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Abstract: Parkinson’s disease (PD) is the most common α-synucleinopathy worldwide. The pathog-
nomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein,
observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers
oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to
neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection
against these neuropathological events and especially against α-synucleinopathy. Growing evidence
suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective
effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here
we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in pre-
clinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy
mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms
of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution
of better clinical trials for disease-modifying drugs in PD.

Keywords: α-synucleinopathy; neuroprotection; Parkinson’s disease; Lewy bodies; PPAR; glitazones

1. Introduction

The term “α-synucleinopathy” is used to include a group of neurodegenerative dis-
eases characterized by the pathological aggregation of α-synuclein (α-syn) in neuronal or
glial cells and prion-like spreading through neuroanatomically interconnected regions [1].
These diseases include Parkinson’s disease (PD), which is the most common condition,
dementia with Lewy Bodies (DLB), multiple system atrophy (MSA), as well as other rare
disorders and neuroaxonal dystrophies [2,3]. PD is a chronic neurodegenerative disor-
der that represents a major cause of disability, with an estimated worldwide prevalence

Int. J. Mol. Sci. 2023, 24, 3264. https://doi.org/10.3390/ijms24043264 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043264
https://doi.org/10.3390/ijms24043264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2894-7477
https://orcid.org/0000-0001-8786-2911
https://orcid.org/0000-0001-8321-0705
https://orcid.org/0000-0002-2840-7991
https://orcid.org/0000-0002-5013-3608
https://doi.org/10.3390/ijms24043264
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043264?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 3264 2 of 18

of 6.2 million affected, which is expected to double by 2040 due to risk factors such as
increased life expectancy and exposure to environmental toxins [4,5]. Clinically, the PD
patient presents motor symptoms such as resting tremor, bradykinesia, rigidity, and pos-
tural instability, as well as non-motor disturbances such as hyposmia, gastrointestinal
and sleep dysfunctions, depression, and anxiety, among others, even decades before the
motor symptoms first appear [6,7]. Histopathologically, PD is characterized by progres-
sive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), causing
a deficiency in dopaminergic transmission in the nigrostriatal pathway [7]. In addition, the
histopathological hallmark of PD is the presence of Lewy bodies, cytoplasmic inclusions
composed predominantly of misfolded α-syn in both, genetic and sporadic etiologies [8,9].
The α-syn is a small protein 140 amino acids long, which can adopt different conformations
depending on the environment and easily interacts with other ligands such as lipids. This
protein is physiologically expressed at high concentrations in the brain and is involved in
many critical neurological processes such as [2,10,11]: synaptic maintenance, mitochondrial
and plasmatic membrane homeostasis, proteasome function, dopamine metabolism, and
chaperone protein activity (Figure 1A).
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Figure 1. Physiological and pathological roles of α-syn in PD. (A) Physiological and patho-
logical roles of α-syn according to its structural conformation in dopaminergic neurons of the
substantia nigra pars compacta and their projections to the striatum. (B) Cellular alterations triggered
by α-syn misfolding. Abbreviations: α-syn: α-synuclein; NO, nitric oxide; RA, retinoic acid; Nurr1,
nuclear receptor 1; RAR, retinoic acid receptors; PPARs, peroxisome proliferator-activated receptors;
RXR, retinoid X receptor; PGC1α, peroxisome proliferator-activated receptor gamma-1 α coactivator;
ROS, reactive oxygen species. This figure was created with BioRender.com (accessed on 3 October 2022).
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The toxicity of this protein is related to structural modifications ranging from its
oligomerization to aggregation in fibrils and, finally, its deposition in Lewy bodies and neu-
rites (Figure 1A). The misfolded α-syn has been associated with several neuropathological
events culminating in neurodegeneration (Figure 1B) [11–16]: (i) mitochondrial dysfunction;
(ii) increased levels of oxidative stress, caused by high levels of reactive oxygen species
(ROS) and lipid peroxidation (LP); (iii) decreased levels of polyunsaturated fatty acids and
membrane damage; (iv) neuroinflammation; (v) alterations in calcium homeostasis; and
(vi) nuclear receptor dysfunction.

Currently, there is no disease-modifying therapy against α-synucleinopathy. How-
ever, peroxisome proliferator-activated receptor (PPAR) agonists are excellent candidates
that have demonstrated neuroprotective effects in preclinical PD models, specifically the
gamma isoform (PPARγ). PPAR activity reduces oxidative stress, improves mitochondrial
function, and reduces neuroinflammation and neurodegeneration of dopaminergic neu-
rons in the SNpc and other brain areas [17]. This review critically presents the evidence
of the neuroprotective effects of PPARγ in preclinical PD models and patients, and pro-
poses potential anti-α-synucleinopathy effects of PPARγ agonists that may become suitable
disease-modifying drugs.

2. Current Treatment of Parkinson’s Disease

Despite its high prevalence worldwide, conventional treatment of PD remains symp-
tomatic, using pharmacological, non-pharmacological, and surgical treatments that seek to
maximize the remaining motor and non-motor functions, as well as the quality of life [18,19].
Since its introduction more than 60 years ago, the replacement of striatal dopamine loss
through systemic administration of the dopamine precursor amino acid (levodopa) has
been a mainstay of treatment [7,20] because it shows the greatest positive effect on motor
symptoms and quality of life [21].

Controversy exists about when to initiate pharmacological PD treatment [22]. Clin-
ical trials found no evidence that early initiation of therapy has disease-modifying ef-
fects or a difference in the frequency of complications with late-onset [23,24]. Therefore,
the initiation of treatment considers the characteristics of the severity of the disease in
each patient [7,8]. However, long-term treatment (5–10 years) with levodopa and other
dopamine agonists is associated with motor side effects in up to 10–40% of patients and,
in some cases, with the appearance of non-motor effects [25]. Among the drugs avail-
able, levodopa requires the highest daily dosage and therefore carries a greater risk of
side effects [26]. Its presentation in formulations, together with the decarboxylase in-
hibitor, carbidopa, prevents these effects by avoiding the peripheral conversion of lev-
odopa [20]. Moreover, the use of formulations that include catechol-O-methyltransferase
inhibitors decreases the risk of motor fluctuations by increasing their plasma half-life
through pharmacokinetic modifications [20,26].

Dopamine agonists (apomorphine, pramipexole, ropinirole) and monoamine oxidase
inhibitors (selegiline, rasagiline) have also been used as initial PD treatment [18], but with
poorer tolerability and less improvement in mobility scores, with no evidence of delaying
motor fluctuations [7,8]. Therefore, their greatest usefulness lies as an adjuvant therapy
when an enhanced treatment effect is needed without increasing the doses of levodopa
in the advanced stages of the disease [18,26]. For those patients with motor fluctuations
that do not respond to medication adjustments, alternative therapies are used to achieve
continuous dopaminergic stimulation, such as deep brain stimulation, magnetic resonance
imaging-guided focused ultrasound, and levodopa-carbidopa intestinal gel pump therapy.
However, these alternative therapies require evaluations at specialized centers to determine
patient eligibility, ongoing medication management, and device optimization [7,8].

To sum up, there is no disease-modifying drug so far [7,27], however, the side effects
of conventional antiparkinsonian treatment and the complexity of alternative (advanced)
therapies have driven the search for new therapeutic targets [8,27–29] with the main ob-
jectives of preventing neurodegeneration [20], reducing oxidative stress while stimulating
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neurotrophic factors [30,31], supporting calcium homeostasis and lysosomal autophagy
preventing mitochondrial dysfunction [32], controlling α- syn fibrils [33], promoting neu-
ronal regeneration [34] and employing pharmacoepigenomics based therapies [35]. As
discussed in the following sections, the activation of certain nuclear receptors, such as the
PPARs, could be useful in PD treatment since they have been observed to exert a positive
effect on several of these therapeutic targets.

The modifications of α-syn play a central role in PD pathology while triggering
multiple neuropathological events that culminate in neurodegeneration. The above could be
due to disrupted interactions between α-syn and diverse nuclear receptors [36]. Therefore,
pharmacological modulation of specific nuclear receptors, such as the PPARs, could be
helpful in PD treatment since they have been observed to provide neuroprotective effects
in various central nervous system (CNS) diseases [17] and since their use for the treatment
of other pathologies has shown a collateral reduction of PD incidence [37,38].

3. Pathological Impact of α-Syn on Nuclear Receptors in Parkinson’s Disease

The α-syn aggregates have been associated with alterations at a nuclear level, par-
ticularly affecting transcriptional regulation [39,40]. Oxidative stress and mitochondrial
dysfunction promote the translocation of α-syn to the nucleus, where the specific function
of α-syn remains uncertain [41,42]. Also, several α-syn mutations in the human popula-
tion, such as A30P, A53T, and G51D, promote their accumulation in the nucleus [43,44].
In this context, α-syn aggregates have been described to modify the activity of nuclear
receptors associated with the gene expression of dopaminergic neurons [45]. One of them
is nuclear receptor 1 (Nurr-1), a member of the inducible orphan nuclear receptor fam-
ily. This receptor is essential in the differentiation, maturation, and survival of midbrain
dopaminergic neurons [46], which have been reported to be predominantly affected by
α-syn aggregation in PD [47]. In addition, the pathological α-syn negatively regulates
the transcriptional activity of Nurr-1, and the receptors that modulate the transcription
of retinoic acid receptors (RARs), and peroxisome proliferator-activated receptor gamma-
1α coactivator (PGC-1α) [45,47,48]. The latter is a transcriptional regulator involved in
mitochondrial biogenesis and cellular energy metabolism that are affected in PD [48,49].
RARs promote PPAR activity, which is also affected in PD. The latter two types of receptors
require heterodimerization with retinoid X receptors (RXRs) to form heterodimers capable
of exerting transcriptional functions on specific target genes [45].

Importantly, nuclear translocation of α-syn has been shown to decrease PPARγ activity,
compromising cell survival (Figure 1B) [45,50]. Since α-synucleinopathy is associated with
different neuropathological mechanisms, including dysfunction of nuclear factors involved
in the survival and maintenance of dopamine neurons, current therapy approaches should
confer neuroprotective effects by preventing or decreasing the α-syn misfolding.

4. PPARs: Types, Distribution and Functions

PPARs belong to subgroup 1 of the nuclear receptor superfamily [51]. They are
known to form heterodimers with the RXR when activated by endogenous or exogenous
ligands and to bind to a co-activator such as PGC-1α. The activated PPAR complex binds
to peroxisomal proliferative-response elements (PPREs), promoting gene transcription.
Three isoforms of these receptors are known as the α, γ, and β/δ isoforms. However,
the PPARγ gene generates three transcripts by alternative splicing encoding for further γ
isoforms [52], which are involved in lipid metabolism, mitochondrial biogenesis, cellular
energy production, glucose and amino acid regulation, and thermogenesis [53]. Also,
PPARs are activated by lipids consumed in the diet (fatty acids) or their metabolites (such
as eicosanoids), and they are considered to be lipid sensors [54].

PPARs are ubiquitously expressed in the organism, as shown in Table 1, while the
β/δ isoform is mainly expressed in the CNS, however, the γ isoform is the most studied
therapeutic target in several neurodegenerative diseases [55]. According to data retrieved
from the Genotype-Tissue Expression (GTEx) project, the region with the most abundant
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expression is the caudate nucleus for α isoform, the cerebellar hemisphere for γ, and the
cerebellum for β/δ. In addition, several nuclei from the basal ganglia are included, includ-
ing the same ones that play an essential role in the motor deterioration of diseases such
as PD and Huntington’s disease (HD). On the other hand, Table 1 highlights the agonists
corresponding to each isoform. It is worth mentioning that fatty acids and their derivatives
could activate all isoforms and are considered pan-agonists or/and endogenous agonists.
According to some research groups, there is a connection between the three isoforms called
“the PPARs triad”. Activation of the triad regulates neuroprotection by promoting PPAR-
dependent genes, including positive feedback on PPARs themselves [56]. PPARγ increases
the levels of the β/δ isoform, and vice versa, PPARβ/δ increases PPARγ levels. In addition,
the β/δ isoform regulates α and γ activation, inducing the production of their endogenous
agonists [57]. According to the PPAR triad theory, PPARγ is essential for triad maintenance
even in regions of the CNS where the abundance of the β/δ isoform predominates.

Table 1 shows the ligands for PPAR divided into endogenous and exogenous, but
these ligands can also act as selective agonists for one isoform, agonists with dual effect, or
pan-agonists. The neuroprotection that agonists can provide depending on their mode of
action is discussed in what follows.

Several animal models of PD, HD, and Alzheimer’s disease (AD) have shown a neu-
roprotective effect of PPARγ activation by agonists [55,58,59]. Glitazones (rosiglitazone,
pioglitazone, and lobeglitazone) are the most widely studied PPARγ ligands, indicating the
importance of this isoform [60]. The main effects of specific PPARγ activation include pre-
vention of mitochondrial dysfunction, reduction of ROS, LP production, increased PGC-1α
production, suppression of autophagy, maintenance of mitochondrial membrane potential
(∆Ψm), inhibition of the proinflammatory cytokines, preservation of dopaminergic neurons,
and reduction of macrophage infiltration [61–65].

On the other hand, recent studies point to the PPARα isoform being the target for
preventing damage in AD, PD, depression, and schizophrenia [66–68]. Fibrates (fenofi-
brate, clofibrate) are the main agonists of the α isoform, and recent studies have shown
a neuroprotective effect, especially in the case of gemfibrozil [69,70]. The different neu-
roprotective mechanisms related to PPARα activation are: (a) maintenance of glutamate
homeostasis; (b) regulation in the metabolism of amyloid beta (Aβ) peptide; (c) choliner-
gic/dopaminergic signaling in the CNS; (d) attenuation of behavioral changes and dopamin-
ergic dysfunction; (e) antidepressant activity; and (f) decreased proinflammatory signals
and astrogliosis [66,67,71,72].

Regarding the β/δ isoform, some specific agonists known are L-165041, GW0742, and
KD3010; the last one reported as safe in the Phase 1b Clinical Trial for metabolic disorders
treatment, including obesity [73–75]. Activation of the β/δ PPAR isoform resulted in neu-
ronal protection in various brain pathologies, such as cerebral ischemia, multiple sclerosis,
amyotrophic lateral sclerosis, HD, PD, and AD [74,76–81]. In addition, neuroprotective
effects conferred by PPAR β/δ activation include the regulation of ceramide metabolism,
the reduction of (Aβ) aggregates, anti-inflammatory and antiapoptotic activity, prevention
in mitochondrial dysfunction, decreased neutrophil infiltration, diminished oxidative stress
and synthesis of antioxidant enzymes, ultimately leading to the restoration of cognitive
functions [74,75,77,78,82].

Some ligands also exhibit dual effects, for example, 4-hydroxynonenal (4-HNE)-
mediated PPAR β/δ antagonist/PPAR γ agonist has been verified to counteract the primary
and secondary signs of PD neurodegeneration [83]. In addition, MHY908, a PPAR α/γ dual
agonist, prevents the loss of dopaminergic neurons and motor deficits in a PD model [84].

Finally, the known endogenous agonists are considered to be pan-agonists. Belonging
to these ligands are some fatty acids. However, we also find agonists of similar lipidic na-
ture that are exogenous (consumed by the diet; see Table 1), as in the case of exogenous fatty
acids (oleic acid, eicosapentaenoic acid, and docosahexaenoic acid) that promote PPARγ
receptor expression [85]. Also, synthetic pan agonists (GFT1803 and bezafibrate) have been
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reported to prevent brain glucose hypometabolism and neuronal loss, attenuate microglio-
sis and the development of behavioral features in models of AD and Tau pathology [86,87].

Table 1. Expression of PPARs in the brain and their neuroprotective effects.

Receptor Isoform/Agonist Brain Expression
(TPM *) Neuroprotection Effects Ref.

PPAR-α
Endogenous: Fatty acids such as

palmitic, stearic, palmitoleic, oleic,
linoleic, AA and EPA.

Exogenous: WY-14643, clofibrate,
gemfibrozil, nafenopin, bezafibrate,

and fenofibrate.

Cd (4.799), Sc (4.660), SN (4.562), Acc
(4.402), Acb (4.398), Cx (4.241) Amg (4.204),

Pu (3.801), FroCx (3.677), Hy (3.597), Cb
(3.561), HiF (3.057), CbH (2.399).

Participates in neurotransmission
processes, decreases

neuroinflammation, oxidative stress,
and Aβ aggregation.

[59,88]

PPAR-β/δ
Endogenous: EPA, linoleic acid,

13-S-HODE, and 4-HNE.
Exogenous: WY-14643, GW0742,

GW501516, KD3010, and L-165041.

Cb (46.72), CbH (42.24), Cx (36.76), FroCx
(34.37), HiF(27.25), Sc (26.71), Acc (26.45),

SN (22.51), Hy (21.20), Acb (20.36), Cd
(20.27), Pu (18.38), Amg (2.77). Prevents damage in

neurodegeneration (AD, PD, HD, MS,
and ALS) ischemia, CNS traumatic

injury, and neuroinflammation.

[74,79–81,83,89]PPAR-γ
Endogenous: AA, EPA, and 15

deoxy PGJ12.
Exogenous: Pioglitazone,

Rosiglitazone Ibuprofen, piroxicam,
ciglitazone, and GW1929.

CbH (2.744), Cb (2.425), FroCx (2.175), Acc
(1.835), Cx (1.834), Acb (1.546), Sc (1.473),
HiF (1.344), Amg (1.268), Hy (1.058), Cd

(0.9625), SN (0.8271), Pu (0.7124).

Abbreviations: Acb, nucleus accumbens; Acc, anterior cingulate cortex; AD, Alzheimer’s disease; ALS, Amy-
otrophic lateral sclerosis; Amg, amygdala; AA, arachidonic acid; Cb, cerebellum; Aβ, amyloid beta; CbH,
Cerebellar Hemisphere; Cd, caudate nucleus; CNS, central nervous system; Cx, cortex; EPA, eicosapentaenoic
acid; FroCx, frontal cortex; HD, Huntington’s disease; HiF, hippocampal formation; Hy, hypothalamus; MS,
multiple sclerosis; PD, Parkinson’s disease; PG, pituitary gland; Pu, putamen; Sc, spinal cord (cervical c-1), SN,
substantia nigra; TPM: transcripts per million; 15 deoxy PGJ12, 15 deoxy PGJ2, 15-Deoxy- ∆-12,14-Prostaglandin J2;
13-S-HODE, 13-S-hydroxyoctadecadienoic acid; 4-HNE, 4-hydroxynonenal; * Data Source: GTEx Analysis Release
V8 (dbGaP Accession phs000424.v8.p2).

5. PPARγ in Preclinical Models of Parkinson’s Disease

Several preclinical trials have used PPARγ agonists in different PD animal models,
attempting to demonstrate their positive counter-effects on ROS generation, mitochondrial
dysfunction, neuroinflammation, neurogenesis, and the loss of dopaminergic neurons. It
has been suggested that PPARγ agonists mediate the above processes through the produc-
tion of paraoxonase-2 (PON2), an enzyme highly expressed in dopamine-rich brain regions,
which enhances the function of coenzyme Q in the electron transport chain and, subse-
quently, reduces ROS production [90]. Table 2 summarizes the different neuroprotective
effects of PPARγ agonists in preclinical PD models.

On the other hand, it is important to mention that some of these preclinical models that
were used to evaluate the effects of PPAR agonists, have a disadvantage that they do not
reproduce misfolded α-syn, while the acuity of dopaminergic neuronal death or neuroin-
flammation may also differ from the situations encountered in patients [91]. Therefore, it is
essential to evaluate the proposed neuroprotective effects of PPAR agonists, including the
anti-α-synucleinopathy effect, in a preclinical model capable of progressively reproducing
the PD hallmarks. Interestingly, to this date, there have been no preclinical studies have
been performed to evaluate the therapeutic effects of glitazones in invertebrates, or genetic
models overexpressing α-syn.

Recently, our working group has developed an animal model of PD using a single
intranigral administration of β-sitosterol β-D-glucoside (BSSG), which is a neurotoxin
isolated from the plant Cycas micronesica belonging to the family of β-sitosterols. This animal
model reproduces motor and non-motor alterations, induces the chronic, progressive,
and irreversible death of dopaminergic neurons, neuroinflammation, and aggregation
and propagation of misfolded α-syn [92,93]. Since this model reproduces most of the
pathognomonic features of PD, it can be used to evaluate the neuroprotective and anti-α-
synucleinopathy effects of PPARs agonists.
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Table 2. Preclinical trials with different PPARγ agonists in several animal models of Parkinson’s disease.

Animal Model Dosage and Administration Route Neuroprotector Effect Ref.

MPTP Intranigral
Male Wistar rats.

MPTP + Pioglitazone 10 mg/kg PO
for 5 days before MPTP injection and

30 days thereafter.

Lowering malondialdehyde and increasing
glutathione levels. [94]

Intranigral 6–OHDA
Male Wistar rats.

Pioglitazone 30/mg/kg PO every 24 h
for 5 days.

Decreased microglia activation and
NF-kB expression. [95]

Bilateral intranigral 6-OHDA
Male Wistar rats.

1. Pioglitazone 30 mg/kg PO every 24 h for
5 days before administration of 6-OHDA; 2.
Pioglitazone 30 mg/kg PO every 24 h for

5 days before 6-OHDA.

Reduction of neuronal death and microglial
activation in SN. Increased antidepressant

effects and the neuron’s survival and
neurogenesis in the hippocampus.

[96]

MPTP intranigral
Male mice C57/B16.

Pioglitazone 20 mg/kg/day PO in rodent
food 4 days before MPTP administration.

Increased DA levels in the striatum and
decreased microglial activity and

iNOS expression.
[97]

Bilateral MPTP intranigral
Male Wistar rats.

Pioglitazone 30 mg/kg or PO every 24 h for
5 days before MPTP administration.

Protects against dopaminergic
neurodegeneration. [70]

6-OHDA intranigral
Male Sprague-Dawley rats.

Pioglitazone (20 mg/kg), GW855266X
(Partial PPARγ agonist; 15 mg/kg), were
administrated 7 days before and 7 days

after 6 OHDA.

Pioglitazone protected against dopaminergic
neuron loss in the SN, striatal dopamine

depletion, and microglia activation.
[98]

Subcutaneous rotenone
Male Wistar rats.

Pioglitazone 10 mg/kg IP at the end of
rotenone administration + retinoic acid

1 mg/kg IP for 15 days.

Both agonists reversed the locomotor
alteration. Pioglitazone increased the level

of striatal dopamine.
[99]

MPTP/probenecid (MPTPp)
C57BL/6J mice.

Rosiglitazone 10 mg/kg was given daily
until sacrifice, starting on the fourth week of

MPTPp treatment.

Rosiglitazone reverted microglial activation,
TNF-α expression, and the nigrostriatal

degenerative process.
[64]

6-OHDA
Male Sprague-Dawley rats.

Rosiglitazone 3 mg/kg IP at 24 h and 30 min
before lesion.

Prevented dopaminergic neuron loss and
microglial activation in the striatum. [100]

MPTP IP
(3–5 doses every 24 h)
Male C57B1/6J mice.

Rosiglitazone 10 mg/kg IP administered
daily, 1 h before MPTP and until death

(5 weeks of treatment).

Prevented dopaminergic neuron loss in the
SN, and dopamine loss in caudate-putamen
(partially). Inhibited microglia reactivity in

SN and caudate-putamen, and partially
astroglial response.

[101]

Rotenone, streptozocin, and
a high-calorie diet.
Male Wistar rats.

Lobeglitazone 0.1, 0.2, or 1.0 mg/kg IP one
hour before rotenone injections for 46 days.

Prevented decrease of TH and the increase of
TNF-α and NF-κB levels in SN and striatum. [102]

Abbreviations: 6-OHDA, 6- Hydroxydopamine; DA, dopamine; iNOS, inducible nitric oxide synthase; IP, intraperi-
toneal; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NF-kB, nuclear factor kappa-light-chain-enhancer
of activated B cells; PO, per os; PON2, Paraoxonase-2; PPAR, peroxisome proliferator-activated receptors; SN,
substantia nigra; TH, tyrosine hydroxylase; TNF-α, tumoral necrosis factor-α.

6. Clinical Trials in Parkinson’s Disease Using PPARγ Agonists

We searched the ClinicalTrials.gov website and found only one randomized, mul-
ticenter, double-blind, placebo-controlled, futility clinical trial organized by the Clinical
Trials Coordination Center (CTCC) at the University of Rochester, NY, USA, which tested
the use of pioglitazone in early PD [73]. In this study, participants were assigned to three
different groups: (1) 15 mg/day pioglitazone; (2) 45 mg/day pioglitazone; and (3) placebo
for 44 weeks. They evaluated changes in different PD progression scales (Unified Parkinson
Disease Rating Scale), showing no significant improvement over the use of pioglitazone
as a disease-modifying drug for PD [103]. However, there were some limitations in this
study. First, the use of pioglitazone together with rasagiline might have biased the results.
Second, the therapeutic effect of this PPARγ agonist was only evaluated for a short period
(44 weeks), and therefore, in relation to the results obtained, more time could be neces-
sary to show significant effects, considering the potentially long prodromal PD period [8].
Third, the study did not use serological or cerebrospinal fluid biomarkers or imaging tests
to assess the neuroprotective effects of pioglitazone. Fourth, another limitation of the
study was that not all patients tolerated the drug doses; therefore, in general, the 44 weeks
were concluded with different doses, depending on the tolerability of each patient. Finally,
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the odor identification test could not be performed as initially planned. In this context,
from this single study, it is not possible to conclude the absence of beneficial effects of
pioglitazone in PD.

Future clinical trials with PPARγ agonists, in the early stages of PD, are required to
analyze their effect on clinical scales (both motor and non-motor manifestations), cabinet
tests, as well as biomarkers that reflect neuroinflammation, oxidative stress, neurodegener-
ation, and the α-synucleinopathy. Therefore, the analysis of their efficacy in an animal PD
model capable of reproducing most of the hallmarks of the human disease will be useful to
determine the timing and neuroprotective mechanisms of glitazones.

7. Possible Anti-α-Synucleinopathy Role of Glitazones

Evidence that PPARγ agonists have a neuroprotective effect in several animal PD
models was presented above. However, despite being the central components in the
neuropathology of PD, we were unable to identify any studies evaluating the impact of
these agonists, on α-syn misfolding and Lewy body formation. This omission may be
due to the limited availability of PD models representing the disease progression in terms
of α-syn proteostasis loss. Nevertheless, the neuroprotective effect of glitazones could
have a mechanistic basis directly related to decreasing, or preventing, α-syn aggregates
(Figure 2A). To support this hypothesis, it is necessary to recapitulate the main neuropatho-
logical processes leading to the misfolding and aggregation of α-syn.

First, we considered the role of oxidative stress in α-syn misfolding and aggregation
(Figure 2B). The high metabolic rate of dopaminergic neurons involves a large number of
oxidative phosphorylation processes and the generation of ROS in mitochondria [104,105],
which are capable of oxidizing proteins and destabilizing their tertiary conformation [106].
Indeed, the deficient activity of complex I of the respiratory chain is considered the main
source of ROS in PD [107]. As such, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
a complex I inhibitor, shows preferential cytotoxicity on dopaminergic neurons [108]. There-
fore, the neuroprotection of the PPARγ agonist pioglitazone, by inhibiting the conversion
of MPTP to the toxic metabolite 1-methyl-4-phenylpyridinium (MPP+), via inhibition of
monoamine oxidase-B [109], could be useful to prevent or even reduce its effect on ROS for-
mation in the mitochondria. In addition, pioglitazone has been associated with an increase
in mitochondrial DNA content, expression of factors related to mitochondrial biogene-
sis, and transcriptional regulation of mitochondrial membrane transporters related to the
control of energy metabolism in mitochondria [110,111]. Similarly, rosiglitazone has been
shown to protect human neuroblastoma cells against acetaldehyde, another inhibitor of
mitochondrial function, through the expression of antioxidant enzymes and upregulation
of B-cell lymphoma protein 2 (Bcl-2) and Bcl-2 Associated X-protein (BAX) expression [112].
Collectively, the administration of PPARγ agonists could improve α-syn proteostasis and
mitochondrial dysfunction by decreasing ROS production in PD. Also, it is important to
mention that it is still unknown whether oxidative damage in PD results from excessive
production or deficient clearance of oxidative agents [113–115]. In this regard, Yakunin et al.
(2014) observed that aggregation of α-syn can directly affect the transcription of PPARγ [50],
which regulates catalase transcription responsible for ROS scavenging. Consistent with
this notion, nuclear α-syn binds to the PGC-1α promoter leading to the proposal that α-syn
inhibits catalase activity through its effect on PGC-1α activity [116]. Thus, an external
activation of this PPAR isoform by specific agonists could enhance α-syn-affected cata-
lase activity and protect neurons from oxidative stress hindering, and in turn, the α-syn
misfolding itself [116].
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Figure 2. Proposed mechanisms of PPARs agonist α-synucleinopathy. (A) Glitazones as activators of
PPARs may inhibit α-syn misfolding and aggregation in terms of reduction of (B) oxidative stress,
(C) control of neuroinflammation, and (D) regulation of the protein degradation systems. Abbre-
viations: α- syn, α synuclein; COX-2, cyclooxygenase 2; FOXO1, Forkhead box protein O1; iNOS,
inducible nitric oxide synthase; MAO-B, monoamine oxidase-B; MPP+, 1-methyl-4-phenylpyridinium;
MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mtDNA, mitochondrial DNA; NF-kB, nuclear
factor kappa-light-chain-enhancer of activated B cells; PPAR, peroxisome proliferator-activated recep-
tors; PGC1, peroxisome proliferator-activated receptor gamma-1 α coactivator; ROS, reactive oxygen
species; TFEB, transcription factor EB; XBP1, X-box-binding protein 1. The figure was created with
BioRender.com (accessed on 3 October 2022).

On the other hand, chronic neuroinflammatory responses and neuronal apoptosis play
a significant role in the pathogenesis of PD, as evidenced by increased nuclear translocation,
altered expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB),
p53 protein, and caspases in the SNpc [117]. Similarly, α-syn aggregation causes microglial
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activation leading to persistent and progressive nigral neurodegeneration in PD [118,119],
primarily derived from an amplification of mitochondrial dysfunction, contributing to
oxidative stress and the vicious cycle of α-syn aggregation [120]. In this line of argument,
the three PPAR isoforms have been identified to regulate the transcriptional activity of
several transcriptional factors (in addition to the aforementioned NF-κB) involved in the
inflammatory response via modulation of inducible nitric oxide synthase (iNOS) and
cyclooxygenase 2 (COX-2) [121]. Specifically, Li et al. (2020) identified a physiological
response of microglia regulation toward an anti-inflammatory phenotype via PPARγ
activation [122]. Thus, activation of PPARγ by specific agonists could result in a decrease of
the chronic inflammatory response, leading to oxidative phenomena responsible for α-syn
aggregation and cell death of dopaminergic neurons (Figure 2C).

Finally, another important factor in the pathophysiology of PD is the impairment of
the systems responsible for the degradation of misfolded and aggregated α-syn, such as
the ubiquitin-proteasome system [123] and the autophagy-lysosomal pathway [124,125].
Potentiation of the intracellular α-syn aggregate degradation systems could be a potential
strategy against α-synucleinopathies. In this regard, it has been identified that PPARs
stimulate the transcription of diverse transcription factors involved in lysosomal biogenesis
and autophagy (Figure 2D), such as the transcription factor EB (TFEB), X-box-binding
protein 1 (XBP1), and Forkhead box protein O1 (FOXO1) [126,127].

8. Effects of PPARs Agonists on Other Neurodegenerative Disorders

Nowadays, PPAR agonists are considered effective in various neurodegenerative
diseases such as PD, AD, and HD. Interestingly, AD and PD share several pathologi-
cal features, including increased incidence with age, chronic and progressive neuronal
death, neuroinflammation, mitochondrial dysfunction from elevated ROS production, and
protein misfolding [128–130]. However, specifically in AD brains, two pathognomonic
features are observed mainly in the hippocampus [131,132]: (1) extracellular deposits of
amyloid beta peptide (Aβ); and (2) intracellular aggregates of pathological tau protein.
Recently, it has been postulated that endogenous “damage signals” such as Aβ oligomers
or ROS, could cause microglial activation followed by the release of proinflammatory
cytokines that trigger Tau hyperphosphorylation and aggregation, and when neurons
die, Tau is released and causes microglial activation, generating a vicious circle that leads
to neurodegeneration [133]. Unfortunately, most of the current therapeutic approaches
have not been successful, since they focus on isolated, partial mechanisms of the overall
pathology [134,135]. Therefore, the treatment of neurodegenerative diseases should be
considered in light of the multiconvergent theory [136,137] in the face of various neu-
ropathological events such as neuroinflammation, oxidative stress, and protein misfolding.
In this context, PPAR analogs would be useful for the treatment of these neurodegenerative
disorders [138–142]. For example, PPARγ agonists have been reported to modulate the
expression of various AD-related genes, such as Bcl-2, which is involved in hippocampal
neurodegeneration [143], and they have also been shown to reduce Aβ peptide levels both
by increasing its clearance and by modifying the activity of secretases that are involved in
its metabolism [144,145]. Likewise, it has been suggested that PPARs play a key role in the
regulation of oxidative stress and neuroinflammation [140].

On the other hand, HD is a neurodegenerative disorder that affects movement and
similar neuroanatomical structures as in PD. However, HD is characterized by the presence
of involuntary choreatic movements, neuropsychiatric symptoms, and cognitive impair-
ment [146,147]. It originates from a mutation in the huntingtin gene (HTT), which specifi-
cally causes aggregation of the huntingtin protein in the cortex and caudate/putamen [138].
Mitochondrial dysfunction is also related to the development of HD pathogenesis, and
PPAR alteration plays an important role [76,148]. It has been found that overexpression
of PGC-1α improves the motor phenotype, decreases neurodegeneration and the accumu-
lation of the mutant huntingtin protein, by attenuating oxidative stress [149]. Likewise,
activation of PPARδ and PPARγ by their agonists, KD3010 and rosiglitazone, respectively,
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increases survival, normalizes endoplasmic reticulum stress, reduces huntingtin aggregates,
and improves mitochondrial function [76,150]. Therefore, these findings support the use of
PPARs as a therapeutic strategy in neurodegenerative diseases.

Finally, a close association between neurodegenerative diseases and diabetes mellitus
(DM) has been described [151,152]. DM constitutes a great global health challenge for
around 460 million people worldwide [153]. According to preclinical assays, possible neu-
ropathological mechanisms involved in these pathologies have been postulated [154,155]:
(i) cerebrovascular disease; (ii) misfolding of proteins; (iii) chronic insulin resistance, which
is associated with PGC-1α downregulation, mitochondrial complex I dysfunction, neu-
roinflammation, and impaired autophagy; (iv) amylin neuropathology. Amylin, a highly
amyloidogenic pancreatic peptide, is increased in DM patients, can cross the BBB and
accelerate α-syn [156] aggregation, Tau [157] phosphorylation, and Aβ [158] aggregates.
Although DM patients treated with PPAR agonists have a lower risk of developing neurode-
generative disorders [159,160], evidence correlating PPAR dysfunction is lacking. Therefore,
future preclinical and clinical trials are needed to evaluate the downregulation of PPARs in
DM patients and their association with neurodegeneration.

9. Conclusions

Since there is currently no PD-modifying drug, treatment with PPAR agonists promises
to establish more successful therapeutic strategies. PPAR agonists, in particular those acti-
vating the gamma isoform, have the property of being multiconvergent, acting through
different targets, and providing multiple therapeutic effects: attenuation of the neuroin-
flammatory process, regulation of oxidative stress, promoting the synthesis of antioxidant
mediators, and stabilizing mitochondrial function. In the present review, we hypothe-
sized that these neuroprotective effects could converge in reducing, or preventing, the
misfolding of α-syn and other proteins involved in other neurodegenerative disorders,
and consequently promote clinical improvement. However, there is very limited scientific
evidence on the use of PPARs agonists in PD, so more research is required using in vivo
models that reflect the disease progression, especially elucidating the PPARs mechanisms
on aggregation and misfolding of α-syn.
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