
PPEPR: Plug and Play Electronic Patient Records

Ratnesh Sahay
DERI

National University of Ireland,
Galway

ratnesh.sahay@deri.org

Waseem Akhtar
DERI

National University of Ireland,
Galway

waseem.akhtar@deri.org

Ronan Fox
DERI

National University of Ireland,
Galway

ronan.fox@deri.org

ABSTRACT
The integration of Electronic Patient Record (EPR) systems
is at the centre of many of the new regional and national
initiatives to integrate clinical processes across department,
region, and national levels. Web Service technologies offer
significant solutions to provide an interoperable communica-
tion infrastructure but are unable to support precise defini-
tions for healthcare messages, functionality, and standards,
required for making meaningful integration. The lack of
interoperability within healthcare standards adds complex-
ity to the initiatives. This heterogeneity exists within two
versions of same standard (e.g. HL7), and also between
standards (e.g. HL7, openEHR, CEN TC/251 13606).

We therefore introduce an integration platform PPEPR
(Plug and Play Electronic Patient Records), which is based
on the principles of a semantic Service-Oriented Architec-
ture (sSOA). PPEPR solves the problem of interoperability
at the semantic level. A key focus of PPEPR is that once a
patient information is captured, should be available for use
across all potential care processes.

Categories and Subject Descriptors
D.2.12 [Software]: Software Architectures;
Interoperability[Domain-specific architectures]

Keywords
eHealth, SOA, Web services, Semantic Interoperability

1. INTRODUCTION
Healthcare enterprise applications (e.g. Electronic Patient

Record Systems (EPRs)1)have been created within hospitals
to address specific end user requirements. The EPRs, how-
ever, exist as islands of information with little or no con-
nectivity between them. What connectivity has been im-
plemented has been a largely manual effort with significant

1http://xml.coverpages.org/hl7PRA.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

resources spent in routing and mapping healthcare messages
between those systems [8]. In some cases special interfaces
have had to be developed to allow EPR systems to commu-
nicate. Consider the following set of problems:

• Most hospitals still have obsolete standards or proto-
cols running as their critical applications.

• Healthcare standards are under constant development
and improvements.

• IT or healthcare professionals may diverge from the
use of healthcare standards’ (e.g. HL72 v2.x, v3), CEN
TC/251 136063, openEHR4, etc.) intended meanings,
thus defeating the purpose of those standards.

• Healthcare standards formatted in XML solve the inte-
gration or interoperability problem at a syntactic level,
but domain specific solutions are required to achieve
meaningful integration.

In this paper we introduce PPEPR5, an integration plat-
form for heterogeneous EPRs. PPEPR is based on the de-
sign principles of a semantic SOA Reference Architecture6

and built (It’s first prototype) around semantic Web ser-
vice technology. The structure of this paper is as follows:
first we describe the relation between healthcare, SOA, Web
services, and the emergent need of semantics. Then we in-
troduce the PPEPR approach and a simplified version of the
PPEPR architecture. Next, we introduce our approach for
ontology and an adapter framework development. Finally
we explain how PPEPR addresses the EPRs integration re-
quirements.

2. EPRS INTEGRATION: SOA, WEB SER-
VICES, & SEMANTICS

Gradually, organisations are adopting SOA as their funda-
mental architecture for systems development[7]. For health-
care systems there are two conceptual viewpoints (both are
valid):

• Implementing a general SOA framework (common in-
frastructure, tools and approaches), “HL7 is just an-
other content type”

2http://www.hl7.org
3http://www.cen.eu/
4http://openehr.org/
5http://ppepr.deri.ie/
6http://www.oasis-open.org/apps/org/workgroup/semantic-
ex/



• Implementing an HL7 based messaging architecture
that can use different messaging and transports, in-
cluding Web services.

The first tends to lead to the conclusion that HL7 should
just define content and the second suggests HL7 should de-
fine the whole stack. Various initiatives focus on each of
the viewpoints; creating an overall enterprise SOA where
HL7 is just one content type amongst others (e.g. X.127),
and the need for HL7 to fully define an operating model
for those using less complete frameworks such as basic HL7
LLP8 messaging. These divergent viewpoints map to issues
on the use of the various wrapper layers around HL7 content,
the level of overlap between HL7 functionality, and advanced
general frameworks such as Web Services. The majority of
existing EPRs do not employ Web services, creating sig-
nificant challenges for any integration system based on ad-
vanced research/technology (e.g. semantic Web services),
without imposing constraints on existing systems (e.g. re-
quiring the upgrade of existing EPRs to use Web services).
This transition to the use of Web services imposes significant
costs to the implementing enterprise. To counter this dif-
ficulty PPEPR provides three types of integration between
non-Web services and Web services enabled EPRs.

Web services provide the technology foundation for imple-
menting and delivering SOA platforms. However, SOA itself
is not a complete solution for the integration of healthcare
information systems since the two core challenges of conven-
tional computing - search and integration - (also known as
semantic gap of SOA) are not addressed. Therefore, SOA
significantly and fundamentally depends on solutions to fill
the semantic gap so that its full potential can be achieved[1,
2]. The PPEPR architecture employs a semantic Service-
Oriented Architecture (sSOA) and thus acts as such a solu-
tion. The architecture will be realized by developing a cross
functional, semantically enabled integration platform with
input from Galway University Hospital (GUH)9.

3. PPEPR APPROACH
The development approach is divided into two steps: First,

Modelling the healthcare domain knowledge at a concep-
tual level (during design time) by, (a) annotating healthcare
functionalities (Functional ontology) (b) annotating health-
care messages (Message ontology) and, (c) mapping ontolo-
gies at the schema level. Second, Integrate EPRs (during
run time) using the modelled concepts by, (a) mediating on-
tologies at instance level (b) mediating healthcare messages
and functionalities at instance level. The above approach
helps to delineate scope and responsibilities as well as or-
ganise, maintain and access the healthcare data, information
and knowledge. The key outcomes of PPEPR are Ontolo-
gies (Message, Functional) and the Adapter Framework to
connect to traditional healthcare software.

4. PPEPR ARCHITECTURE
Figure 1 shows the simplified architecture of PPEPR. The

main components are:
EPRs: In the first prototype, PPEPR incorporates HL7

(2.x, v3, and CDA) compliant EPRs . In advanced versions

7http://www.x12.org/
8http://www.interfaceware.com/manual/llp.html
9http://www.whb.ie/OurServices/AcuteHospitalServices

M
essage Listner 

Validator (Message Protocol)

Adapter Manager

Database Manager

C
om

m
unication M

anager

Adapter Pool                      

XML2WSML WSML2XML

Security

Discovery and Composition

Registory and Repository

Process Mediation

Data Mediation

Semantically-enabled Middleware

Adapter Framework

EPR (HL7 v2.x, CDA)
Non Web Service

EPR (HL7 v3, CDA)
Web Service

Figure 1: Simplified PPEPR architecture

of PPEPR, openEHR and CEN TC/251 13606 will be in-
corporated within the integration framework.

Adapter Framework: The adapter framework is a com-
mon platform for enabling communication between systems
that use different data formats and it is an application spe-
cific software component that transforms data from its source
to target format. The framework provides an adapter skele-
ton and allows developers to register (plug-in) their adapters
and invokes the target application through one of the reg-
istered adapters. Direct invocation is also possible if the
input message is described in the target-required format.
The adapter’s main role is at run-time. Grounding rules
executed by adapter are specified at design-time. Along
with message transformations, the adapter will also create
a request (goal) describing services to be invoked at the
receiving ends. These goals will later be resolved by the
semantically-enabled middleware during process mediation.
The main components within the Adapter Framework are:

The Communication Manager is a gateway to the adapter
framework which can be accessed by MessageListener via a
Web-service interface or TCP/IP port (for non-Web Service
EPRs). The Message Listener waits for any new message
incoming from the network. Once requested by a back end
application, the Communication Manager interprets the re-
quest and invokes either the Adapter Manager or the Up-
date Manager. If the invocation is successful, it returns a
response message which contains either a ’success’ message
or the ’response’ returned from the target application.

The Adapter Manager is the core component of the Adapter
Framework which schedules job between adapters and the
data format Validator. It updates and refreshes the list of
the adapters as they are registered and unregistered.

The Validator is responsible for validating the data format
as claimed by the sending application. An XML message,
for example, sent by back end application, should pass the
XML data format validation process.

The Adapter Pool is a “repository or container” of all the
registered adapters.

The XML2WSML adapter is a specialized adapter which
transforms (lifts) the XML message (syntactic) to Web ser-



vice modeling language(WSML10) (semantic).
The WSML2XML adapter is a specialized adapter which

transforms (lowers) the WSML (semantic) to XML message
(syntactic).

The Database Manager manages database connection, ex-
ceptions, and utilities.

Semantics-Enabled Middleware (WSMX)11: A de-
tailed description of WSMX, WSML, and Web service mod-
eling tool (WSMT12) is outside the scope of this paper [9,
4, 6], therefore we explain WSMX and WSML from the
PPEPR perspective, mainly focusing on data and process
meditation. Healthcare standards define a set of messages
and functionalities which may not match across standards or
systems. These functionalities are exposed as Web services
and the first step towards semantic Service-Oriented Archi-
tecture (sSOA) is to create semantic descriptions of Web
services (during design-time), listing 1 shows the snippet of
WSML Web service description of HL7 v3 order fulfiller Web
service.� �

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−full”
namespace { ”http://host:port/OrderFulfillerWebSevice.wsml#” ,

wsmostudio ”http://www.wsmostudio.org#”,
dc ”http://purl.org/dc/elements/1.1/”,
FO ”http://host/development/ontlogies/v2FunctionalOntlogoy.

wsml”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,
MO ”http://host/development/ontlogies/POLB IN0021200.wsml#

”}

webService OrderFulfillerWebService
importsOntology MO#POLB IN002120
usesMediator ”http://host:WSMX/ooMediator”

capability OrderFulfillerCapability
precondition

nonFunctionalProperties
dc#description hasValue ”Laboratory Observation Order

Activate, Fulfillment Request with message
transmission wrapper and payload.”

wsmostudio#version hasValue ”0.5.4” ”http://host#
v2FunctionalOntlogoy” hasValue FO#
OrderFulfillerWebServiceOntology

endNonFunctionalProperties
definedBy

?mesasge memberOf MO#OrderActivateFulfillmentRequest and
MO#controlActProcess(?message,?controlActProcess) and

....................
interface OrderFulfillerInterface

choreography OrderFulfillerChoreography
stateSignature OrderFulfillerStatesignature

transitionRules OrderFulfillerTransitionRules if (?request
memberOf OrderActivateFulfillmentRequest) then

add( #1 memberOf OrderActivateFulfillmentRequest Ack)
endIf
.....

orchestration OrderFulfillerWebServiceOrchestration
in MO#OrderActivateFulfillmentRequest
withGrounding { ”http://host/OrderFulfillerWebSevice.wsdl#wsdl.

interfaceMessageReference(OrderFulfillerInterface/OrderFulfill/
in0)”}

out MO#OrderActivateFulfillmentRequest Ack
withGrounding { ”http://host/OrderFulfillerWebSevice.wsdl#wsdl.

interfaceMessageReference(OrderFulfillerInterface/OrderFulfill/
out0)”}

......
forall {?request} with

(?request memberOf MO#OrderActivateFulfillmentRequest )
do

add( #1 memberOf MO#OrderActivateFulfillmentRequest Ack

10http://www.wsmo.org/wsml/
11http://www.wsmx.org/
12http://sourceforge.net/projects/wsmt

)
endForall ........� �

Listing 1: WSML Web service description of the
order fulfiller Web service

In listing 1(top to bottom), the namespace section de-
scribes the identifiers(IRIs, sQNames)[4] for message ontol-
ogy(MO) and functional ontology(FO). The usesMediator
keyword identifies the mediator (e.g. ooMediator[4]) which
connects different Goals, Web Services and Ontologies, and
enable inter-operation by reconciling differences in represen-
tation formats, encoding styles, business protocols, etc. In
capability section, preconditions describe the condition over
information space state before the execution of a Web Ser-
vice. For example, non-functional properties describes the
type of message accepted as input and corresponding HL7
v2 OrderFulfiller Web Service(e.g. HL7 v2 and HL7 v3 com-
plaint EPRs interactions). Interface describe how to interact
with a service from the requester point of view (choreogra-
phy) and how the service interacts with other services and
goals it needs to fulfill in order to fulfill its capability (or-
chestration), which is the provider point of view. The Order-
FulfillerInterface describe transition rules as a part of chore-
ography, for example, request and corresponding Acknowl-
edgment(response) messages. In orchestration section, the
input and output messages and respective WSDL ground-
ing is defined, for example, wsdl.interfaceMessageReference
( ServiceInterface/ Operation/input or output message)13

The listing 1 describes only two messages (OrderActivate-
FulfillmentRequest, OrderActivateFulfillmentRequest Ack )
, mediator used, choreography, and orchestration associated
with these messages. The complete message exchange pat-
tern is shown in Figure 2 and dotted lines within listing
1 indicates the description of all the messages exchanged
by orderfulfiller Web service. The WSML web service de-
scription are stored in semantically-enabled repository ( e.g
WSMO4RDF14 repository within ORDI SG framework )
, WSMX picks-up these service descriptions automatically
during discovery, composition, choreography, and orchestra-
tion of Web services. The WSML Web service descriptions
are created manually during each setup of existing and/or
new EPRs, which is a major integration task for HL7 com-
plaint EPRs within PPEPR integration platform.

The WSMX mediation (data and process) components
have three main functions; one used during the design time
and the other two used during runtime. First, a set of map-
pings is created by domain experts (e.g. healthcare profes-
sionals), using a mapping tool - WSMT. Second, the ”Map-
ping Rule Generator” within mediation components is called
internally during runtime to transform the mappings into
mapping rules. Mappings express the similarities between
the two ontologies, while the mapping rules describe how
these similarities are used in order to transform instances of
the first ontology in instances of the second ontology. Map-
ping rules express the mappings in an executable way. The
third and final step of the mediation process is the execu-
tion of the mapping rules. These mapping rules are received
from the ”mapping rules generator” and executed inside the
WSMX rule execution environment[3].

13http://www.wsmo.org/TR/d24/d24.2/v0.1/
14http://www.ontotext.com/ordi/ORDI SG/Wsmo4rdf.html



5. ONTOLOGY DEVELOPMENT
Ontology development for PPEPR includes message on-

tologies to represent the information sent between the com-
ponents and functional ontologies to represent the ordering
of relations in the execution of the message exchange pat-
terns:

5.1 Message ontology
The ontology of a healthcare standard is developed from

the specification provided in the XML Schema format. This
is done by processing grounding rules defined by the devel-
opers that transform the HL7 XML Schema to an ontolog-
ical representation (Bi-directional). Heterogeneities at the
ontological level are identified and mapping definitions be-
tween ontologies are created using an ontology modelling
tool WSMT. Both Grounding and Mapping definitions at
the conceptual level are stored and used by the adapter and
semantic enabled middleware at run-time.� �

<POLB IN002120.Message>
<controlActProcess>
<subject>
<LabTestOrder
<author>
<orderer>
<id displayable=”true” extension=”1−976−245”

root=”2.16.840.1.113883.19.3.2409”/>
<healthCareProviderOrderer>
<name use=”L”>
<given>Dr. Rise</given>

</name>
</healthCareProviderOrderer>

</orderer>
</author>

</LabTestOrder>
</subject>

</controlActProcess>
</POLB IN002120.Message >� �

Listing 2: XML Message (Simplified version): HL7
v3 laboratory observation order activates fulfillment
request

Listing 2 shows a simplified XML message from a HL7 v3
compliant EPR and Listing 3 shows the equivalent WSML
instance. A detailed explanation of the HL7 message struc-
ture and the XML to WSML transformation process are
outside the scope of this paper. Therefore we will briefly ex-
plain the syntactic (XML) and semantic (WSML) relation-
ship of both the messages. The message POLB IN002120
(HL7 v3) is a “laboratory observation order activate fulfill-
ment request” message. This interaction message is created
when a “fulfillment request” is communicated between the
“order placer” and the “fulfiller” (e.g. Figure 2). Grounding
Rules(e.g. XSLTs15) are applied to transform the POLB IN
002120 xml message to the WSML instance. For example,
the “controlActProcess” tag in the XML message is equiva-
lent to the “control act process” relation within the WSML
instance. Similarly, the “given” tag of the XML message is
equal to the “given” relation instance. Thus, the “Dr. Rise”
value in the “given” tag transforms into the second param-
eter of the “given” relation instance. Instances of WSML
concepts are used in relation instance parameters to link the
different relation instances. This is similar to the way com-
plex types in XML Schema maintain a nested form within
an XML message.

15http://www.w3.org/TR/xslt

� �
”http://host/development/ontologies/POLB IN002120.wsml#”

instance polb in002120 message memberOf POLB IN002120.Message
relationInstance control act process
controlActProcess(polb in002120 message, message controlActProcess)
instance message controlActProcess memberOf

POLBIN002120ControlActProcess
relationInstance subject subject(message controlActProcess,

message subject)
instance message subject memberOf POLBIN002120Subject
relationInstance lab test order LabTestOrder(message subject,

message labTestOrder)
instance message labTestOrder memberOf LabTestOrder
relationInstance author author(message labTestOrder, message author)
instance message author memberOf Author
relationInstance orderer orderer(message author, message orderer)
instance message orderer memberOf Orderer
relationInstance id id(message orderer, ii)
instance ii memberOf II
relationInstance displayable displayable(ii, boolean(”true”))
relationInstance extension extension(ii, ”1−976−245”)
relationInstance root root(ii, ”2.16.840.1.113883.19.3.2409”)
relationInstance healthCareProviderOrderer

healthCareProviderOrderer(message orderer, message providerOrderer)
instance message providerOrderer memberOf ProviderOrderer
relationInstance name

ProviderOrderer name(message providerOrderer, en)
instance en memberOf EN
relationInstance given given(en, ”Dr. Rise”)
relationInstance use use(en, ”L”)� �

Listing 3: WSML Instance (Simplified version):
HL7 v3 laboratory observation order activates
fulfillment request.

WSML uses similar XPath16 patterns to represent ”in-
stance” as well as ”relationInstance” of concept and the
relation, therefore it looses the structure of original XML
message. To resolve this issue during the lowering process,
we use XPath’s context node feature to uniquely identify
instance, relation instance and attribute values. For ex-
ample, the “given” relationInstance (see second last line
listing 3) and its first parameter “en” are pointed to by
the contexts “//wsml: relationInstance [wsml:memberOf =
’given’]” and “/wsml: parameterValue [wsml:parameter=
’parameter1’]/wsml: value” respectively [see listing 4].� �

<xsl:template match=”/”>
<xsl:for−each select=”//wsml:relationInstance[wsml:memberOf = ’given

’]”>
<given>
<xsl:value−of select=”./wsml:parameterValue[wsml:parameter= ’

parameter1’]/wsml:value”/>
</given>
</xsl:for−each>
</xsl:template>� �

Listing 4: XSLT (Simplified version): Lowering
WSML Instance(Listing 2) to XML message (Listing
1 )

5.2 Functional ontology
HL7 categorises healthcare events that are used to anno-

tate healthcare functionalities. Similar to standards in other
domains, such as RosettaNet17 for Supply Chain Manage-
ment in ICT, HL7 not only defines the message content,
but also the business logic to achieve certain functionality
in the health care domain. Figure 2 shows the choreography

16http://www.w3.org/TR/xpath
17http://www.rosettanet.org/



(message exchange patterns) between the order placer and
the order fulfiller whereas the activity diagram in figure 3
shows the process model of the order placer to achieve the
actual healthcare process. It is sufficient if both parties, the
process placer and the process fulfiller model and execute a
process according to the message exchange patterns defined
in HL7 and shown in the left and right part of figure 2.

Order FulfillerOrder Placer

1. send (Order Activate Fulfillment Request)

2. receive (Order Activate Fulfillment Request Ack)

3. receive (Promise Active Confirmation)

4. receive (Event Complete Notification)

5. send (Event Complete Notification Ack)

6. receive (Promise Complete Notification)

Figure 2: Interaction Diagram in HL7 Fulfillment
Request

1. send 2. receive 

cancel
No

Yes

4. receive 3. receive 

Yes

6. receive

5. send 

No
wait

Figure 3: Business Process of Order Placer in a HL7
Fulfillment Request

To model and execute such message exchange patterns,
it is necessary to employ a process modelling and execution
standard which is able to reference ontological elements and
allow their mapping within the model. BPEL4SWS18[5] a
conservative set of language extensions to BPEL gives us the
possibility to reference ontological elements within a busi-
ness process description.

BPEL4SWS defines a new mechanism to describe the com-
munication between two partners without dependency on
WSDL which allows us to include goals in the execution pro-
cess. BPEL4SWS introduces a new element, the <b4s:con

versation> element, independent from WSDL. This el-
ement enables grouping of interaction activities and thus
enables defining a complex message exchange between two
partners.

Interaction activities in BPEL4SWS link messages to goals.
The interaction activities are grouped in a conversation which
allows us to link to a Web Service Modeling Ontology (WSM

18http://lists.w3.org/Archives/Public/public-ws-
semann/2007Jun/0000

O)19 Goal[5]. The WSMO Goal describes what the process
expects from a service that plays the partner role in this par-
ticular interaction by means of the requested capabilities.

Listing 5 shows a snippet of the BPEL4SWS document
to describe the internal process including the interface be-
haviour of the order placer as depicted in figure 3.� �

<b4s:conversations>
<b4s:conversation b4s:name=”OrderPlacer” b4s:goalURI=”http://host

/ontologies/HL7v3FuncOntology#goalURL1” />
<b4s:conversation b4s:name=”OrderFullfiller” b4s:goalURI=”http://

host/development/ontologies/HL7v3FuncOntology#goalURL2”
/>

</b4s:conversations>

<sequence sa:modelReference=”http://host/ontologies/
HL7v3FuncOntology#actEventCompleteNotification”>

<receive name=”EventCompleteNotification” sa:modelReference=”http
://host/ontologies/HL7v3FuncOntology#
EventCompleteNotification” partnerLink=”OrderFullfiller”
portType=”spwsdl:OrderFullfillerPortType” operation=”
requestNotification” variable=”Notification” createInstance=”yes
” />

<extensionActivity>
<b4s:invoke name=”invokePromiseCompleteNotificationOp”

modelReference=”http://host/ontologies/HL7v3FuncOntology
#actEventCompleteNotificationAck” b4s:inputVariable=”
NotificationAck” b4s:outputVariable=”
PromiseCompleteNotification” b4s:conversation=”
FulfillmentRequest” />

</extensionActivity>
</sequence>� �

Listing 5: Snippet of BPEL4SWS according to HL7
Fulfillment Request

6. EPR INTEGRATION: PPEPR
Healthcare is a complex domain, comprising vendors, stan-

dards, legacy systems, and information systems which in-
herently differ from one another. PPEPR provides a unique
approach to interoperability. The core solution lies in en-
abling semantic interoperability between existing and new
EPR systems. The PPEPR architecture considers three
types of integration between EPRs based on their web ser-
vice capabilities (or lack thereof).

Type 1: Existing EPR [non-Web services] <==> Exist-
ing EPR [non-Web services]

This type of interaction is focussed on existing EPRs,
which are mostly HL7 v2.x based. At this level EPRs will be
able to exchange messages in EDI20 and XML format. The
majority of current HL7 v2.x based systems do not use Web
services, and their immediate requirement is to exchange
messages. The PPEPR adapter can interact bi-directionally
with these EPRs at a specified TCP/IP port.

Limitations: The goal of PPEPR is to achieve the maxi-
mum level of interoperability between existing and/or new
systems, without upgrading existing or introducing new EPR
systems. Even though HL7 v2.x has categorized the events
in healthcare by considering service functionality which re-
flects the business logic in this domain, implementations are
not service-oriented. These service functionalities could be
used to deploy Web services by upgrading existing EPR sys-
tems to Web service enabled EPR. This transition, although

19http://www.wsmo.org/
20http://en.wikipedia.org/wiki/UN/EDIFACT



outside the scope of PPEPR, would enable those systems to
benefit from advanced interoperability.

Type 2: Existing EPR [non-Web services] <==> Web-
Service enabled EPR

This type of integration is the most complex (e.g. HL7
2.x <==> HL7 v3), since EPRs (non-Web services) are re-
quired to communicate with the other EPRs (Web-services)
via SOAP.

Limitations: As, one side of the EPR integration process
does not employ Web services the Web service Enabled EPR
cannot invoke the services directly. PPEPR’s Adapter can
receive the message at a TCP/IP port, converting the mes-
sage to XML if the received message is via EDI, creating a
SOAP message, then invoking the EPR at the other end, af-
ter mediation. This transformation and routing mechanism
is defined at design time. Therefore, two or more EPRs at
this level should be aware of each other, before they interact.
Also, this type of integration cannot enjoy the interoperabil-
ity advantages (e.g. discovery, composition, orchestration,
etc.) of semantic Web services at the service and/or pro-
cess level but achieves the major goal of sharing healthcare
messages.

Type 3: Web-Service enabled EPR (1) <==> Web-
Service enabled EPR (2)

This type of integration in PPEPR architecture offers the
best interoperability solution by achieving syntactic as well
as semantic interoperability.

7. RELATED WORK
PPEPR approach is based on semantic Service-Oriented

Architecture (sSOA) and other projects which employs the
similar principal are:

COCOON21 is a 6th Framework EU integrated project
aimed at setting up a set of regional semantics-based health-
care information infrastructure with the goal of reducing
medical errors. In order to enable a seamless integration of
eHealth services, Semantic Web Services technology is ap-
plied.

ARTEMIS22 is a STREP project supported in the 6th
Framework by the European Commission. ARTEMIS aims
to develop a semantic Web Services based Interoperability
framework for the healthcare domain. Artemis has a peer-
to-peer architecture in order to facilitate the discovery and
consumption of healthcare web services.

RIDE23 and SemanticHEALTH24 projects are E.U road
map projects with Special Emphasis on Semantic Interop-
erability. The road map will be based on consensus of the
research community, and validated by stakeholders, industry
and Member State health authorities.

The major differences between eHealth projects described
above and our approach are:

• Other projects impose constraints on the EPRs (e.g.
transition from traditional to Web services) but our
aim is to integrate them without imposing any con-
straint on existing or proposed EPRs.

• None of the other projects provide an integration solu-
tion between non service-oriented and service-oriented

21http://www.cocoon-health.com/
22http://www.srdc.metu.edu.tr/webpage/projects/artemis
23http://www.srdc.metu.edu.tr/webpage/projects/ride/
24http://www.semantichealth.org/

(Web services).

• PPEPR applies a new mechanism to describe the com-
munication between two partners without a depen-
dency on WSDL. As described in section 5.2, BPEL4
SWS introduces a new element, ( <b4s:conversati

on> ), which is not dependant on a <partnerLink

Type> and as such is not dependant on WSDL. This
element enables the grouping of interaction activities
and thus enables defining a complex message exchange
between two partners. For example, Artemis intro-
duced business process template “BP template” to mod
el business process at design time. BP template is
dependent on WSDL (e.g. <partnerLinkType>) to
describe a contract between two partners in terms of
roles and corresponding WSDL portTypes. Also, for
interaction activities “BP template” mainly relies on
partnerLink and a WSDL operation.

8. CONCLUSIONS
Current healthcare enterprise applications need greater

flexibility and scalability to meet the challenges of hetero-
geneity of healthcare systems at all levels - data, process,
services, etc. The architecture of any integration system
holds the key to offer a dynamic, flexible and scalable so-
lution. As we have discussed above, healthcare is a com-
plex domain. Actors include vendors, standards, legacy sys-
tems, and information systems all of which must interop-
erate to provide healthcare services. PPEPR provides an
interoperability solution without imposing any constraint
on existing or proposed EPRs. The major advantage of
PPEPR approach is the ”Plug and Play” feature, which re-
quires minimal configuration during setup. Within scope
of PPEPR, EPRs are categorized based on international
healthcare standards: (1) HL7 v2.x, (2) HL7 v3, and (3)
CEN TC251 13606/openEHR. These three categories of stan-
dards are quite different in their overall approach towards
an EPR, but share many semantic similarities, especially the
Reference Information Models (RIM) of HL7 v3, and CEN
TC251 13606/openEHR. These similarities are the linchpin
of ontology development and mapping.

We have presented two major aspects of PPEPR: ontology
specification and adapter framework development. Each on-
tology specified as part of this project is further categorised
into a message and a functional ontology. A functional ontol-
ogy describes the semantics required for interaction between
EPR systems, based on the interaction events within health-
care standards to provide domain based workflows between
interactive EPR systems. A message ontology explicitly de-
fines the semantics associated with healthcare messages re-
quired to be exchanged for data interoperability between
EPR systems. Differences in these specifications are resolved
by semantic mapping techniques.

The adapter framework receives the grounding rules de-
veloped at design-time and plays a crucial role in integrating
EPRs at run-time. The adapter framework follows a similar
design pattern to that of the Java Connector Architecture
(JCA25). Similarity in features include component based de-
velopment and deployment, flexibility in deployed adapters,
and automated data format validation.

The first prototype of PPEPR has successfully integrated
HL7 v3 and HL7 v2.x within an experimental environment;

25http://java.sun.com/j2ee/connector/



Future developments include mapping and mediating be-
tween HL7, CEN TC251 13606, and openEHR standards.
PPEPR will be validated in conjunction with end user clin-
icians in leading Irish Hospitals. In the first prototype of
PPEPR we have not yet covered all integration issues (e.g.
security) during adapter development. However, since we
employ component based development, future components
can be easily integrated. Also, this paper focuses on, intro-
ducing PPEPR architecture, data and process mediation.
Other service-oriented features such as publishing, discov-
ery, etc. are outside the scope of this paper.

9. ACKNOWLEDGMENTS
We would like to thank Brahmananda Sapkota, Armin

Haller, and James Cooley, for their comments and input to
this document. This material is based upon works supported
by the Science Foundation Ireland project Lion under Grant
No.( SFI /02/CE1/I131 ) and by Enterprise Ireland under
Project PPEPR (CFTD 2005 INF 224).

10. REFERENCES
[1] M. L. Brodie, C. Bussler, J. de Bruijn, T. Fahringer,

D. Fensel, M. Hepp, H. Lausen, D. Roman, T. Strang,
H. Werthner, and M. Zaremba. Semantically enabled
service-oriented architectures: A manifesto and a
paradigm shift in computer science. Technical Report
TR20051226, DERI, 12 2005. Available at
http://www.deri.ie/fileadmin/documents/

DERI-TR-2005-12-26.pdf.

[2] C. Bussler, D. Fensel, and A. Maedche. A Conceptual
Architecture for Semantic Web enabled Web Services.
SIGMOD Rec., 31(4):24–29, 12 2002.

[3] E. Cimpian and A. Mocan. WSMX Process Mediation
Based on Choreographies. In 1st International
Workshop on Web Service Choreography and
Orchestration for Business Process Management,
Nancy, France, 9 2005. IEEE Computer Society.

[4] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel.
The Web Service Modeling Language WSML: An
Overview. In Proceedings of the 3rd European Semantic
Web Conference (ESWC 2006), volume 4011 of Lecture
Notes in Computer Science, LNCS. Springer, 6 2006.

[5] A. Filipowska, A. Haller, M. Kaczmarek, T. V. Lessen,
J. Nitzsche, and B. Norton. Process Ontology Language
and Operational Semantics for Semantic Business
Processes. BPEL4SWS specification, Available at http:
//www.ip-super.org/res/Deliverables/D1.3.pdf.

[6] M. Kerrigan. The WSML Editor Plug-in to the Web
Services Modeling Toolkit. In Proceedings of the 2nd
WSMO Implementation Workshop (WIW), 6 2005.

[7] Sun Microsystems Inc,. Implementing Health
Information Technology for RHIO Success. A Sun
White Paper, Available at
http://www.sun.com/software/whitepapers/

integration_suite/rhio_healthercare_wp.pdf.

[8] E. D. Valle, D. Cerizza, P. D. M. Veli, B. Yildirak,
K. Gokce, B. Laleci, and H. Lausen. The Need for
semantic Web Service in the eHealth, 6 2005. In W3C
Workshop-SWSF, Innsbruck, Austria, Position paper.

[9] T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba,
M. Zaremba, M. Moran, E. Cimpian, T. Haselwanter,
and D. Fensel. Semantically-enabled service oriented
architecture: Concepts, technology and application.
Service Oriented Computing and Applications, 5 2007.

http://www.deri.ie/fileadmin/documents/DERI-TR-2005-12-26.pdf
http://www.deri.ie/fileadmin/documents/DERI-TR-2005-12-26.pdf
http://www.ip-super.org/res/Deliverables/D1.3.pdf
http://www.ip-super.org/res/Deliverables/D1.3.pdf
http://www.sun.com/software/whitepapers/integration_suite/rhio_healthercare_wp.pdf
http://www.sun.com/software/whitepapers/integration_suite/rhio_healthercare_wp.pdf

	Introduction
	EPRs Integration: SOA, Web Services, & Semantics
	PPEPR approach
	PPEPR Architecture
	Ontology development
	Message ontology
	Functional ontology

	EPR Integration: PPEPR
	Related Work
	Conclusions
	Acknowledgments
	References

