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The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet over-
lapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcrip-
tional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while 
their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcrip-
tional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome. 
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Introduction

The prevalence of obesity has increased at an alarming 
rate in the last several decades worldwide. Along with 
it comes the associated metabolic syndrome, including 
insulin resistance, glucose intolerance, type 2 diabetes, 
dyslipidemia (increased serum triglycerides, decreased 
high-density lipoproteins (HDLs), and increased low-
density lipoproteins (LDLs)), hypertension, nonalcoholic 
fatty liver, and cardiovascular disease [1]. At the center 
of this medical cluster is insulin resistance, which is of-
ten caused by obesity. Insulin resistance not only is an 
early, fundamental defect in type 2 diabetes [2], but also 
is the defining feature of metabolic syndrome [1]. Insulin 
resistance is manifested by hyperinsulinemia, decreased 
insulin-stimulated glucose uptake into skeletal muscle, 
and the impaired ability of insulin to inhibit gluconeo-
genesis in liver and lipolysis in adipose tissue. Type 2 
diabetes occurs when the pancreatic β cells are unable 
to secrete enough insulin to compensate for insulin re-
sistance. Although most insulin-resistant individuals are 
able to maintain relatively normal glucose levels through 
hyperinsulinemia during their lifetime, insulin resistance 
puts these individuals at great risk for the development 

of a variety of abnormalities associated with metabolic 
syndrome [1]. Thus, obesity and insulin resistance play a 
central role in metabolic syndrome. 

In order to better understand the functions of the 
nuclear receptor PPARs in energy metabolism and meta-
bolic syndrome, it is useful to first summarize the poten-
tial mechanisms that could explain the pathogenesis of 
insulin resistance. Currently two theories are widely ac-
cepted. The first one hypothesizes that insulin resistance 
is tightly linked to disordered fatty acid metabolism and 
that insulin resistance results from the deleterious ef-
fects of lipid overload in the skeletal muscle and liver 
[3]. Fatty acids are preferably stored as triglycerides in 
the adipose tissue. However, a dysregulation of fatty acid 
metabolism can lead to abnormal triglyceride accumula-
tion in skeletal muscle and/or liver that in most cases 
associates with insulin resistance. This close association 
between insulin resistance and no-adipose lipid accumu-
lation has been found not only in many animal genetic 
models, but also in human populations that include obese 
subjects, lipodystrophic patients, the lean offspring of 
type 2 diabetes, and the elderly [3]. Interestingly, it is the 
increased intermediate metabolites of triglycerides, not 
triglycerides per se, that may be responsible for insulin 
resistance [3]. One such metabolite is diacylglycerol. It is 
thought that diacylglycerol activates members of protein 
kinase PKC, which leads to serine phosphorylation of in-
sulin receptor substrate-1 (IRS-1) and IRS-2 in the skel-
etal muscle and liver, respectively, thereby interfering 
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with insulin action [3]. The second theory links obesity-
associated insulin resistance to inflammation. Obesity is 
considered as a chronic, low-grade inflammatory state. 
Liver and, in particular, adipose tissue are the sites for 
this inflammatory response. Obesity leads to an increased 
production of proinflammatory cytokines by adipose 
tissue, liver, and their recruited macrophages. These cy-
tokines in turn inhibit insulin signaling both locally and 
systematically [4, 5]. These two potential mechanisms 
are not necessarily mutually exclusive. Their relative 
importance for insulin resistance may depend on the 
pathophysiological states and affected tissues. Interest-
ingly, PPARs appear to be at the crossroads of lipid me-
tabolism and inflammation, regulating both processes [6].

The PPAR subfamily of nuclear receptors, consist-
ing of three members, PPARα, PPARγ and PPARδ (also 
known as PPARβ), are ligand-activated transcription fac-
tors [6, 7]. They form obligate heterodimers with retinoid 
X receptors and bind to specific DNA sites composed of 
a direct repeat of hexameric sequences separated by one 
base pair, located in the promoter/enhancer region of tar-
get genes. Ligand binding triggers a conformation shift 
that results in release of co-repressors, recruitment of co-
activators, and subsequent target gene expression. As 
nuclear receptors, the PPARs have a typical domain orga-
nization, containing an amino-terminal domain, a central 
zinc-finger DNA-binding domain (DBD), a carboxyl-
terminal ligand-binding domain (LBD) that harbors the 
ligand-dependent activation function, and a small hinge 
region that links DBD and LBD. The DBD and LBD are 
highly conserved among the three PPARs. Different from 
other nuclear receptors, the ligand-binding pocket of the 
PPARs is unusually large and can accommodate a variety 
of endogenous lipids, including fatty acids, eicosanoids, 
oxidized and nitrated fatty acids, and derivatives of li-
noleic acid [6]. However, these lipids need to be present 
at high concentrations (micromolar range) to activate 
PPARs, and are often not highly selective for individual 
isoforms. Moreover, it has not been shown that any of 
these lipids is required for PPAR activation. Thus, wheth-
er any of them represents physiological ligand remains 
to be established. Nevertheless, it is clear that the activi-
ties and/or expression levels of PPARs are subjected to 
modulation by diets, nutrient status, and metabolic states. 
Through their distinct yet overlapping functions and tis-
sue distribution, the three PPARs act as fatty acid sensors 
to control many metabolic programs that are essential for 
systematic energy homeostasis. Not surprisingly, they 
have important implications for human metabolic dis-
eases, as evidenced by the fact that PPARγ and PPARα 
are respective molecular targets for the type 2 diabetes 
drug thiazolidinediones (TZDs) and dyslipidemia drug 

fibrates. Here I review our current understanding of these 
receptors in lipid metabolism and associated metabolic 
syndrome. For the roles of these receptors in inflammato-
ry response that also play a part in metabolic syndrome, 
readers are referred to recent publications [6, 8, 9]. 

PPARγ is a master regulator of adipogenesis
Adipose tissue is essential for whole body energy ho-

meostasis [10, 11]. It has two functionally distinct types, 
white fat (WAT) and brown fat (BAT). WAT serves as a 
safe place that stores excess energy to avoid lipid build-
up in other tissues, and releases the energy when other 
tissues are in need. It also has an endocrinal function, 
producing many secreted factors called adipokines that 
signal whole body metabolism [10, 11]. A large body 
of work has clearly established that, through its induc-
tion of many genes important for fatty acid uptake and 
storage, PPARγ is both sufficient and necessary for the 
differentiation of white fat adipocytes [12, 13]. PPARγ is 
predominantly expressed in the adipose tissue compared 
to other tissues and is induced during adipocyte differen-
tiation [14]. Ectopic expression of PPARγ in nonadipo-
genic cells effectively converts them into adipocytes [15], 
whereas knockout of PPARγ in embryonic fibroblasts 
abolishes their differentiation into adipocytes [16]. Stud-
ies with germline deletion of PPARγ as well as studies 
with PPARγ hypomorphic mice have demonstrated an 
essential requirement for this gene in the formation of 
adipose tissue in vivo; that is, animals cannot generate 
adipocytes in the absence of PPARγ [17-19]. Moreover, 
mice with PPARγ deleted in differentiated adipocytes 
develop progressive lipodystrophy, revealing that PPARγ 
is also important for the survival of differentiated adipo-
cytes [20-22]. Finally, heterozygous, dominant-negative 
PPARγ mutations cause lipodystrophy in humans [23].

PPARγ-controlled differentiation of white fat adipo-
cytes involves a transcriptional cascade that includes 
members of C/EBP transcription factors [12, 13] (Figure 
1A). In vivo studies suggest that C/EBPβ, δ and α are 
critical for adipogenesis [24, 25]. How do the C/EBPs 
regulate adipogenesis? Largely based on in vitro differ-
entiation data, the current prevalent view is that the three 
C/EBPs work in concert to induce and maintain PPARγ 
expression [12, 13]. In addition, C/EBPα appears to be 
required for the insulin-sensitive properties of adipocytes 
[26, 27]. Recently, it was observed that C/EBPα co-occu-
pies many of the PPARγ-target gene promoters [28], rais-
ing the possibility that C/EBPα may also directly regulate 
adipogenesis in a cooperative manner with PPARγ. PTIP 
is a transcriptional co-factor that regulates the expression 
of C/EBPα and PPARγ through histone methylation of 
their promoters [29]. The observation that rescue of the 
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adipogenic defect in PTIP-deficient cells requires both 
PPARγ and C/EBPα is in agreement with this possibil-
ity [29]. In vitro studies have identified additional tran-
scriptional regulators in adipogenesis, including Med23, 
ELK1, and Krox20, which act upstream of C/EBPβ [30, 
31], and KLF5 and XBP1, which act downstream of C/
EBPβ [32, 33] (Figure 1A); however, the in vivo require-
ments for these factors in adipose tissue formation are 
unclear.

As mentioned above, there are two types of adipose 
tissue. In contrast to the energy storage function of WAT, 
BAT is specialized for energy expenditure by dissipating 
energy as heat [34, 35]. The unique metabolic property 
of BAT is due to its high mitochondrial density and fuel 
oxidation capacity, and exclusive expression of the BAT 
hallmarker, uncoupling protein-1 (UCP1), in the inner 
mitochondrial membrane. UCP1 is a proton transporter 
that disrupts the mitochondrial electrochemical gradient 
by causing protons to leak across the inner mitochon-
drial membrane. Thus, UCP1 uncouples mitochondrial 
respiration from ATP production, leading to energy loss 
in the form of heat. BAT is located in the interscapular 
region in small mammals. In rodents, it is clear that BAT 
plays an important part in protection against obesity and 
obesity-associated metabolic problems. Previously, it 
was thought that BAT is only present in human neonates 
and is replaced by WAT in adults. However, recent work 
has collectively demonstrated that humans do possess 
functional brown fat depots and that the activity of BAT 
is inversely associated with obesity [36-38], suggesting 
that BAT could be important for human physiology and 

metabolic diseases.
There is a great interest in understanding the develop-

ment of brown fat. Surprisingly, lineage studies show that 
BAT and WAT do not share the same precursor cells in 
early development; instead, BAT originates from Myf5-
positive precursor cells that also give rise to skeletal 
muscle cells [39]. As in WAT, PPARγ is highly expressed 
in BAT and is required for BAT formation [18]. How-
ever, PPARγ alone generates a fat phenotype that is com-
mon to both WAT and BAT. The questions are what con-
trols PPARγ expression in the BAT and what determines 
BAT-specific programs such as UCP1 expression and 
mitochondrial biogenesis. Spiegelman and co-workers 
discovered that C/EBPβ and transcriptional co-activators 
PRDM16, PGC-1α and PGC-1β are critical [39-43]. All 
these factors are selectively expressed in BAT compared 
to WAT. During brown fat cell differentiation, PRDM16 
forms a complex with C/EBPβ and co-activates C/EBPβ 
transcriptional activity [42]. This PRDM16/C/EBPβ 
complex not only induces PPARγ expression, but also 
induces PGC-1α expression, which is further activated 
by PRDM16 and is responsible for the BAT-specific 
program [39, 40, 42] (Figure 1B). Indeed, expression of 
either PGC-1α or PRDM16 in white fat preadipocytes 
stimulates the expression of BAT-specific genes during 
differentiation [40, 41], while brown fat preadipocytes 
deficient for PRDM16 or PGC-1α and PGC-1β lose dif-
ferentiation-associated BAT-specific gene expression [40, 
43]. Moreover, co-expression of C/EBPβ and PRDM16 
is sufficient to convert skin fibroblasts into functional 
brown fat adipocytes [42]. These pioneering studies 

Figure 1 Regulation of white fat (A) and brown fat (B) adipogenesis by transcriptional cascades. Black arrows indicate in-
creases of gene expression.
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have significantly advanced our understanding of brown 
fat adipogenesis. While the physiological requirement 
for C/EBPβ in brown fat development is clear [42], can 
forced expression of C/EBPα or δ functionally substi-
tute for C/EBPβ? In addition to C/EBPβ, are there other 
transcription factors mediating the induction of PGC-1α 
by PRDM16 during adipogenesis? As PPARγ can be co-
activated by PRDM16 and PGC-1, does PPARγ directly 
regulate the expression of some brown fat-specific genes 
through these co-activators? Interestingly, it was shown 
that PPARγ is not required for UCP1 expression [40]. Fi-
nally, other factors, including Rb and p107 [44], RIP140 
[45, 46], and BMP7 [47], have been identified as brown 
fat differentiation regulators. Their relationships with the 
molecular pathway described above remain to be deter-
mined.

PPARγ and TZD in insulin resistance and the mechanism 
of action

Members of TZD class drugs are widely used in the 
treatment of type 2 diabetes. In both animal models 
and human subjects with type 2 diabetes, TZDs lower 
glucose levels as well as insulin levels. Glucose clamp 
experiments demonstrate that TZDs increase skeletal 
muscle glucose disposal and, to a lesser extent, inhibit 
hepatic gluconeogenesis. Thus, TZDs work as insulin 
sensitizers by improving insulin action in the skeletal 
muscle and liver [48]. However, clinical use of TZDs is 
associated with side effects, including weight gain, fluid 
retention, edema, and heart failure [49]. How to separate 
the side effects from its efficacy is an important task in 
the future.

TZD drugs and PPARγ were independently discov-
ered. The initial link between them was provided by find-
ings that TZDs are in fact agonists for PPARγ [50, 51]. It 
is now clear that activation of PPARγ by TZDs is respon-
sible for their beneficial effects on insulin sensitivity. 
How does activation of PPARγ, a protein that is mainly 
present in adipose tissue, lead to insulin sensitization in 
skeletal muscle and liver? Activation of PPARγ in the 
adipose tissue induces expression of an array of genes 
for fatty acid transport and storage, as well as promotes 
de novo adipogenesis. One plausible mechanism is that 
the increased ability to uptake lipids and the expanded 
capacity to store them allow lipid repartitioning from the 
skeletal muscle and liver to the adipose tissue, thus elimi-
nating the deleterious effects of lipid on insulin signaling 
[10, 23]. Interestingly, the expansion of adiposity caused 
by TZDs in humans occurs in the subcutaneous adipose 
tissue, not in the visceral depots [23]. Triglycerides 
stored in the subcutaneous fat are less lipolytic and have 
less access to portal circulation and the liver [23]. In ad-

dition, PPARγ activation in adipose tissue regulates the 
production of adiponectin, resistin, and tumor necrosis 
factor-α (TNF-α). These secreted adipokines can impact 
insulin sensitivity in skeletal muscle and liver [10, 23]. 
Taken together, adipose tissue is considered as the pri-
mary target of TZD action. In obese, diabetic mice with 
liver-specific PPARγ deletion, TZDs remain effective in 
lowering glucose levels, indicating that liver PPARγ is 
not a target [52]. Since skeletal muscle accounts for 80% 
of the insulin-stimulated glucose disposal in humans, 
skeletal muscle-specific PPARγ knockout mice were used 
to address whether this tissue is also targeted by TZDs. 
Two studies have come to different conclusions [53, 54]; 
the reason for this discrepancy is currently unclear.

Pathological roles of PPARγ in non-adipose tissues
In contrast to adipose tissue, liver and heart express 

very little PPARγ. However, under certain pathologi-
cal conditions, these tissues can express considerable 
amounts of PPARγ that have significant impacts on meta-
bolic homeostasis and tissue function.

Hepatic PPARγ expression is markedly increased in 
several obese or diabetic mouse models that are associ-
ated with liver steatosis [23]. Studies suggest the hepatic 
PPARγ has a similar lipid deposition function as in adi-
pose tissue. Ectopic adenoviral expression of PPARγ in 
the liver of lean mice causes liver steatosis [55]. In the 
obese (ob/ob) mice, when PPARγ is specifically deleted 
in the liver, hepatic triglyceride level is normalized and 
fatty liver phenotype is ameliorated, accompanied by 
increased plasma fasting triglyceride and free fatty acid 
levels [52]. TZD treatment further exacerbates the devel-
opment of fatty liver in ob/ob mice, but not in ob/ob mice 
with hepatic PPARγ deletion [52]. These results suggest 
that the elevated expression of hepatic PPARγ may be 
responsible for liver steatosis in these mouse models. In 
contrast, small clinical studies show that TZD treatment 
reduces hepatic lipid level in humans with nonalcoholic 
fatty liver [56, 57], indicating that PPARγ function in the 
adipose tissue continues to be dominant. However, the 
hepatic levels of PPARγ in these human subjects are not 
known.

In the heart, fatty acid uptake and oxidation are tightly 
coordinated. Upregulation of PPARγ causes metabolic 
perturbations that link to cardiomyopathies, diseases that 
can ultimately lead to heart failure. In ventricular samples 
of humans and mice with hypertrophic cardiomyopathy, 
levels of hypoxia-inducible factor α (HIFα) and PPARγ 
are increased [58]. Mouse studies suggest that under hy-
pertrophic stress, HIFα induces heart PPARγ expression. 
The concerted actions of HIFα and PPARγ then lead to 
cardiac lipid accumulation, apoptosis, and heart dysfunc-
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tion [58]. Another study reported that human patients 
with metabolic syndrome and aortic stenosis express 
high levels of PPARγ in the heart, which is strongly cor-
related with cardiac lipid accumulation and poor cardiac 
function [59]. To directly examine the consequence of 
increased PPARγ, Goldberg and co-works overexpressed 
PPARγ in the heart and found that these transgenic mice 
develop steatosis and dilated cardiomyopathy. Treat-
ment of the transgenic mice with the TZD drug further 
worsens these phenotypes [60]. These studies together 
suggest that heart PPARγ, when its level is high under 
certain pathological conditions, may cause lipid overload 
that contributes to common forms of cardiomyopathy. 
One side effect of the TZD drugs in treatment of human 
diabetic patients is heart failure. While this could be due 
to fluid retention [49], the involvement of heart PPARγ 
in subsets of patients should be considered as well.

PPARα regulates hepatic lipid catabolism and fasting re-
sponse

PPARα is expressed in many metabolically active tis-
sues, but is high in the liver [61]. The effects of PPARα 
agonist in vivo are mainly manifested in the liver [62]. 
The PPARα null mice display a fatty liver phenotype 
resulted from a decreased expression of fatty acid oxida-
tion genes [63-67]. Indeed, the major function of PPARα 
is to promote fatty acid utilization. PPARα upregulates 
many genes involved in important steps of this process; 
these include genes for hepatic clearance of very low-
density lipoprotein, fatty acid uptake, fatty acid activa-
tion and transport into the mitochondria, peroxisomal 
and mitochondrial β-oxidation, and some enzymes for 
mitochondrial respiration [68-70]. The fibrate drugs used 

for the treatment of dyslipidemia are agonists of PPARα. 
Through activation of lipid catabolism, fibrates consis-
tently lower plasma triglycerides in patients. Fibrates 
also raise plasma HDL through induction of apolipopro-
tein apoA-I and apoA-II in humans [68, 69]. In addition, 
PPARα upregulates genes for fatty acid and triglyceride 
synthesis in the liver [70]; the functional importance of 
this regulation is unknown.

Ketogenesis in the liver is critical to the adaptive 
response to fasting. During fasting, fatty acids are mo-
bilized in the adipose tissue and uptaken into the liver, 
where they are oxidized in the mitochondria to produce 
ketone bodies that provide the large energy source for 
other tissues. PPARα is induced by fasting and is re-
quired for ketogenesis [66]. While the phenotype of the 
PPARα null mice at fed state is mild (fatty liver), fasting 
causes a very severe phenotype. This includes massive, 
exacerbated fatty liver, hypoketonemia, hypoglycemia, 
hypothermia, increased plasma free fatty acids, and loss 
of induction of fatty acid oxidation genes by fasting, sug-
gesting that ketogenesis is significantly impaired [66, 
67]. Surprisingly, the hormonal peptide fibroblast growth 
factor 21 (FGF21) appears to be a key component down-
stream of PPARα. FGF21 is robustly induced during fast-
ing in a large part in a PPARα-dependent manner [71-73]. 
Introduction of FGF21 into PPARα null mice partially 
rescues hypoketonemia and fatty liver [73]. On the other 
hand, knockdown of FGF21 in the liver causes fatty liver, 
increased plasma free fatty acids and decreased ketone 
bodies, when mice are fed a ketogenic diet [71]. It was 
shown that FGF21 regulates the expression of lipases im-
portant for fatty acid release in the adipose tissue and the 
expression of a subset of PPARα target genes important 

Figure 2 An integrated model of PPARα-regulated ketogenesis. Fasting induces the expression of PPARα and PGC-1α. Acti-
vation of PPARα requires de novo synthesis of a PPARα ligand (16:0/18:1 GPC). Together, they induce the expression of fatty 
acid oxidation genes and FGF21. FGF21 in turn promotes lipolysis in the adipose tissue. The released free fatty acids (FFAs) 
are used as substrates for ketogenesis.
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for fatty acid oxidation in the liver [71, 73] (Figure 2).
The PPARα-regulated ketogenesis probably requires 

PGC-1α co-activation. As a co-activator, PGC-1α is able 
to interact with and co-activate many transcription fac-
tors in vitro, including PPARs. Besides being a central 
regulator in brown fat metabolism as discussed earlier, 
PGC-1α also plays important roles in energy metabolism 
in the liver, skeletal muscle and heart [74]. During peri-
ods of fasting, hepatic PGC-1α is induced, which in turn 
regulates fatty acid catabolism and gluconeogenesis [75]. 
PGC-1α null mice exhibit fasting-induced fatty liver [76]. 
A direct role of PGC-1α in fasting response was recently 
demonstrated by a study with liver-specific PGC-1α 
knockout mice [77]. In this study, to mimic the physi-
ological and pathological fluctuations of hepatic PGC-
1α level, one allele of PGC-1α was deleted from the liver 
by Cre/Lox system; another allele remained intact. These 
PGC-1α liver heterozygous mice develop fasting-in-
duced fatty liver, impaired ketogenesis, and have reduced 
expression of hepatic fatty acid oxidation genes, a phe-
notype that remarkably overlaps with PPARα null mice, 
indicating that PGC-1α-mediated activation of PPARα 
is likely to be a major mechanism for hepatic fatty acid 
catabolism (Figure 2). Transcriptional co-factors Lipin1, 
Sirt1 and BAF60α were shown to be involved as well 
[78-80].

A physiologically relevant endogenous PPARα ligand in 
the liver

Many endogenous lipid species have been considered 
as ligands for PPARs. However, they usually require 
presence in micromolar concentration range for PPAR 
activation, and most importantly, until recently, it has not 
been shown that lack of any of these lipids would affect 
the function of PPARs. The recent work by Chakravar-
thy et al. [81] identified the phospholipid 1-palmitoyl-2-
oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1 GPC) 
as a physiologically relevant PPARα ligand in liver. 
The initial hint of the existence of a physiological li-
gand for PPARα came from their previous study on the 
liver-specific fatty acid synthase (FAS) knockout mice 
(FASKOL) [82]. When these animals were subjected to 
fasting or placed on a diet that contained no fat (zero-fat 
diet), they developed a phenotype very similar to PPARα 
null mice, although the level of PPARα was not affected. 
Moreover, the phenotype was corrected when these mice 
were administered with a PPARα agonist. These results 
are consistent with the idea that FAS is required for the 
hepatic production of a PPARα ligand that can otherwise 
be derived from fat in normal diets, but not from fat 
released from peripheral tissues [82]. To identify this li-
gand, the authors immunoprecipitated PPARα from liver 

and analyzed PPARα-associated lipids. The phospholipid 
16:0/18:1 GPC was found to be associated with PPARα 
in the sample from wild-type mice, but not in that from 
FASKOL mice. This phospholipid potently binds to 
PPARα, weakly to PPARδ, and has no interaction with 
PPARγ in vitro. Knockdown of CEPT1, a gene required 
for the synthesis of 16:0/18:1 GPC, downregulates ex-
pression of some PPARα target genes in hepatic cells. 
Infusion of this lipid into mice reduces the liver triglycer-
ide content in a PPARα-dependent manner. These results 
suggest that 16:0/18:1 GPC is an endogenous PPARα 
ligand that is indispensable for hepatic PPARα activation 
and function during fasting (Figure 2). It remains to be 
determined whether 16:0/18:1 GPC is also a physiologi-
cal ligand for PPARα in other tissues. Moreover, struc-
tural analysis should provide insights into its differential 
binding affinity with the three PPARs.

PPARα in the skeletal muscle and heart: some unexpect-
ed phenotypes

In the PPARα knockout mice, muscle energy metabo-
lism remains normal [83]. A gain-of-function study was 
performed to address the potential role of PPARα in this 
tissue [84]. Overexpression of PPARα in the skeletal 
muscle increases the expression of genes for fatty acid 
uptake and oxidation, but decreases the expression of the 
glucose transporter Glut4. Strikingly, under normal chow 
diet, these transgenic mice have elevated levels of plas-
ma glucose and insulin, are glucose intolerant and insulin 
resistant; this occurs in the context of normal muscular 
lipid content and normal insulin signaling. When fed a 
high-fat diet, the transgenic mice, although resistant to 
obesity, have significantly higher muscular triglyceride 
content than controls, and continue to be glucose intoler-
ant and insulin resistant. The effect of the transgene on 
muscular lipid accumulation is quite unexpected, given 
the known function of PPARα in fatty acid utilization; 
a plausible explanation is that the increased fatty acid 
uptake exceeds the increased muscle capacity for oxida-
tion. This study confirms the role of PPARα in fatty acid 
catabolism in peripheral tissues. However, it is unclear 
what causes the severely impaired glucose homeostasis 
under normal diets. Is it due to the reduced expression 
of Glut4? Notably, skeletal muscle-specific deletion of 
Glut4 produces a similar defect in glucose homeostasis 
[85]. It will be interesting to see whether the PPARα ago-
nists also decrease Glut4 expression or promote lipid ac-
cumulation in the skeletal muscle. This question should 
be readily assessable with the PPARα transgenic mice 
because of the high expression of the transgene.

PPARα also regulates cardiac metabolism. PPARα null 
mice have decreased expression of cardiac fatty acid oxi-
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dation genes and decreased rates of fatty acid oxidation, 
but maintain normal cardiac function [83, 86]. Similar to 
the skeletal muscle PPARα transgene, overexpression of 
PPARα in the heart increases the expression of genes for 
fatty acid transport and oxidation, and decreases Glut4 
expression; this leads to lipid accumulation, reduced glu-
cose transport and utilization, insulin resistance, and car-
diomyopathy [87, 88]. These phenotypes are exacerbated 
on high-fat diets [89], and are corrected by deficiency of 
the fatty acid transporter CD36 without affecting fatty 
acid oxidation [90]. Interestingly, Glut4 expression and 
glucose transport are increased in the PPARγ cardiac 
transgenic mice, which also display lipid accumula-
tion and cardiomyopathy [60]. Moreover, in the PPARα 
muscle transgenic mice, decreased Glut4 expression and 
defects in glucose metabolism occur in the absence of 
lipid accumulation [84]. These observations indicate that 
the decreased Glut4 expression and glucose utilization in 
the PPARα transgenic mice is a PPAR-isoform-specific 
phenotype not caused by lipid accumulation or increased 
fatty acid oxidation per se. If this is true, then how this 
phenotype is corrected by CD36 deficiency is unknown.

PPARδ is an integral component in a transcriptional net-
work regulating brown fat metabolism

PPARδ is ubiquitously expressed in many tissues. 
Genetic and pharmacological studies reveal its role as a 
powerful regulator of fatty acid catabolism and energy 
homeostasis [91]. Initially, due to the unavailability of 
a specific PPARδ agonist, we used transgenic mice ex-
pressing an activated form of PPARδ by fusion with a 
VP16 activation domain to uncover its tissue-specific 
function [92]. Adipose tissue expression of this transgene 
produces lean mice that are resistant to obesity and tis-
sue steatosis induced either genetically or by a high-fat 
diet. Although WAT expressed a slightly higher level of 
the transgene than BAT, the induction of the expression 
of fat-burning genes mainly occurs in BAT. Interestingly, 
UCP1 induction is the highest among all the genes ex-
amined. In WAT, only UCP1 is induced. The reason for 
this selective induction in BAT vs WAT is unknown. This 
work helped demonstrate a potential in vivo function of 
brown fat PPARδ in energy expenditure.

To further study the role of PPARδ in brown fat me-
tabolism, we generated an immortalized brown fat pread-
ipocyte cell line from mice containing floxed PPARδ 
alleles. In vitro deletion of the PPARδ alleles by cre 
recombinase adenovirus-mediated excision, as expected, 
does not affect brown fat cell differentiation, yet signifi-
cantly downregulates the expression of fat-burning genes 
[93]. In particular, UCP1 expression is the mostly de-
creased, typically by more than 10-fold, while the levels 

of PGC-1α, PPARγ and PPARα remain unchanged. This 
led us to test whether PPARδ acts downstream of PGC-
1α. The β3-adrenergic receptor agonist stimulates UCP1 
expression through PGC-1α. The PPARδ-deficient brown 
fat cells are almost completely unresponsive to the β3-
adrenergic receptor agonist in the induction of UCP1. 
Moreover, in the absence of PPARδ, PGC-1α is longer 
associated with the PPAR-binding site of the UCP1 pro-
moter. Finally, the ability of the PPARδ-fat knockout 
mice to maintain body temperature during cold exposure 
is compromised. These results suggest that, in the brown 
fat, there is a cell-autonomous requirement for PPARδ 
in the expression of at least some of the PGC-1α target 
genes and that PPARδ at least partly mediates the action 
of PGC-1α.

The PGC-1α/PPARδ-regulated brown fat metabolism 
is fine-tuned by twist-1 [93]. Twist-1 is a critical, physi-
ological negative regulator in brown fat metabolism. It 
is selectively expressed in the adipose tissue, interacts 
with PGC-1α, and is recruited to the promoters of PGC-
1α’s target genes to suppress PGC-1α function. Indeed, 
twist-1 heterozygous knockout mice are resistant to high 
fat-induced obesity, whereas the fat twist-1 transgenic 
mice have the opposite phenotype. Interestingly, upon 
activation by its ligand, PPARδ is recruited to the twist-1 
promoter and induces twsit-1 expression both in vitro 
and in vivo, suggesting a negative-feedback mechanism. 
Thus, PPARδ is an integral component in brown fat 
metabolism by coordinating the actions of PGC-1α and 
twist-1.

PPARδ in the skeletal muscle and heart: a comparison 
with PPARα

Muscle fibers are broadly classified into two groups, 
oxidative fibers and glycolytic fibers. Oxidative fibers 
have high mitochondrial content and mainly use mito-
chondrial oxidative metabolism for energy production, 
whereas glycolytic fibers have low mitochondrial content 
and rely on glycolytic metabolism as a major energy 
source. PPARδ has a higher expression than PPARα in 
the skeletal muscle [61, 83] and is more abundant in the 
oxidative fibers [94, 95]. Treatment of skeletal muscle 
cells with the PPARδ agonists in vitro induces the ex-
pression of genes for fatty acid catabolism and promotes 
fatty acid oxidation [83, 92, 96]. To test the in vivo 
function of PPARδ, skeletal muscle PPARδ transgenic 
mice expressing either a wild type or activated form of 
PPARδ were generated [94, 97]. There is a remarkable 
increase of oxidative fibers in these transgenic mice, 
similar to that observed in the skeletal muscle PGC-1α 
transgenic mice [98]; however, PGC-1α is not induced in 
the PPARδ transgenic mice. While the phenotype of the 
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transgenic mice expressing the wild-type PPARδ remains 
to be fully characterized, the transgenic mice expressing 
the activated PPARδ are found to be completely protect-
ed against high-fat diet-induced obesity, muscular lipid 
accumulation, hyperinsulinemia, glucose intolerance, 
and insulin resistance [94] (our unpublished data). The 
normalization of insulin sensitivity by the PPARδ trans-
gene on the high-fat diet is most likely due to the lack of 
muscular lipid accumulation. While both the PPARδ and 
PPARα muscle transgenic lines are resistant to high-fat 
diet-induced obesity, the PPARα line, in striking contrast, 
has increased muscular lipid accumulation and is insulin 
resistant and glucose intolerant (Figure 3). Both of these 
two lines display upregulation of genes for fatty acid 
uptake, β-oxidation, and mitochondrial respiration [84, 
94, 97] (our unpublished data). Moreover, although the 
PPARδ transgene is constitutively active, its expression 
level is very low; instead, endogenous muscle PPARδ 
expression is highly elevated so that it may at least partly 
contribute to the phenotype [94]. Thus, what causes the 
phenotypic differences between the PPARδ and PPARα 
transgenic mice is currently unclear and can be either 
isoform-specific target gene expression or their overall 
differential effects on metabolic programs. Interestingly, 
the skeletal muscle PGC-1α transgenic mice, although 

showing increased oxidative fibers, not only are not pro-
tected against high-fat diet-induced body weight gain, 
but also are more insulin resistant due to muscular lipid 
accumulation, compared to control mice [98, 99].

A phenotype opposite to that of PPARδ transgenic 
mice was revealed in the skeletal muscle-specific PPARδ 
knockout mice [100]. Deletion of PPARδ decreases the 
expression of many genes for fatty acid β-oxidation and 
mitochondrial respiration function, and increases the 
number of muscle fibers with lower oxidative capacity, 
leading to an increased body weight gain and insulin 
resistance. The skeletal muscle of these knockouts also 
shows a 50% decrease of PGC-1α that could be respon-
sible for the muscle phenotype. However, it is also pos-
sible that the decrease in PGC-1α is a secondary chronic 
effect caused by the increased number of less oxidative 
fibers. As a similar muscle phenotype was observed 
when PPARδ was deleted by an inducible cre after the 
muscle was formed [100], it will be interesting to exam-
ine the level of PGC-1α in this setting. Nevertheless, this 
work demonstrates that PPARδ is required for the forma-
tion and maintenance of oxidative muscle fibers.

Cardiac-specific deletion of PPARδ causes lipid accu-
mulation and cardiomyopathy [101]. Unlike PPARα and 
PPARγ, overexpression of PPARδ in the heart is not as-

Figure 3 A comparison of the phenotypes among skeletal muscle PPARα transgenic mice, PPARδ transgenic mice, and wild-
type mice treated with a PPARδ agonist. Mice were fed a high-fat diet. ND, not determined.
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sociated with lipid accumulation and has no detrimental 
effects on cardiac function [102]. Surprisingly, the trans-
gene increases Glut4 expression and promotes glucose 
transport in the heart [102] (Figure 4). 

Function and mechanism of PPARδ agonist in fat burn-
ing

An important question is whether activation of en-
dogenous PPARδ by its agonist would be metabolically 
beneficial. Treatment of insulin-resistant, obese monkeys 
for four weeks with the PPARδ agonist lowers plasma 
insulin and triglyceride levels and increases HDL level, 
but has no effect on body weight [103]. Increased fatty 
acid oxidation was observed in the skeletal muscle and 
BAT, but not in the liver, of PPARδ agonist-treated mice 
[104]. The PPARδ agonist effectively prevents the high-
fat diet-induced obesity, hyperinsulinemia, tissue ste-
atosis, glucose intolerance, and insulin resistance [94, 
104]. When given to the diabetic, obese ob/ob mice, the 
PPARδ agonist produces similar beneficial effects, along 
with a significant decrease in blood glucose level [104, 
105]. However, the body weight reduction in the ob/ob 
mice is very modest [104], indicating that the agonist 
is less effective on predisposed obesity. Overall, the 
PPARδ agonist elicits profound metabolic benefits that 
essentially recapitulate the phenotypes of the transgenic 
mice (Figure 3). Future studies with conditional PPARδ 
knockout mice are needed to address the relative contri-
bution of different tissues to the agonist effects. Presum-
ably, skeletal muscle and BAT are major target tissues.

Is the PPARδ agonist useful for human metabolic syn-
drome? To date, this has not been extensively studied or 
reported. In a small pilot study, PPARδ agonist was given 
to healthy moderately obese subjects for two weeks. Ad-
ministration of the PPARδ agonist significantly reduces 
fasting plasma triglycerides, LDL cholesterol, insulin, 
and liver fat content; in contrast, these changes were not 
observed in subjects when given the PPARα agonist, 
except for the lowering of plasma triglycerides [106]. 
Whether these beneficial effects of the PPARδ agonist 
can also be observed in a large study remains to be seen.

Conceivably, fat burning in the skeletal muscle re-
quires coordination between fatty acid β-oxidation and 
mitochondrial respiration. It is clear that PPARδ agonists 
enhance fatty acid β-oxidation. Are they also capable 
of promoting mitochondrial respiration function and 
thereby driving the formation of oxidative muscle fibers? 
Treatment of fibroblasts or myoblasts in vitro with the 
PPARδ agonist increases the activities of enzymes in the 
mitochondrial respiration chain [107]. In a mouse model 
of mitochondrial myopathy, bezafibrate, an agonist for 
both PPARδ and PPARα, elevates the levels of proteins 

for mitochondrial respiration, increases mitochondrial 
biogenesis, and improves the myopathy phenotype [108]. 
Treatment of wild-type mice with the PPARδ agonist 
promotes the formation of oxidative muscle fibers based 
on succinate dehydrogenase activity staining [109]. 
However, other in vivo studies did not observe any ef-
fect of the agonist on expression of a group of genes for 
mitochondrial respiration function [105] or on the forma-
tion of oxidative fibers based on ATPase activity staining 
[110]; but combined with exercise training, the agonist 
increases the number of oxidative fibers [110]. Thus, it 
is likely that PPARδ and its agonist may only regulate 
a subset of genes for mitochondrial respiration function 
and that a systematic effect requires additional signal-
ing inputs. Notably, levels of PPARδ and PGC-1α in the 
skeletal muscle are elevated in several genetic mouse 
models that display increased mitochondrial biogenesis 
and oxidative fibers [111, 112].

PPARδ agonists activate gene expression through fa-
cilitating the recruitment of transcriptional co-activators. 
In primary, PGC-1α-deficient myotubes, PPARδ agonist-
induced fatty acid oxidation is attenuated but not abol-
ished. These data indicate that co-activation of PPARδ by 
PGC-1α is partly responsible for the ligand effects in the 
skeletal muscle and that a PGC-1α-independent mecha-
nism also exits [105]. In agreement with this, we have 
found that in C2C12 muscle cells where there is little 
expression of PGC-1α, PPARδ agonist-induced gene ex-
pression and fatty acid oxidation are not suppressed by 
ectopic expression of the PGC-1α inhibitor, twist-1 (our 
unpublished data).

PPARδ and exercise physiology
Muscle fibers are strongly associated with exercise 

physiology [113]. On one hand, oxidative muscle fibers 
confer exercise endurance; on the other hand, regular 
exercise training promotes the formation of oxidative 
fibers, which leads to the improvement in metabolic syn-
drome. Given the effects of PPARδ on muscle fiber and 
energy metabolism, two related questions become ap-
parent: whether activation of PPARδ promotes exercise 
endurance and whether PPARδ mediates some of the 
metabolic benefits of exercise training. The first ques-
tion has been addressed. When placed on a treadmill, 
muscle PPARδ transgenic mice are resistant to fatigue 
and are able to run twice the distance of wild-type mice 
[94]. Conversely, the muscle PPARδ knockout mice run 
about 30% less the distance of the wild-type mice [100]. 
The PPARδ agonist itself is not sufficient to promote 
exercise performance; however, when combined with 
exercise training, the agonist significantly increases en-
durance compared to exercise alone [110]. Part of the 
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molecular mechanism underlying this synergistic effect 
on endurance is that exercise activates the AMPK kinase, 
which further enhances the ligand-activated PPARδ tran-
scriptional activity [110]. This work reveals the AMPK-
PPARδ axis as a pharmacological target to reprogram 
muscle endurance. Does PPARδ in turn contribute to the 
metabolic benefits pertinent to exercise? This has not 
been addressed genetically. However, PPARδ expression 
in the skeletal muscle is increased by exercise training 
in both rodents and humans [97, 114, 115]. Importantly, 
there is a strong correlation between exercise-induced 
PPARδ expression and improvement of clinical param-
eters in type 2 diabetic patients [115]. These observa-
tions, along with the known effects of PPARδ activation 
on energy metabolism, suggest a formal possibility that 
PPARδ may mediate some of the metabolic benefits of 
exercise.

Conclusions

The three PPARs, by acting as lipid sensors, are ma-
jor metabolic regulators in the body and together they 
control almost every aspect of fatty acid metabolism 
(Figure 5). Importantly, through regulation of lipid me-
tabolism, these receptors greatly impact insulin sensi-
tivity and glucose homeostasis. Functional impairment 
or dysregulation of these receptors is shown to lead to 
obesity, lipodystrophy, fatty liver, insulin resistance, type 
2 diabetes, or cardiomyopathy, whereas proper activation 

by ligands offers metabolic benefits. These studies have 
helped significantly in understanding the transcriptional 
regulation of energy metabolism and the pathogenesis of 
metabolic syndrome. However, many interesting ques-
tions remain. For example, what are the detailed mo-
lecular mechanisms employed by these receptors in gene 
regulation? What are the causes for the side effects of 
the PPAR drugs? What are the endogenous, physiologi-
cal ligands in different tissues? How do the PPARs and 
their potential endogenous ligands respond to environ-
mental signals? How are their actions coordinated? The 
three PPARs share a large overlap of target gene profile, 
but the ensuing phenotypes can be very different. This 
is probably best exemplified in the skeletal muscle and 
heart of transgenic mice. How are their distinct functions 
specified? Addressing these questions will be important 
for us to fully understand the roles of these receptors in 
energy metabolism and metabolic syndrome.
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