,
and induction of cell death [23,34,35,40,102,103].

Importantly, tryptophan metabolites also affect cancer cell proliferation. Although
there is a limited number of studies focused on the direct effect of kynurenines on melanoma
cells, the involvement of this group of substances in cancer promotion and progression has
been reported. Kynurenine has a significant antiproliferative activity toward melanoma
cells [104]. This tryptophan metabolite at a concentration of 1 pM inhibited proliferation
and DNA synthesis in melanoma A375 cells; however, the strongest effect was observed
in millimolar concentrations [104]. On the other hand, the effect of kynurenine on car-
cinogenesis has been discussed. Thaker et al. reported that this tryptophan metabolite
stimulated the proliferation of colon cancer HCT116 cells in vitro via activation of the
β-catenin pathway [105]. Interestingly, another tryptophan metabolite, kynurenic acid,
inhibited the proliferation of various cancer cell lines in vitro, including colon cancer, renal
cancer, and glioblastoma [63–65,106], but it did not affect DNA synthesis of melanoma
A375 and RPMI-7951 cells [104]. Kynurenic acid in millimolar concentrations inhibited the
DNA synthesis and metabolic activity of only one tested melanoma cell line, SK-MEL-3 [62],
which might suggest that the biological activity of this tryptophan metabolite is not cell
type dependent but rather genetic differences might have an impact on the antiproliferative
activity of kynurenic acid.

5.3.2. Cell Cycle Regulation—p21 Waf1/Cip1

Previous studies confirmed the involvement of PPARs in the cell cycle regulation of
cancer cells. Anticancer activity of PPARγ is based on cell cycle arrest rather than cell death
induction [1]. The majority of studies confirmed the critical role of cyclins, retinoblastoma
(Rb), p21 Waf1/Cip1, and β-catenin in PPAR-dependent cell cycle arrest [26,29,30,107,108].
Although previous studies indicated only the involvement of PPARγ in the regulation of
cell cycle proteins in melanoma, studies conducted on other types of cancer confirmed that
all PPAR isoforms might have a similar biological effect [109,110].

A similar biological effect was observed in melanoma cells in vitro after exposure to
tryptophan metabolites [62]. Kynurenine and kynurenic acid increased the protein expres-
sion of cell cycle inhibitors p21 Waf1/Cip1 and p27 Kip1 in melanoma SK-MEL-3 cells [62].
Importantly, kynurenine exerted a more potent stimulatory effect. The involvement of p21
Waf1/Cip1 in the antiproliferative activity of kynurenic acid has been previously reported
in colon cancer HT-29 cells [111]. Furthermore, kynurenine and kynurenic acid inhibited
the protein expression of cyclin-dependent kinase (CDK) 4 and phosphorylation of Rb in
melanoma cell lines [62,104].
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Unfortunately, there are limited data concerning the biological activity of other metabo-
lites of the kynurenine pathway toward melanoma. However, it should be noted that
overexpression of p21 Waf1/Cip1 was also observed in cancer cells exposed to derivatives
of anthranilic acid [112,113].

The role of tryptophan metabolites in the activation of the β-catenin signaling pathway
has not been fully revealed. Although neither kynurenine nor kynurenic acid affected
the protein expression of β-catenin in melanoma SK-MEL-3 cells [62], the stimulatory
effect was observed in colon cancer HT-29 cells exposed to millimolar concentrations of
kynurenic acid [106]. Similarly, kynurenine and quinolinic acid activated β-catenin leading
to increased proliferation of colon cancer cells and tumor growth [105].

5.3.3. Cell Death

The PPAR signaling is also involved in cell death of cancer cells, including melanoma.
However, the role of particular isoforms of PPAR in cell death induction in melanoma has
not been fully revealed. Importantly, there is a strict dependency between PPAR isoforms.
Maggiora et al. showed that an increase in PPARα protein level with a simultaneous
decrease in PPARβ/δ protein level led to apoptosis of cancer cells in response to linoleic
acid [114]. On the contrary, overexpression of PPARβ/δ induced apoptosis in hepatocellular
carcinoma Hep2G cells [115]. Thus, the role of PPARs in the induction of apoptosis seems
to be tissue- or cell-type-dependent. Similarly, previous studies reported the functional link
between the activation of PPARα and cell death. Kong et al. [116] revealed that activation of
PPARα by fenofibrate led to apoptosis of colon cancer cells. Previous studies suggested that
activation of PPARγ is related to the inhibition of proliferation of cancer cells rather than
induction of cell death [26,27]. However, several studies reported the direct involvement
of PPARγ in apoptosis, including in melanoma cells [41,42,117]. Rosiglitazone activating
PPARγ induced apoptosis in A375 cells by decreasing Bcl-2 level while increasing p53
protein expression [41].

Similarly, the role of tryptophan metabolites in cell death induction is unclear. Our
group revealed that kynurenic acid at a concentration of 5 mM induced apoptosis in
melanoma A375 cells, but a similar effect was not observed in RPMI-7951 cells representing
metastatic melanoma. Significantly, kynurenic acid also stimulated necrosis in melanoma
A375 cells, suggesting that pro-apoptotic activity was not a target molecular mechanism of
this tryptophan metabolite [104].

There is only one report regarding the effect of kynurenine on melanoma cell death.
Kynurenine stimulated necrosis in melanoma A375 cells but not in metastatic melanoma
RPMI-7951 cells [104].

5.3.4. Metastasis

Metastasis is a multistep process resulting from the accumulation of genetic and epige-
netic alternations, which is associated with poor prognosis for melanoma patients. PPARs
are involved in all processes of melanoma metastasis, including epithelial-mesenchymal
transition (EMT), migration, adhesion, invasiveness, and modifications of the tumor mi-
croenvironment [118]. Importantly, previous studies revealed some controversies. The
results are contradictory; thus, further studies are necessary to verify the hypothesis of
the involvement of particular isoforms of PPAR in metastasis and give a clear answer
regarding their positive or negative role in this process. The majority of studies under-
lined the crucial role of PPARβ/δ in melanoma metastasis. It was reported that PPARβ/δ
inhibition increased melanoma cell migration and invasiveness in vitro and promoted
lung metastasis in vivo [22]. On the contrary, PPARβ/δ has been previously associated
with promotion of the aggressive phenotype of melanoma. Activation of PPARβ/δ in
highly metastatic melanoma cell lines resulted in the increased migration mediated by
overexpression of SNAIL [46].

Anti-migratory effect of fenofibrate towards melanoma cell lines has also been previ-
ously reported confirming the involvement of PPARα in cancer metastasis [43]; however,
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the role of PPARα in melanoma metastasis is not fully elucidated. Stebbins et al. [119]
reported that inhibition of PPARα by NXT629 decreased lung metastasis of B16F10 cells in
mice model.

The role of PPARγ in melanoma metastasis is unclear; however, it might be suggested
that the role of this receptor depends on the target: melanoma cell or tumor microenvi-
ronment. Previous studies revealed that activation of PPARγ by cloxiquine resulted in
decreased metastasis of melanoma cells in a mice model [120]. Although the majority
of in vitro studies confirmed the beneficiary role of PPARγ agonists in cancer chemopre-
vention and suggested their antiproliferative and anti-metastatic properties, the results of
clinical studies are not so optimistic [1,121–123]. It was suggested that the potential impact
on the tumor environment might be crucial. Rostiglitazone, the PPARγ agonist, induced
the expression of cytokines, chemokines, and angiogenesis-stimulating factors modifying
the tumor microenvironment to favor metastasis [123].

Similarly, the role of the kynurenine pathway in metastasis has not been fully re-
vealed. Previous studies reported that the effectiveness of kynurenine and kynurenic acid
towards melanoma cells depended on the stage of melanoma progression. Tryptophan
metabolites were less effective towards metastatic melanoma RPMI-7951 cells than primary
melanoma A375 cells [104]. The role of kynurenine and kynurenic acid on the invasiveness
of melanoma cells is more controversial. Although these tryptophan metabolites did not
affect the migration of A375 and RPMI-7951 cells, kynurenine stimulated the migration of
melanoma SK-MEL-3 cells and a similar effect was observed in UVB-treated SK-MEL-3
cells in response to kynurenic acid [62]. The molecular mechanism of these interactions
was not revealed. However, the stimulatory effect of kynurenine on cancer cell migra-
tion was reported previously. Kynurenine stimulated the migration and metastasis of
lung cancer 95D cells by increasing the remodeling of the extracellular matrix [124]. The
immunosuppressive activity of kynurenine should also be underlined in this discussion.

5.4. Interactions with the Immune System

Tumor cells interact with the immune system during melanomagenesis. Immune
evasion seems to be the greatest challenge in melanoma therapy. Melanoma immune
escape results from progressive exhaustion of the immune system by chronic stimulation
and specific mechanisms of tumor cells leading to counteract the antigenic recognition [50].
The molecular strategies of immune escape include:

- dysregulation of the expression of cell signaling molecules on the effector cells,
- the release of melanoma-derived soluble factors involved in immune suppression,

including vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF),
transforming growth factor β (TGF-β), IL-1, IL-6, IL-10, prostaglandin E2 (PGE2),

- variability of the tumor antigen expression,
- polarization of Th1 cells [125].

An important mechanism in melanoma progression is the dysregulation of antigen
processing and presentation. A characteristic feature of melanoma cells is the heterogeneity
of the antigenic repertoire necessary to evade immune system control [126]. Importantly,
actively proliferating melanoma cells decrease the presentation of the major histocompati-
bility class-I (MHC-I) complex to effector CD8+ T cells. Additionally, the defective activity
of dendritic cells (DC) and reduced cytotoxicity mediated by CD8+ T cells result in an
impaired immune response to melanoma cells [125].

Previous studies confirmed that the kynurenine pathway is involved in the immune
response. The majority of studies focused on the IDO1 activity. Kai et al. [127] reported
that IDO1 is crucial for normal cytotoxicity of natural killer (NK) cells against cancer
cells, including melanoma [128,129]. On the contrary, Frumento et al. revealed that IDO1
inhibited the proliferation of NK and T cells [130]. In addition, overexpression of IDO1 in
monocytes and low activity of IDO1 in response to INFγ correlated with worse outcomes
in melanoma patients [131]. It should be noted that not only IDO1 activity but also the
biological properties of kynurenine, the product of the enzymatic reaction, is associated with
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dysregulation of the immune response. Previous studies indicated the regulatory function
of kynurenine in NK activity via the signal transducer and activator of transcription (STAT)
1 and 3 signaling pathways [132]. Moreover, the kynurenine pathway enzymes may initiate
tolerogenesis in a DC-dependent and DC-independent manner [128,133].

Importantly, TLRs could be another common point between PPARs and kynure-
nine pathway. TLRs belong to the family of pattern recognition receptors [134]. Impor-
tantly, TLRs are mainly expressed in keratinocytes (TLR1, TLR2, TLR3, TLR4, TLR5, TLR6,
TLR9) and melanocytes (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9, TLR10) within the human
skin [135]. Ligation of TLR resulted in various innate and adaptive immune responses via
activation of the NF-κB signaling pathway and induction of INF [134]. It should be under-
lined that TLRs are also expressed in cells of the immune system, including monocytes,
macrophages, and dendritic cells [136]. However, previous studies confirmed TLRs’ in-
volvement in carcinogenesis, tumor microenvironment modifications, and cancer immune
escape. TLR-4 was associated with the up-regulation of pro-inflammatory cytokines in
melanoma cells [137]. Interestingly, carcinogenesis was less common in TLR-4-deficient
mice [138]. Previous studies revealed that PPARγ agonists might inhibit TLRs activity
and regulate the expression of TLR4 gene [139–141]. Additionally, the anti-inflammatory
activity of fenofibrate was enhanced by the inhibition of the TLR-4 signaling pathway
in melanoma [137].

Importantly, activation of TLR led to an increase of IDO protein expression in den-
dritic cells leading to inhibition of T-cell proliferation [142]. Similarly, TLR-dependent
immunosuppression of bone marrow-derived mesenchymal stem cells was mediated by
kynurenines produced by IDO1 [143]. Activation of TLR-2, TLR-3, TLR-4, TLR-7/8, and
TLR-9 resulted in an increased level of kynurenine in human peripheral monocytes, whereas
activation of TLR-3 increased the level of kynurenic acid and quinolinic acid [136]. Previous
studies underlined the role of kynurenine in immune suppression and evasion, leading to
cancer cell survival [144,145].

5.5. Microbiota

Recent studies revealed that microbiome might play a role in carcinogenesis and
response to cancer therapy [146,147]. Microbiome affects tumor cell metabolism and
modifies the immune response. Previous studies suggested that skin microbiome might be
involved in inflammatory and infectious skin diseases but also in skin cancer [147,148].

Changes in the composition of skin and gut microbiota were reported in melanoma
patients. Moreover, the presence of specific types of bacteria was related to the stage of
the disease progression [147,149,150]. Mizuhashi et al. reported that Corynebacterium was
associated with advanced melanoma [149], whereas Staphylococcus epidermidis was suggested
to have protective properties against melanoma cells [151]. It should be noted that not only
skin microbiota but also gut microbiota and its metabolites may play a role in melanoma-
genesis and immune response to cancer cells [152,153]. Microbiome-derived metabolites
may interact with PPARs modifying the energy metabolism and other cellular processes
controlled by these receptors [154]. Short-chain fatty acids (SCFAs), including butyrate and
propionate, stimulate the transcriptional activity of PPARs [155,156]. Importantly, bacterial
lipopolysaccharide (LPS) is an exogenous ligand for TLR-4, and previous studies reported
that PPARγ agonists regulated the expression of TLR4 gene [140,141,157].

Importantly, the relationship between microbiome and the kynurenine pathway has
been previously confirmed. Various bacterial phyla, including Actinobacteria, Bacteroides, Fir-
micutes, Fusobacteria, and Proteobacteria, metabolize tryptophan via the kynurenine pathway,
producing the biologically active metabolites [158]. Previous studies confirmed a functional
network between kynurenine, kynurenic acid, and PPARs [73]. In addition, there is a strong
relationship between IDO1 and gut microbiota. Microbiota modifies the bioavailability of
tryptophan and, therefore, dysregulates IDO1 activity and the kynurenine pathway. On the
other hand, IDO1 may change the metabolism of gut microbiota and immune reactivity,
inducing immunosuppression in the gastrointestinal tract [159]. Although most studies
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are focused on gut microbiota, the involvement of skin microbiota in the regulation of skin
diseases, including melanoma, has been previously confirmed [147].

Considering the correlation between microbiota, PPARs, and the kynurenine pathway,
skin and gut dysbiosis in melanoma patients may affect the activity of both metabolic
pathways, the PPAR pathway and the kynurenine pathway. Although further studies are
necessary, previous studies suggested that this functional interaction may directly and
indirectly modify the tumor microenvironment and immune response to cancer cells.

6. Conclusions

The functional relationship between the PPAR signaling pathway, PGC-1α, and the
kynurenine pathway was previously reported in skeletal muscles. However, some bioin-
formatics data and biological activity of PPAR ligands and tryptophan metabolites may
suggest a potential involvement of these metabolic and signaling pathways in melanoma
promotion, progression, and metastasis. It should be underlined that the potential cross-talk
between the PPAR signaling pathway and the kynurenine pathway may refer not only to
the direct biological impact on melanoma cells but also to the tumor microenvironment
and the immune system. Previous studies revealed that the PPAR signaling pathway
and the kynurenine pathway might be involved in the regulation of various processes in
melanoma, including metabolism, proliferation, cell cycle regulation, cell death, and metas-
tasis. Importantly, both signaling and metabolic pathways modify the immune response
by direct impact on immune cells, production of cytokines, antigen presentation, and
interaction with microbiome. Unfortunately, the involvement of the kynurenine pathway
in melanomagenesis, melanoma progression, and metastasis has not been fully revealed.
Therefore, the biological effects of tryptophan metabolites against other types of cancer
may suggest new directions for further research. Determining the interactions between the
PPAR signaling pathway and the kynurenine pathway in melanoma should be a priority,
taking into consideration that human skin is constantly exposed to tryptophan metabolites,
which are naturally synthesized in the skin and are present in various herbs and honey
bee products used in skin care treatments [160,161]. Knowledge about the interaction
between the PPAR pathway and the kynurenine pathway may contribute to introducing
new chemopreventive agents or therapies against melanoma.
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3-HAO 3-hydroxyanthranilate 3,4-dioxygenase
AFMID kynurenine formamidase
CDK cyclin-dependent kinase
COX-2 cyclooxygenase-2
CRP C-reactive protein
DC dendritic cells
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EMT epithelial-mesenchymal transition
Ers estrogen receptors
ERK extracellular signal-regulated kinase
IDO Indoleamine 2,3-dioxygenase
IL interleukin
KAT kynurenine aminotransferase
KMO kynurenine-3-monooxygenase
KYNU kynureninase
MAPK mitogen-activated protein kinase
MDSCs myeloid-derived suppressor cells
MHC-I major histocompatibility class-I
MITF microphthalmia-associated transcription factor
MMP matrix metalloproteinase
mRNA messenger RNA
NAD nicotinamide adenine dinucleotide
NK natural killer cells
NRF nuclear respiratory factor
PARP poly-ADP-ribose polymerase
PD-L1 programmed cell death ligand 1
PGC-1α peroxisome proliferator activated receptor gamma coactivator-1 alpha
PGE2 prostaglandin E2
PRC PGC-1-related coactivator
PPAR Peroxisome proliferator-activated receptor
RXR retinoid X receptor
QPRT quinolinate phosphoribosyl transferase
Rb retinoblastoma
SCFAs Short-chain fatty acids
SKCM skin cutaneous melanoma
TDO tryptophan 2,3-dioxygenase
TGF-β transforming growth factor β
TLR Toll-like receptor
TNF tumor necrosis factor
TNFRSF12A TNF receptor superfamily member 12A
TPM transcripts per million
Tregs regulatory T cells
TXNIP thioredoxin-interacting protein
VEGF vascular endothelial growth factor
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