
PPL: An Abstract Runtime System for Hybrid Parallel
Programming

Alex Brooks and Hoang-Vu Dang and
Nikoli Dryden

Department of Computer Science
University of Illinois at Urbana-Champaign, IL,

USA
{brooks8, hdang8, dryden2}@illinois.edu

Marc Snir
Department of Computer Science

University of Illinois at Urbana-Champaign, IL,
USA

Mathematics and Computer Science Division
Argonne National Laboratory, IL, USA

snir@mcs.anl.gov

ABSTRACT

Hardware trends indicate that supercomputers will see fast
growing intra-node parallelism. Future programming mod-
els will need to carefully manage the interaction between
inter- and intra-node parallelism to cope with this evolu-
tion. There exist many programming models which expose
both levels of parallelism. However, they do not scale well
as per-node thread counts rise and there is limited interop-
erability between threading and communication, leading to
unnecessary software overheads and an increased amount of
unnecessary communication. To address this, it is necessary
to understand the limitations of current models and develop
new approaches.

We propose a new runtime system design, PPL, which
abstracts important high-level concepts of a typical parallel
system for distributed-memory machines. By modularizing
these elements, layers can be tested to better understand
the needs of future programming models. We present de-
tails of the design and development implementation of PPL
in C++11 and evaluate the performance of several differ-
ent module implementations through micro-benchmarks and
three applications: Barnes-Hut, Monte Carlo particle track-
ing, and a sparse-triangular solver.

Categories and Subject Descriptors

D.3 [Programming Language]: D.3.3 Language Constructs
and Features — Frameworks, Concurrent programming struc-
tures; D.3.4 Processors — Runtime environments.

General Terms

Algorithms, Design, Performance.

Keywords

Distributed-memory parallelism, Programming models, PGAS,
RDMA, One-sided communication, Multithreading.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESPM2 2015, November 15-20, 2015, Austin, TX, USA
Copyright 2015 ACM 978-1-4503-3996-4/15/11...$15.00
DOI: 10.1145/2832241.2832246.

1. INTRODUCTION
Future supercomputers are expected to run hundreds of

physical threads per node. The speed of nodes and threads
within nodes will exhibit large variability, due to dynamic
power management and error recovery mechanisms [7, 26].
In order to achieve even moderate efficiency on such ma-
chines, both inter- and intra-node parallelism must be care-
fully exploited. Moreover, it becomes more difficult to ad-
dress problems such as load balancing, latency hiding, and
communication management at this scale.

Researchers are addressing these problems by exploring
better implementations of current programming systems and
designing new programming models. In particular, many
projects have explored the use of a partitioned global ad-
dress space (PGAS) across nodes [32, 9], the use of fork-
join models with lightweight threads [14], and coarse-grain
dataflow models within and across nodes [22, 6].

Both approaches will require the design of new runtimes.
Typical of these runtimes are:
1. Support for RDMA communication, which leverages mod-

ern network capabilities, reduces the software overhead of
communication, and matches the needs of PGAS models.

2. Support for active messages. This is required for more
complex one-sided communication that is not directly
supported in hardware, and for remote method invoca-
tion as used by many models [18, 9].

3. Support for lightweight threads (tasks). Fast task activa-
tion and preemption is essential for many of the emerg-
ing programming models. With it, each synchronization
point can become a potential scheduling point. This
avoids busy waiting and facilitates latency hiding.

4. Support for event-driven task scheduling. The mecha-
nism that identifies which tasks become runnable when
a synchronization event occurs and schedules a runnable
task when a physical thread become idle has to be very
efficient. The most important events are those used for
producer-consumer synchronization, both intra-node (full-
empty bits and counters) and inter-node (completion of
a communication).
In many cases, new programming models do not expose

their underlying runtime. In a few cases, such as GAS-
Net [8], OCR [19], and HPX [17], the underlying runtime
exposes an API that can be used to implement micro-bench-
marks and applications, so that the runtime can be evalu-
ated on its own. However, many of these runtimes deal only
with shared memory (OCR) or with inter-node communi-

cation (GASNet), not both. Hence, they do not address
the critical interaction between communication events and
scheduling. HPX deals with both.

The ability to create copies of data objects on multiple
nodes, and to synchronize such copies under software con-
trol, is essential for many applications and libraries. For
example, the ability to repartition meshes or update halos
is key to a mesh library such as Zoltan [11] and to adaptive
mesh refinement applications. None of the cited runtimes
provide such memory services.

We believe such core memory services should be closely in-
tegrated with communication, coordination, and task man-
agement services into a low-level runtime that can be used
directly by libraries and applications, or to support higher
level programming models, with their specialized runtimes.
In this paper, we propose and evaluate such a runtime, PPL.

The design of PPL abstracts the important high-level con-
cepts, called modules, of a parallel runtime system for dist-
ributed-memory machines: a memory management system,
a communication layer, and a threading layer. All of the
modules are designed to work closely together, so as to in-
crease interoperability between the modules and minimize
the amount of runtime overhead. Our goal is to provide re-
searchers with a flexible tool for developing future runtime
systems. By designing an API which modularizes common
runtime system elements, it becomes simple to test combina-
tions of layers which otherwise may not have been feasible.

In this paper, we present details of our runtime system
design and evaluate an implementation in C++11. We eval-
uate our implementation in two ways. First, we analyze
potential runtime overhead which may result from imple-
mentation choices. Second, we implement and discuss sev-
eral options for each module and test combinations using
three mini-applications: the Barnes-Hut algorithm [36], a
Monte Carlo particle-tracking algorithm [13], and a sparse-
triangular linear solver [31].

The remainder of this paper is organized as follows. Sec-
tion 2 discuss related work. Section 3 presents the design
of the PPL runtime system, with details on each available
module. Section 4 describes our implementation of PPL, in-
cluding details on the module choices. Section 5 contains the
evaluation and analysis of our implementation. We present
concluding remarks and ideas for future work in Section 6.

2. PROGRAMMING MODELS AND RUN-

TIME LIBRARIES
In this section, we provide some background on several

available programming models for distributed-memory ma-
chines, and the runtime features they require.

2.1 Message Passing
Almost all scientific HPC applications today use the mes-

sage passing model for interprocess communication via the
Message Passing Interface (MPI) [20]. This model has been
widely popularized due to its high performance, scalability,
and portability. Highly tuned implementations of MPI are
available for each of the current HPC platforms.

Historically, as core density per node increased, perfor-
mance and scalability of MPI began to suffer due to its in-
ability to cope with decreasing per-core resources and effec-
tively exploit larger amounts of intra-node parallelism. A
common solution is a hybrid approach, where MPI is cou-

pled with a threading model such as OpenMP [22] or In-
tel Threading Building Blocks [23]. In these programming
models, the purpose is to use MPI for interprocess commu-
nication while the threading model handles shared-memory
parallelism.

Now as core density continues to grow and per-core re-
sources continue to shrink, performance of these hybrid so-
lutions is degrading. This is largely due to how implementa-
tions deal with thread safety requirements. In virtually ev-
ery implementation today, this is guaranteed through a com-
bination of atomic operations and critical sections [3]. Many
efforts have been made to decrease the overhead in providing
thread safety in MPI implementations [12, 4, 29, 28]. How-
ever, improving multithreaded performance requires very
careful thought and analysis in order to make any noticeable
impact in performance and to remain portable [5, 15]. As
a result, many implementations resort to simple solutions,
such as coarse-grained locking for critical sections. This has
been shown to greatly hinder performance.

Moreover, there is no agreed standard for the coupling
of MPI and threading systems. In OpenMP, threads are
not first-class citizens; they are execution units that exe-
cute language constructs such as parallel iterates or tasks.
Consequently, the association of MPI threads with OpenMP
threads does not lead to a convenient programming model.
In practice, MPI is only called from sequential OpenMP sec-
tions, causing sequential bottlenecks.

MPI was initially developed for single-threaded processes.
The need for computation/communication overlap led to
the introduction of non-blocking communication calls, im-
plemented by running MPI code as a coroutine. The use of
nonblocking calls is more bug prone than the use of blocking
calls and also complicates the MPI logic. This style seems
superfluous in an environment that supports many tasks. A
runtime with the four properties listed in the introduction
will efficiently support an MPI+task model, where MPI calls
are blocking, and multitasking is used to hide latency.

2.2 PGAS
Although message passing is the dominant programming

model, writing shared-memory parallel programs is often
viewed as being simpler and easier to maintain. The main
obstacle for performance and scalability of shared-memory
models has been their inability to effectively exploit local-
ity [10]. The Partitioned Global Address Space (PGAS)
model was developed to address this issue.

In the PGAS model, the address space is shared and parti-
tioned among the available processes and threads such that
a portion is local to each process or thread. The primary
benefit of PGAS is that it provides a middle ground between
shared- and distributed-memory models by allowing direct
access to remote memory and clearly distinguishing between
local and remote accesses [16]. There have been many ef-
forts focused on providing solutions which use a global ad-
dress space model, including Unified Parallel C (UPC) [32],
Co-Array Fortran (CAF) [21], and, more recently, X10 [9].

The PGAS model is a very good match to communica-
tion based on RDMA and active messages. Indeed, UPC,
as well as other PGAS languages, have been implemented
atop GASNet [8], a communication layer built atop active
messages and RDMA.

Many PGAS systems provide no support for local mul-
tithreading. Another weakness is that compilers have lim-

ited knowledge of access patterns for codes that use indirect
addressing; they cannot optimize access to remote data by
aggregating multiple individual accesses and caching remote
copies for local reuse. Programmers end up doing such op-
timizations manually, reverting to explicit communication.

2.3 High-Performance ParalleX
High-Performance ParalleX (HPX) [17] is one of the first

systems to provide a complete and modern solution for inter-
and intra-node parallelism. It couples an adaptive PGAS
with a lightweight threading subsystem. The system de-
fines local control objects which can be used to express many
types of parallelism and synchronization, including futures,
data-flow objects, traditional synchronization (i.e. mutexes,
condition variables, etc.), and thread suspension [17]. Fi-
nally, all network communication is performed using a form
of active messages, where an object, function, and optional
continuation are provided [17]. Although HPX addresses the
issue of coupling threads and communication, it is missing
a closely integrated memory subsystem which we believe is
necessary for efficiently managing synchronization and lo-
cality of data copies.

2.4 Other
Some additional related models include Charm++ [18],

Legion [6], and Open Community Runtime [19].
Charm++ is a parallel programming framework which

provides asynchronous message-driven execution via migrat-
able objects [18]. The user defines their application using
specially designated objects called chares and chare arrays
which describe work and data units. These objects can be
migrated by the runtime system and also be the subject
of message-driven events [2]. Work units are automatically
and adaptively mapped by the runtime system, allowing for
careful management and adaptive load balancing. Although
Charm++ performs well across many application domains,
it is a language which requires some experience and effort
to use with existing codes. In contrast, it is much easier for
existing codes to adopt a library.

Legion is a data-centric parallel programming model which
uses regions to describe properties of data [6]. The user
is able to define the organization, partitioning, privileges,
and coherence properties of each region, allowing Legion to
implicitly extract parallelism (tasks) and issue appropriate
data movement operations based on the data mapping [6]. A
software out-of-order processor (SOOP) is used for defining
a physical task mapping and scheduling tasks using deferred
execution coupled with low-level runtime event systems for
managing dependencies [6]. Although preliminary experi-
ments show good performance for a circuit simulation appli-
cation [6], it is unclear how well this model will scale beyond
the tested 16 compute nodes and 96 GPUs.

Open Community Runtime (OCR) is a recent effort to de-
sign and develop a research runtime system which supports a
variety of features required for extreme-scale computers [19].
Similar to Charm++ and Legion, the fundamental idea be-
hind OCR is to consider computation as a dynamically gen-
erated directed acyclic graph of tasks which operate on re-
locatable data blocks [19]. Task execution is event-driven
based on preconditions on the execution, which can include
data block and event dependencies. OCR defines a mem-
ory model which manages the movement and modification
of data blocks by defining happens-before relations which

follow a Release Consistency memory model [19]. However,
OCR does let the programmer write programs in which two
or more tasks can write to a single data block simultaneously,
resulting in a potential data race which must be resolved by
the application. Since this research system is relatively new,
little has been published evaluating it. As it matures, it will
be interesting to compare it to PPL.

3. PPL DESIGN
PPL is designed for abstracting an execution model which

combines three modules: memory management, communi-
cation, and threading.

3.1 Memory Management
PPL uses a partitioned global address space and specifies

distinct local and global heaps. The local heap may only
be accessed by locally-executing threads, whereas the global
heap may be accessed by any thread. The local heap has
two purposes. First, it stores objects that are not intended
for remote access. For example, the vertices of a distributed
graph are often accessed only by the node to which they are
assigned. The second purpose is for the caching of remote
data, discussed later. The layout of the global heap is iden-
tical across nodes, and thus any object on any node may be
accessed by changing the base address of a pointer.

PPL defines three types of global objects: global pointers
(gptr), global variables (gvar), and global vectors (gvec). A
gptr can be used to reference an address in the local heap or
any global heap, facilitating any pattern of one-sided com-
munication. gptr is the basis for gvar and gvec. A gvar is
allocated on a single node and provides read-only access to
remote nodes, e.g. for write-once variables such as configura-
tion parameters. A gvec is like a Fortran Co-Array [21] and
is useful for collective operations such as reduce or gather.

To take advantage of locality for communicated objects,
PPL’s memory system defines a software caching mecha-
nism. This is critical for good shared-memory performance,
especially as the number of threads per node increases, due
to the greater opportunity for synergistic caching : a remote
object retrieved by one thread may be accessed by other
threads on the same node. The caching mechanism pro-
vides implicit caching, but in order to maintain scalability,
does not provide implicit coherence. Most parallel scientific
algorithms proceed by well-defined phases, where conflicting
accesses to the same variable do not occur within a phase
(except for the special case of accumulators). Such codes
do not need implicit coherence; instead, explicit coherence
operations can be associated with the start or end of a phase.

The caching mechanism is policy-agnostic and requires
only three basic operations: obtaining, updating, and re-
moving an entry from the cache. Each operation is provided
with a tuple specifying the memory address and node of the
object, and must be thread-safe.

To provide an opportunity for optimizing remote data ac-
cesses, PPL specifies three types of get operations on gptrs:
lget, rget, and get. lget is a local get that returns the
locally cached copy of the object or raises an exception if
a cached copy does not exist. Next, rget always fetches a
remote copy of the object and updates its entry in the cache.
Finally, get is a generic get operation that returns a cached
copy if present, and behaves like rget otherwise.

Updates to objects may be done with put operations. For
simplicity, these currently do not update the cache.

3.2 Communication
The communication module provides an interface for per-

forming one-sided communication, available in three forms:
put, get, and active message. All three operations act on
a global object. Completion of an operation indicates local
completion. In order to test for remote completion, a syn-
chronization handler is associated with each communication
operation to trigger an event on the remote node, such as
decrementing a counter.

The communication module comes as an application-scoped
communicator object. To send an active message, the re-
spective function must be registered with the communicator
upon creation. In addition, the communicator provides a
method for querying information about the underlying net-
work, such as the local rank of the communicator, the total
number of nodes, and RDMA memory information.

3.3 Threading
Our threading interface provides support for spawning

threads and futures, as well as performing blocking synchro-
nization which causes the caller to yield control. Futures
are identical to threads, except that their execution is de-
layed until a synchronization event occurs. This supports
basic data-flow programming, where dependencies can be
enforced by synchronization events. For example, a counter
can be used for a task to wait for all its inputs to be available:
each input producer atomically decrements the counter, and
the consumer task is scheduled when the counter is zero.

Each thread and future has an associated synchronization
primitive. This allows threads to wait on or check comple-
tion of other threads. The intention is to provide a mecha-
nism which allows fine-grained thread management without
busy-waiting.

4. PPL IMPLEMENTATION
We implemented PPL in C++11, which allowed modules

to make use of templates, inheritance, and virtual functions.

4.1 Memory Management
PPL’s heaps are implemented using the user-space mem-

ory allocator umalloc [24] to allocate space within regions
that are appropriately mapped for RDMA access. Alloca-
tion is performed on the global heap upon creation of a gptr

and on the local heap to cache a remote object.
The caching service currently implements three different

policies: nocache, noevict, and evict. The nocache policy
is a pass-through policy designed for development and test-
ing that does no caching. noevict and evict both cache
data. When a request is made for an object that is not in
the cache, space is allocated on the local heap for the object,
and then a get is performed to retrieve the data to this loca-
tion. Local accesses to the object then make use of this data
unless rget is subsequently used or the entry is evicted.

The noevict policy caches every remote request and does
not perform evictions; instead, the user has the option to
explicitly evict entries of cached global objects. The object’s
origin and address are stored, along with a local pointer, in
a concurrent dictionary which is consulted for future lookup
and removal operations. This policy is useful for applications
with low memory pressure, or that have well-defined phases
after which explicit memory management and coherence can
be performed.

Lastly, the evict policy is similar in implementation to
the noevict policy, except that when local cache space fills,
an unused entry is evicted. If every entry is in use, the
requestor yields until an entry can be evicted. This makes
for a good “general purpose” policy for the case where an
application has significant memory requirements.

4.2 Communication
We implemented two different communication layers, one

using GASNet [8], and one using custom-built RDMA func-
tions via the InfiniBand Verbs API [1] called RDMAX, which
is optimized to provide lower overhead for operations specific
to the design of PPL. RDMAX is a header-only API which
utilizes the C++11 template and closure systems, providing
the compiler with more opportunity for critical code path
optimization. One example where this might be beneficial
is in inlining the processing code when a communication re-
quest is complete. Traditionally, function pointers are used,
giving the compiler little information with which to perform
appropriate transformations.

Further, the communication layer implementation sup-
ports using dedicated thread(s) to send data over the net-
work. To do this, communication requests are submitted
to an MPSC queue which is accessed by a communication
thread. A synchronization handle is attached to each re-
quest, allowing the requesting task to wait on completion
of the request. Once complete, the communication thread
performs the associated synchronization operation on the
handle to wake the requesting task. When possible, we use
the threading layer to implement the dedicated threads, oth-
erwise resorting to Pthreads.

4.3 Threading
The threading module is implemented to be flexible enough

to use any underlying threading library. This is done in two
ways. First, we do not place restrictions on the type of
threading model (i.e. kernel or lightweight). Second, thread
objects are templated with the function and arguments in
such a way as to expose the true function header to the pro-
grammer, instead of the typical approach where an opaque
pointer is passed as a single parameter, forcing the program-
mer to pack and unpack thread arguments.

We implemented two different threading layers, one using
Qthreads [34] and one using Argobots [27]. We chose both
implementations to use a lightweight threading runtime due
to the small amount of scheduling and context-switching
overhead. This allows our applications to use very fine-
grained execution in order to produce massive amounts of
concurrency for hiding latency and improving load-balance.

In both implementations, the synchronization primitive
has full/empty-bit (FEB) semantics. This works very nicely
with Qthreads’s implementation, as the Qthreads runtime
already utilizes FEBs for all thread management and syn-
chronization. However, Argobots does not directly provide
an interface for FEBs. Instead, it provides more common
synchronization primitives such as mutually-exclusive locks
and condition variables; we utilize these primitives to build
the FEB synchronization in the Argobots implementation.

5. EVALUATION
We conducted experiments using the Stampede super-

computer, located in the Texas Advanced Computing Cen-
ter [30]. It consists of 6400 compute nodes each with two

nocache noevict evict

1 B 7.4% 15.3% 17.7%
1 KiB 8.3% 6.6% 14.8%
1 MiB 0.8% 0.2% 0.6%

Table 1: Cache overhead for different policies and
data sizes.

Intel Xeon E5-2680 (eight-core) processors and 32 GB of
memory. Each node also has at least one Intel Xeon Phi co-
processor, but were not used in our evaluation. The C/C++
compiler was GCC 4.7.1, the GASNet version was 1.22.4, the
UPC version was 2.20.2, and the MVAPICH2 version was
2.0. Unless otherwise mentioned, experiments show PPL
using RDMAX. Further, all of our experiments use two ded-
icated communication threads, one for managing network
events and one for managing thread synchronization. Fi-
nally, error bars representing one standard deviation are in-
cluded for every graph except for the sparse triangular solver
for sake of readability.

5.1 Runtime overhead
We conducted several experiments to evaluate the over-

head of our PPL implementation. These tests are divided
by module and are described in the following subsections.

5.1.1 Memory Management

Since setting up the heaps is a one-time cost, our focus is
on evaluating the overhead of the software caching mecha-
nism. We performed a large number of one-sided get opera-
tions between two nodes with each of PPL’s caching policies,
and compared this to the time to perform the same num-
ber of gets directly. Only one of the nodes performed com-
munication, to reduce network noise; however, network and
scheduling noise remain present. Multiple data sizes were
used to verify that data size has little impact. These results
are presented in Table 1. Our overhead is small in every
case and decreases as data size increases due to memory al-
location dominating, although some variation remains. The
greater overhead of the nocache policy in the 1 KiB and
MiB cases is an artifact of our implementation. The re-
sults indicate that if there is even moderate data-reuse in
an application, the overhead will not outweigh the savings
of reduced communication.

5.1.2 Communication

To evaluate the overhead of providing one-sided commu-
nication through objects and a dedicated communication
thread, we ran experiments which test gptr get operations
against simply performing the communication operation thr-
ough the underlying communication layer implementations.
The results for these tests are presented in Figure 1, show-
ing the overhead of the PPL communication module imple-
mentations and raw performance results using RDMAX and
GASNet without PPL. The overheads range from 3 to 4.5
µs for most data sizes, and is attributed to two factors: data
movement associated with the communication request, and
descheduling and rescheduling requesting threads. PPL us-
ing RDMAX has more incurred overhead compared to PPL
using GASNet because RDMAX alone has less features than
GASNet, most of which are implemented in the RDMAX
communication module for PPL due to necessity. Our re-
sults indicate that RDMAX outperforms GASNet by at least

20 24 28 212 216 220

1

2

3

4

5

Message size (B)

O
v
er
h
ea
d
(µ
s)

20 24 28 212 216 220
20

22

24

26

28

210

R
u
n
ti
m
e
(µ
s)

Overhead GASNet Overhead RDMAX
Runtime GASNet Runtime RDMAX

Figure 1: Performance and overhead of communica-
tion module implementation for GASNet and RD-
MAX.

20 24 28 212 216 220
28

210

212

214

216

Message size (B)

A
v
er
a
g
e
la
te
n
cy

(µ
s) PPL (RDMAX)

PPL (GASNet)
GASNet+Pthreads

Figure 2: Communication latency for PPL and
GASNet+Pthreads with 64 threads communicating
simultaneously. PPL (RDMAX) outperforms PPL
(GASNet) by 8 and 720 µs, on average, for small (<
64 KiB) and large (≥ 64 KiB) messages, respectively.

1 µs for nearly every message size.
Although the overhead is relatively high for small mes-

sages, our communication approach is beneficial when multi-
ple threads communicate simultaneously, as indicated in Fig-
ure 2. At 64 threads, PPL outperforms GASNet+Pthreads
by 2.7x on average. Some of this is attributed to the greater
overhead of context-switching kernel threads (a few µs [33]).
By using dedicated threads for communication and synchro-
nization, we better coordinate large numbers of communi-
cating threads, thus reducing contention in place of access-
ing highly concurrent data structures. We expect to further
reduce the overhead through continued development.

5.1.3 Threading

We evaluated the overhead of the threading module via
creating and joining empty threads. The test used one core
to isolate both methods and to eliminate potential measure-
ment inaccuracies. The results in Figure 3 show the incurred
overhead of the PPL threading module for thread creation
and joining. That is, the results indicate the added per-
thread execution time of both methods with respect to the
corresponding library implementation. For example, the to-
tal time of joining a single thread in PPL using Qthreads
is between 40 and 50 ns higher than joining a thread in
Qthreads. The overhead of using Argobots is largely due
to the implementation of our synchronization object. This
is not an issue for Qthreads since we utilize its FEB prim-

216 217 218 219 220 221
0

0.1

0.2

0.3

0.4

Number of threads

O
v
er
h
ea
d
(µ
s)

PPL (Argobots) (C) PPL (Argobots) (J)

PPL (Qthreads) (C) PPL (Qthreads) (J)

Figure 3: Per-thread incurred overhead of PPL for
creation and joining.

Number of Bodies 216 217 218 219 220

PPL (Qthreads) 1.3 2.9 4.9 6.5 5.1
PPL (Argobots) 2.6 8.0 13.0 13.4 8.8

Table 2: Speedup of PPL over UPCR-BH on 1024
cores.

itives. We expect to reduce the overheads through better
implementations of our module and through tighter integra-
tion with the threading libraries.

5.2 Application performance
To evaluate PPL as a whole, we have chosen three micro-

benchmark applications to use for experiments: the Barnes-
Hut algorithm, a Monte Carlo particle tracking algorithm,
and a sparse triangular linear system solver.

5.2.1 Barnes-Hut

The Barnes-Hut (BH) algorithm is an approximation al-
gorithm to the n-body problem. BH approximates the in-
teraction of a body with a collection of other bodies (cells)
deemed far enough by considering the collection as a sin-
gle body, using its center of mass as its location [25]. The
algorithm partitions and organizes the 3D space of bodies
into an octree, where each cell is recursively divided into
child cells, representing one octant of the parent cell. This
recursion stops once the number of bodies in a cell reaches
a fixed threshold. Once the octree is constructed, for each
body, the tree is traversed top down until nodes represent-
ing “far-enough” cells are reached in order to calculate the
forces acting on the body and progress the simulation.

Our BH implementation uses the algorithm implemented
and described in [36] (UPCR-BH) with the exception of the
force computation phase being implemented using PPL with
gptrs as tree nodes. By spawning a thread per body, we
are able to better load-balance large amounts of threads
and more effectively hide latency-prone operations. Further,
the caching subsystem ensures redundant communication
is prevented through the use of the noevict cache policy.
This algorithm was chosen for its property of stressing the
threading module with up to millions of threads per node.
It also shows the benefit of a high incidence of synergistic
caching, since bodies stored at the same process tend to be
nearby and tend to interact with the same cells. Addition-
ally, the resulting code is much simpler compared to UPCR-
BH which hand-tuned several techniques for optimization.

The results of our BH implementation for PPL are pre-

216 217 218 219 220 221 222
2−4

2−3

2−2

2−1

20
21
22
23
24
25
26

Number of bodies

F
o
rc
e
co
m
p
u
ta
ti
o
n
ti
m
e
(s
)

Argobots

Qthreads

32 Cores
64 Cores
128 Cores
256 Cores
512 Cores
1024 Cores

Figure 4: Force computation time for PPL using
Qthreads (dashed) and Argobots (solid) on 32 to
1024 cores.

sented in Figure 4. The tests were run for 65K to 4M bodies
on up to 1024 cores (64 nodes). We were unable to gather
results for 4M bodies for Argobots on 2 nodes due to per
node memory requirements surpassing the available mem-
ory. Table 2 presents speedup of our two implementations
against UPCR-BH on 1024 cores.

The trends in Figure 4 indicate that the use of Qthreads
results in better scaling as the number of bodies increase.
This is because Qthreads natively uses a work-stealing thread
scheduler and Argobots does not; we simply perform round-
robin scheduling with Argobots. Thus, Qthreads is better
equiped to remedy the imbalanced work loads of BH. On
the other hand, there are instances where Argobots out-
performs Qthreads, primarily for large node counts (i.e. 32
and 64 nodes). This is due to the added overhead in com-
munication synchronization for Qthreads which internally
spawns a new thread to perform the operation when at-
tempted from a non-Qthreads entity. In contrast, Argobots
allows us to synchronize without spawning a new thread.

5.2.2 Monte Carlo particle tracking

Monte Carlo particle tracking (MCPT) algorithms use
random sampling processes to approximate the diffusion of
particules through a structure. Such problems typically in-
volve frequent lookups of very large, static cross-section data
that is too large (≥100GB) to be stored on a single compute
node. Our MCPT implementation is designed for neutron
transport problems and is based on the Energy Band Mem-
ory Server (EBMS) algorithm [13]. The key idea is to de-
compose the cross-section data into energy bands that are
distributed across a set of memory servers from which data
is requested as needed. By processing particles within an
energy band, data locality can be exploited.

Our PPL implemention makes use of the memory model
to combine memory and tracking servers thus simplifying
access to cross-section data. Further, implicit caching us-
ing the evict policy enables easy exploitation of locality
through synergistic caching. We compared this with an
MPI-3 implementation [35] of the EBMS algorithm which
also combines memory and tracking servers. Data is stored
using MPI-3 shared memory methods, providing access for
every MPI process on a node. There is no threading, but
particles are distributed among every rank, and communi-
cation makes use of non-blocking collective operations.

The results of the PPL and MPI-3 implementations of
EBMS are presented in Figure 5. These were run using 50
million particles and 128 GB of cross-section data in 128 en-

28 29 210

100

200

300

Number of cores

T
o
ta
l
ex
ec
u
ti
o
n
ti
m
e
(s
)

PPL (Qthreads)

PPL (Argobots)
MPI-3

Figure 5: Total execution time of EBMS implemen-
tations for PPL and MPI-3.

24 25 26 27 28 29 210
0

4

8

12

Number of cores

S
p
ee
d
u
p
o
v
er

C
h
a
rm

+
+ circuit5M dc

circuit5M

Freescale1

FullChip

Geo 1438

Hamrle3

kkt power

largebasis

stocF-1465

harmonic mean

Figure 6: Speedup of sparse triangular system solver
implementation in PPL using Qthreads over Char-
m++ 6.6.1 on SMP for various matrices.

ergy bands at the largest scale, and scaled to have a constant
problem size per processor. We did not test at fewer than
256 cores because the small amount of communication does
not accurately represent the problem. PPL is slightly faster
than the MPI-3 version in all cases. Qthreads is slightly
faster than Argobots except at the largest scale; but in gen-
eral, both have very similar performance. The PPL ver-
sions spend additional time tracking particles due to using
dedicated communication threads, but caching and better
communication/computation overlap help performance.

To better understand the effectiveness of the software cache,
we also examined its hit rate for our EBMS implementation.
Hit rates are consistently above 97%, which we attribute to
good synergistic caching and locality.

Finally, a key point is that implementing EBMS using
PPL’s gptrs and caching is both natural and simple, whereas
the MPI-3 implementation is complex.

5.2.3 Sparse triangular linear system solver

Solutions to sparse triangular linear systems are often the
kernel for many numerical applications that arise in science
and engineering simulations. However, due to the lack of
concurrency from structural dependencies in the matrix and
the small computation per non-zero entry, it is difficult effi-
ciently parallelize. We have implemented a system modeled
after an algorithm presented in [31], which is implemented
in Charm++. To provide a data-driven execution model
needed for this type of problem, we use active messages.

Figure 6 presents speedups of our implementation over the
Charm++ implementation for a number of the matrices as
described in [31] (the performance of Argobots is relatively
similar, thus is not shown). We see at least 2x speedup
over Charm++ in most cases, and 3.3x on average. PPL’s

advantage over Charm++ degrades for a large number of
nodes due to a decrease in on-node parallelism and an in-
crease in communication. For both PPL and Charm++,
communication will eventually become the dominant factor
in performance.

6. CONCLUSION
We have presented the design and an in-development im-

plementation of PPL, a new C++11 parallel runtime for
studying future programming models. It supports RDMA
communication, active messages, lightweight threading, event-
driven task scheduling, and implicit caching, which greatly
simplify the development of many algorithms. These high-
level concepts also offer opportunities for performance im-
provements through better utilization of multitasking to in-
terleave communication and computation while avoiding un-
necessary communication.

The implementation of PPL is recent and we expect to
improve its performance in future work. In particular, we
expect that the overheads in the communication layer can
be reduced by improving the interaction between communi-
cation threads and communicating tasks. Further, we plan
to reduce the overhead of the threading module to be more
competitive with directly using Qthreads or Argobots and
to improve the performance of our software cache under the
load required by memory- and communication-intensive ap-
plications, like EBMS at scale.

Finally, we plan to develop better performance models
for PPL and other similar runtimes: the close interaction
between scheduling and communication implies that perfor-
mance models which study each in isolation are no longer
adequate.

Acknowledgments

The research presented in this paper was funded through
the NSF CISE CCF grant 1337217 and the Laboratory Di-
rected Research and Development (LDRD) program at San-
dia National Laboratories, in the context of the Extreme
Scale Grand Challenge LDRD project. The work used the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foun-
dation grant number ACI-1053575. Finally, our thanks to
Andrew Siegel for providing an MPI EBMS implementation.

7. REFERENCES

[1] Mellanox technologies. http://www.mellanox.com.

[2] B. Acun, A. Gupta, N. Jain, et al. Parallel
programming with migratable objects: Charm++ in
practice. In Supercomputing 2014, pages 647–658.
IEEE, 2014.

[3] A. Amer, H. Lu, Y. Wei, et al. MPI+Threads:
Runtime contention and remedies. In PPoPP 2015,
pages 239–248, New York, NY, USA, 2015. ACM.

[4] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Toward efficient support for multithreaded
mpi communication. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages
120–129. Springer, 2008.

[5] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Fine-grained multithreading support for
hybrid threaded mpi programming. International

Journal of High Performance Computing Applications,
24(1):49–57, 2010.

[6] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: expressing locality and independence with
logical regions. In Supercomputing 2012, page 66.
IEEE Computer Society Press, 2012.

[7] K. Bergman, S. Borkar, D. Campbell, et al. Exascale
computing study: Technology challenges in achieving
exascale systems. Defense Advanced Research Projects
Agency Information Processing Techniques Office
(DARPA IPTO), Tech. Rep, 15, 2008.

[8] D. Bonachea. GASNet specification, v1.8.
http://gasnet.lbl.gov/#spec, November 2008.

[9] P. Charles, C. Grothoff, V. Saraswat, et al. X10: an
object-oriented approach to non-uniform cluster
computing. ACM SIGPlan Notices, 40(10):519–538,
2005.

[10] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, et al. An
evaluation of global address space languages: Co-array
Fortran and Unified Parallel C. In PPoPP 2005, pages
36–47. ACM, 2005.

[11] K. Devine, E. Boman, R. Heaphy, et al. Zoltan data
management services for parallel dynamic
applications. Computing in Science & Engineering,
4(2):90–96, 2002.

[12] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In
Recent Advances in the Message Passing Interface,
pages 11–20. Springer, 2010.

[13] K. G. Felker, A. R. Siegel, K. S. Smith, P. K. Romano,
and B. Forget. The Energy Band Memory Server
Algorithm for Parallel Monte Carlo Transport
Calculations. In Joint International Conference on
Supercomputing in Nuclear Applications and Monte
Carlo, 2013.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In ACM Sigplan Notices, volume 33, pages 212–223.
ACM, 1998.

[15] W. Gropp and R. Thakur. Thread-safety in an MPI
implementation: Requirements and analysis. Parallel
Computing, 33(9):595–604, 2007.

[16] P. Husbands, C. Iancu, and K. Yelick. A performance
analysis of the berkeley upc compiler. In ICS ’03,
pages 63–73. ACM, 2003.

[17] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio,
and D. Fey. HPX: A task based programming model
in a global address space. In Proceedings of the 8th
International Conference on Partitioned Global
Address Space Programming Models, page 6. ACM,
2014.

[18] L. V. Kale and S. Krishnan. CHARM++: A portable
concurrent object oriented system based on C++. In
OOPSLA ’93, pages 91–108, New York, NY, USA,
1993. ACM.

[19] T. Mattson, R. Cledat, Z. Budimlic, et al. OCR: The
open community runtime interface version 1.1.0.
http://xstack.exascale-tech.com/git/public?p=

xstack.git;a=blob;f=ocr/spec/ocr-1.0.0.pdf,
June 2015.

[20] MPI Forum. MPI: A message-passing interface
standard version 3.0. http://www.mpi-forum.org/
docs/mpi-3.0/mpi30-report.pdf, Sept. 2012.

[21] R. W. Numrich and J. Reid. Co-Array Fortran for
parallel programming. In ACM Sigplan Fortran
Forum, volume 17, pages 1–31. ACM, 1998.

[22] OpenMP Architedcture Review Board. OpenMP
application program interface version 4.0. http:
//www.openmp.org/mp-documents/OpenMP4.0.0.pdf,
July 213.

[23] J. Reinders. Intel threading building blocks: outfitting
C++ for multi-core processor parallelism. O’Reilly
Media, Inc., 2007.

[24] A. Righi. umalloc.c file reference. http://minirighi.
sourceforge.net/html/umalloc_8c.html. Accessed:
2014-10-17.

[25] J. K. Salmon. Parallel hierarchical N-body methods.
PhD thesis, California Institute of Technology, 1991.

[26] V. Sarkar, W. Harrod, and A. E. Snavely. Software
challenges in extreme scale systems. In Journal of
Physics: Conference Series, volume 180, page 012045.
IOP Publishing, 2009.

[27] S. Seo, A. Amer, P. Balaji, P. Beckman, C. Bordage,

G. Bosilca, A. Brooks, A. CastellÃş, D. Genet,
T. Herault, P. Jindal, L. V. Kale, S. Krishnamoorthy,
J. Lifflander, H. Lu, E. Meneses, M. Snir, and Y. Sun.
Argobots: A lightweight low-level threading/tasking
framework.
http://collab.mcs.anl.gov/display/ARGOBOTS/,
2015.

[28] M. Si, A. J. Peña, P. Balaji, et al. MT-MPI:
Multithreaded MPI for many-core environments. In
ICS ’14, pages 125–134. ACM, 2014.

[29] H. Tang and T. Yang. Optimizing threaded MPI
execution on SMP clusters. In ICS ’01, pages 381–392.
ACM, 2001.

[30] Texas Advanced Computing Center. Stampede.
portal.tacc.utexas.edu/user-guides/stampede.
Accessed: 2015-01-13.

[31] E. Totoni, M. T. Heath, and L. V. Kale.
Structure-adaptive parallel solution of sparse
triangular linear systems. Parallel Computing,
40(9):454–470, 2014.

[32] UPC Consortium. UPC language specifications v1.3.
http:

//upc.lbl.gov/publications/upc-spec-1.3.pdf,
2013.

[33] V. M. Weaver. Linux perf event features and
overhead. In The 2nd International Workshop on
Performance Analysis of Workload Optimized
Systems, FastPath, page 80, 2013.

[34] K. B. Wheeler, R. C. Murphy, and D. Thain.
Qthreads: An API for programming with millions of
lightweight threads. In IPDPS 2008, pages 1–8. IEEE,
2008.

[35] J. Zhang. MPI-3 EBMS.
http://github.com/ANL-CESAR/EBMS, 2015.

[36] J. Zhang, B. Behzad, and M. Snir. Design of a
multithreaded Barnes-Hut algorithm for multicore
clusters. IEEE Transactions on Parallel and
Distributed Systems, 26(7):31–36, 2015.

