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Abstract

Background: Likelihood-based phylogenetic inference is generally considered to be the most reliable classification

method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied

to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack

of phylogenetic signal. “Phylogenetic placement,” where a reference tree is fixed and the unknown query

sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by

likelihood-based approaches to large data sets.

Results: This paper introduces pplacer, a software package for phylogenetic placement and subsequent

visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per

hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy

to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a

statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the

positional uncertainty for query sequences by calculating expected distance between placement locations, which is

crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations

using branch thickness and color to represent number of placements and their uncertainty. A simulation study

using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over

a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement

confidence.

Conclusions: Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-

based phylogenetics methodology practical for large collections of reads; it is freely available as source code,

binaries, and a web service.

Background
High-throughput pyrosequencing technologies have

enabled the widespread use of metagenomics and meta-

transcriptomics in a variety of fields [1]. This technology

has revolutionized the possibilities for unbiased surveys

of environmental microbial diversity, ranging from the

human gut to the open ocean [2-8]. The trade off for

high throughput sequencing is that the resulting

sequence reads can be short and come without

information on organismal origin or read location within

a genome.

The most common way of analyzing a metagenomic

data set is to use BLAST [9] to assign a taxonomic

name to each query sequence based on “reference” data

of known origin. This strategy has its problems: when a

query sequence is only distantly related to sequences in

the database, BLAST can either err substantially by for-

cing a query into an alignment with a known sequence,

or return an uninformatively broad collection of align-

ments. Furthermore, similarity statistics such as BLAST

E-values can be difficult to interpret because they are

dependent on fragment length and database size.
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Therefore it can be difficult to know if a given taxo-

nomic assignment is correct unless a very clear “hit” is

found.

Numerous tools have appeared that assign taxonomic

information to query sequences, overcoming the short-

comings of BLAST. For example, MEGAN (MEtaGen-

ome ANalyzer) [10] implements a commonancestor

algorithm on the NCBI taxonomy using BLAST scores.

PhyloPythia [11], TACOA [12], and Phymm [13] use

composition based methods to assign taxonomic infor-

mation to metagenomic sequences. Recent tools can

work with reads as short as 100 bp.

Phylogeny offers an alternative and complementary

means of understanding the evolutionary origin of query

sequences. The presence of a query sequence on a cer-

tain branch of a tree gives precise information about the

evolutionary relationship of that sequence to other

sequences in the tree. For example, a query sequence

placed deep in the tree can indicate how the query is

distantly related to the other sequences in the tree,

whereas the corresponding taxonomic name would sim-

ply indicate membership in a large taxonomic group.

On the other hand, taxonomic names are key to obtain-

ing functional information about organisms, and the

most robust and comprehensive means of understanding

the provenance of unknown sequences will derive both

from taxonomic and phylogenetic sources.

Likelihood-based phylogenetics, with over 30 years of

theoretical and practical development, is a sophisticated

tool for the evolutionary analysis of sequence data. It

has well-developed statistical foundations for inference

[14,15], tests for uncertainty estimation [16], and sophis-

ticated evolutionary models [17,18]. In contrast to dis-

tance-based methods, likelihood-based methods can use

both low and high variation regions of an alignment to

provide resolution at different levels of a phylogenetic

tree [19].

Traditional likelihood-based phylogenetics approaches

are not always appropriate for analyzing the data from

metagenomic and metatranscriptomic studies. The first

challenge is that of complexity: the maximum likelihood

phylogenetics problem is NP-hard [20,21] and thus max-

imum likelihood trees cannot be found in a practical

amount of time with many taxa. A remarkable amount

of progress has been made in approximate acceleration

heuristics [22-25], but accurate maximum likelihood

inference for hundreds of thousands of taxa remains out

of reach.

Second, accurate phylogenetic inference is not possible

with fixed length sequences in the limit of a large num-

ber of taxa. This can be seen via theory [26], where

lower bounds on sequence length can be derived as an

increasing function of the number of taxa. It is clear

from simulation [27], where one can directly observe

the growth of needed sequence length. Such problems

can also be observed in real data where insufficient

sequence length for a large number of taxa is manifested

as a large collection of trees similar in terms of likeli-

hood [28]; statistical tools can aid in the diagnosis of

such situations [16].

The lack of signal problem is especially pronounced

when using contemporary sequencing methods that pro-

duce a large number of short reads. Some methodolo-

gies, such as 454 [29], will soon be producing sequence

in the 600-800 bp range, which is sufficient for classical

phylogenetic inference on a moderate number of taxa.

However, there is considerable interest in using mas-

sively parallel methodologies such as SOLiD and Illu-

mina which produce hundreds of millions of short reads

at low cost [30]. Signal problems are further exacerbated

by shotgun sequencing methodology where the

sequenced position is randomly distributed over a given

gene. Applying classical maximum-likelihood phylogeny

to a single alignment of shotgun reads together with

full-length reference sequences can lead to artifactual

grouping of short reads based on the read position in

the alignment; such grouping is not a surprise given

that non-sequenced regions are treated as missing data

(see, e.g. [19,31]).

A third problem is deriving meaningful information

from large trees. Although significant progress has been

made in visualizing trees with thousands of taxa [32,33],

understanding the similarities and differences between

such trees is inherently difficult. In a setting with lots of

samples, constructing one tree per sample requires com-

paring trees with disjoint sets of taxa; such comparisons

can only be done in terms of tree shape [34]. Alterna-

tively, phylogenetic trees can be constructed on pairs of

environments at a time, then comparison software such

as UniFrac [35] can be used to derive distances between

them, but the lack of a unifying phylogenetic framework

hampers the analysis of a large collection of samples.

“Phylogenetic placement” has emerged in the last several

years as an alternative way to gain an evolutionary

understanding of sequence data from a large collection

of taxa. The input of a phylogenetic placement algo-

rithm consists of a reference tree, a reference alignment,

and a collection of query sequences. The result of a phy-

logenetic placement algorithm is a collection of assign-

ments of query sequences to the tree, one assignment

for each query (or more than one when placement loca-

tion is uncertain). Phylogenetic placement is a simplified

version of phylogenetic tree reconstruction by sequential

insertion [36,37]. It has been gaining in popularity, with

recent implementations in 2008 [38,39], and more effi-

cient implementations in this paper and by Berger and

Stamatakis [28]. A recent HIV subtype classification

scheme [40] is also a type of phylogenetic placement
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algorithm that allows the potential for recombination in

query sequences.

Phylogenetic placement sidesteps many of the pro-

blems associated with applying traditional phylogenetics

algorithms to large, environmentally-derived sequence

data. Computation is significantly simplified, resulting in

algorithms that can place thousands to tens of thou-

sands of query sequences per hour per processor into a

reference tree on a thousand taxa. Because computation

is performed on each query sequence individually, the

calculation can be readily parallelized. The relationships

between the query sequences are not investigated, redu-

cing from an exponential to a linear number of phyloge-

netic hypotheses. Short and/or non-overlapping query

sequences pose less of a problem, as query sequences

are compared to the full-length reference sequences.

Visualization of samples and comparison between sam-

ples are facilitated by the assumption of a reference tree,

that can be drawn in a way which shows the location of

reads.

Phylogenetic placement is not a substitute for tradi-

tional phylogenetic analysis, but rather an approximate

tool when handling a large number of sequences.

Importantly, the addition of a taxon x to a phylogenetic

data set on taxa S can lead to re-evaluation of the phylo-

genetic tree on S; this is the essence of the taxon sam-

pling debate [41] and has recently been the subject of

mathematical investigation [42]. This problem can be

mitigated by the judicious selection of reference taxa

and the use of well-supported phylogenetic trees. The

error resulting from the assumption of a fixed phyloge-

netic reference tree will be smaller than that when using

an assumed taxonomy such as the commonly used

NCBI taxonomy, which forms a reference tree of sorts

for a number of popular methods currently in use

[10,43]. Phylogenetic placement, in contrast, is done on

a gene-by-gene basis and can thus accommodate the

variability in the evolutionary history of different genes,

which may include gene duplication, horizontal transfer,

and loss.

This paper describes pplacer, software developed to

perform phylogenetic placement with linear time and

memory complexity in each relevant parameter: number

of reference sequences, number of query sequences, and

sequence length. Pplacer was developed to be user-

friendly, and its design facilitates integration into

metagenomic analysis pipelines. It has a number of dis-

tinctive features. First, it is unique among phylogenetic

placement software in its ability to evaluate the posterior

probability of a placement on an edge, which is a statis-

tically rigorous way of quantifying uncertainty on an

edge-by-edge basis. Second, pplacer enables calcula-

tion of the expected distance between placement loca-

tions for each query sequence; this development is

crucial for uncertainty estimation in regions of the tree

consisting of many short branches, where the placement

edge may be uncertain although the correct placement

region in the tree may be relatively clear. Third, ppla-

cer can display both the number of placements on an

edge and the uncertainty of those placements on a sin-

gle tree (Figure 1). Such visualizations can be used to

understand if placement uncertainty is a significant pro-

blem for downstream analysis and to identify proble-

matic parts of the tree. Fourth, the pplacer software

package includes utilities to ease large scale analysis and

sorting of the query alignment based on placement loca-

tion. These programs are available in GPLv3-licensed

code and binary form http://matsen.fhcrc.org/pplacer/,

which also includes a web portal for running pplacer

and for visualizing placement results.

To validate pplacer’s phylogenetic placement algo-

rithm we implemented a framework that simulates reads

from real alignments and tests pplacer’s ability to

place the read in the correct location. As described

below, a primary focus of this effort is a simulation

study of 631 COG alignments, where 10 reads were

simulated from each taxon of each alignment, placed on

their respective trees, and evaluated for accuracy. These

tests confirm both that pplacer places reads accu-

rately and that the posterior probability and the likeli-

hood weight ratio (described below) both do a good job

of indicating whether a placement can be trusted or not.

We also use these simulations to understand how the

distance to sister taxon impacts placement accuracy.

Results
Overview of phylogenetic placement using pplacer

Pplacer places query sequences in a fixed reference

phylogeny according to phylogenetic posterior probabil-

ity and maximum likelihood criteria. In Bayesian mode,

pplacer evaluates the posterior probability of a frag-

ment placement on an edge conditioned on the refer-

ence tree topology and branch lengths. The posterior

probability has a clear statistical interpretation as the

probability that the fragment is correctly placed on that

edge, assuming the reference tree, the alignment, and

the priors on pendant branch length. Because the refer-

ence tree is fixed, direct numerical quadrature over the

likelihood function can be performed to obtain the pos-

terior probability rather than relying on Markov chain

Monte-Carlo procedures as is typically done in phyloge-

netics [44,45]. In maximum likelihood (ML) mode,

pplacer evaluates the “likelihood weight ratio” [39],

i.e. the ML likelihood values across all placement loca-

tions normalized to sum to one.

Because the reference tree is fixed with respect to

topology and branch length, only two tree traversals are

needed to precompute all of the information needed
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Figure 1 Example application, showing uncertainty. Pplacer example application using psbA reference sequences and the corresponding

recruited Global Ocean Sampling [4] (GOS) sequences showing both number of placements and their uncertainty. Branch thickness is a linear

function of the log-transformed number of placements on that edge, and branch color represents average uncertainty (more red implies more

uncertain, with yellow denoting EDPL above a user-defined limit). The upper panel shows the Prochlorococcus clade of the tree. The lower panel

shows a portion of the tree with substantial uncertainty using the EDPL metric. Placeviz output viewed using Archaeopteryx [32].
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from the reference tree. From there all likelihood com-

putation is performed on a collection of three-taxon

trees, the number of which is linear in the number of

reference taxa. Therefore the fragment placement com-

ponent of our algorithm has linear time and space com-

plexity in the number of taxa n in the reference tree

(Figures 2 and 3). It is also linear in the length of the

query sequence, as described in the section on algorith-

mic internals. Note that the fixing of branch lengths in

the reference tree is an approximation that permits the

linear time operation in n (typically all branch lengths

are re-optimized when modifying the tree).

The pplacer binary is stand-alone; a single com-

mand specifying the reference tree, the reference align-

ment, a reference statistics file, and the aligned reads

suffices to run the core pplacer analysis. Pplacer

does not optimize sequence mutation model parameters,

and instead obtains those values from PHYML [22] or

RAxML [23] statistics output files. When analyzing pro-

tein sequences the user can choose between the LG [18]

or WAG [46] models, and nucleotide likelihoods are

computed via the general time reversible (GTR) model.

Rate variation among sites is accomodated by the dis-

crete Γ model [17]. For posterior probability calculation,

the user can choose between exponential or uniform

pendant branch length priors. Each pplacer run cre-

ates a .place file that describes the various placements

and their confidence scores; analysis can be done

directly on this file, or the user can run it through

placeviz, our tool to visualize the fragment place-

ments. The pplacer code is written in the functional/

imperative language ocaml[47] using routines from the

GNU scientific library (GSL) [48].

To accelerate placements, pplacer implements a

two-stage search algorithm for query sequences, where a

quick first evaluation of the tree is followed by a more

detailed search in high-scoring parts of the tree. The

more detailed second search is directed by pplacer’s

“baseball” heuristics, which limit the full search in a way

that adapts to the difficulty of the optimization problem

(described in detail in “Methods”). The balance between

speed and accuracy depends on two parameters, which

can be appropriately chosen for the problem at hand via

pplacer’s “fantasy baseball” mode. This feature places

a subset of the query sequences and reports the accu-

racy of the parameter combinations within specified

ranges, as well as information concerning runtime for

those parameter combinations. The user can then apply

these parameter choices for an optimized run of their

data.

Quantifying uncertainty in placement location

Pplacer calculates edge uncertainty via posterior prob-

ability and the likelihood weight ratio. These methods

quantify uncertainty on an edge-by-edge basis by com-

paring the best placement locations on each edge. Such

quantities form the basis of an understanding of place-

ment uncertainty.

The Expected Distance between Placement Locations

(EDPL) is used to overcome difficulties in distinguishing

between local and global uncertainty, which is a compli-

cation of relying on confidence scores determined on an

edge-by-edge basis. This quantity is computed as follows

for a given query sequence. Pplacer first determines

the top-scoring collection of edges; the optimal place-

ment on each edge is assigned a probability defining

confidence, which is the likelihood weight ratio (in ML

mode) or the posterior probability (in Bayesian mode).

The EDPL uncertainty is the weighted-average distance

between those placements (Figure 4), i.e. the sum of the

distances between the optimal placements weighted by

Figure 2 Linear time dependence on number of reference taxa.

Time to place 10,000 16 s rRNA reads of median length 198 nt onto

a reference phylogenetic tree, with a 1287 nt reference alignment.

Tests run on an Intel Xeon @ 2.33 Ghz.

Figure 3 pplacermemory requirements. Memory required to

place 10,000 16 s rRNA reads of median length 198 nt onto a

reference phylogenetic tree, with a 1287 nt reference alignment.

Tests run on an Intel Xeon @ 2.33 Ghz.
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their probability (4). The EDPL thus uses distances on

the tree to distinguish between cases where nearby

edges appear equally good, versus cases when a given

query sequence does not have a clear position in the

tree. These measures of uncertainty can then be viewed

with placeviz as described below.

Visualizing placements using placeviz and placement

management using placeutil

Our package includes tools to facilitate placement visua-

lization and management: placeviz and placeutil.

Placeviz converts the placement files generated by

pplacer into tree formats that are viewable by external

viewers. The richest visualizations make use of the phy-

loXML format [49], which can be viewed using the

freely available Archaeopteryx [32] Java software. Less

information-dense visualizations are also available in the

standard “Newick” format [19].

As shown in Figure 1, placeviz extends previous

work on visualizations [39], representing placement den-

sity (branch thickness) and uncertainty (color) on a sin-

gle tree. Specifically, it draws the reference tree such

that the thickness of the branch is a linear function of

the number of placements (this linear function has a

non-zero y-intercept so that the whole tree is visible);

the weighted average EDPL uncertainty for the place-

ments on the tree is expressed as a color gradient from

the usual branch length color (white or black by choice)

to red, with 100% red representing a user-defined uncer-

tainty maximum. Yellow is used to denote edges whose

average EDPL uncertainty is above the given maximum

level. An example placeviz visualization can be

viewed interactively at http://matsen.fhcrc.org/pplacer/

visualization.html.

Placeviz also offers other visualization options,

such as individually placing the query sequences on the

tree, which is useful for a small number of placements.

It also can sort query sequences by their best scoring

edge into a .loc.fasta file; inspection can reveal if

any specific features of the query sequences lead to pla-

cement on one edge or another. This sorting can also

group query sequences as potentially coming from simi-

lar organisms, even if those query sequences do not

overlap.

Placeutil is a utility for combining, splitting apart,

and filtering placements, which can be useful when

doing large scale analysis. For example, when a collec-

tion of query sequences are split apart to run in parallel,

their placements can be brought back together using

placeutil, while checking that they were run using

the same reference tree and model parameters. Conver-

sely, if a number of samples were run together, they can

be split apart again using regular expressions on their

names. Placements can also be separated by likelihood

weight ratio, posterior probability, and EDPL.

A pplacer application: psbA in the Global Ocean

Sampling (GOS) database

To demonstrate the use of pplacer for a metagenomic

study, we analyzed the psbA and psbD gene for the D1

and D2 subunits of photosystem II in cyanobacterial

and eukaryotic chloroplasts [50] from the Global Ocean

Sampling (GOS) dataset [4]. The GOS database is the

largest publicly available metagenomic database, and has

been the subject of numerous studies. We choose the

psbA and psbD genes because they are well defined, are

Figure 4 Measuring uncertainty by the expected distance

between placement locations (EDPL). The Expected Distance

between Placement Locations (EDPL) uncertainty metric can

indicate if placement uncertainty may pose a problem for

downstream analysis. The EDPL uncertainty is the sum of the

distances between the optimal placements weighted by their

probability (4). The hollow stars on the left side of the tree depict a

case where there is considerable uncertainty as to the exact

placement edge, but the collection of possible edges all sit in a

small region of the tree. This local uncertainty would have a low

EDPL score. The full stars on the right side of the diagram would

have a large EDPL, as the different placements are spread widely

across the tree. Such a situation can be flagged for special

treatment or removal.
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found across domains, and can be used to differentiate

cyanobacteria from eukaryotic phototrophs in a data set

assuming sequence reads are accurately identified [51].

In addition, it has been shown in a number of studies

that cyanophage virus genomes contain both psbA and

psbD sequences [52-55], and that viruses are the source

of a substantial number psbA and psbD sequences in

GOS [56,57]. BLAST searches using either a eukaryotic

psbA query or a cyanobacterial psbA query sequence

can yield the same collection of reads from GOS with

similar E-values - even very low values on the order of

10-100 or smaller in some cases (Additional file 1: Table

S1). This can make taxonomic assignment even at a

high level difficult using BLAST-based comparisons.

The use of pplacer on the closely related psbA and

psbD genes demonstrates phylogenetic placement on

closely related paralogs.

To identify psbA and psbD genes in the GOS dataset,

we performed a HMMER [58] search of the GOS data-

set using a 836 nucleotide reference alignment contain-

ing 270 reference sequences of cyanobacteria, eukaryotic

plastids, and virus. The reference alignment included all

possible reference sequences for psbA and psbD from

published genomes, which is important for confident

phylogenetic identification of new clades or strains. A

total of 8535 metagenomic sequences were recruited by

HMMER with an E-value cut off of 10-5; these were

then placed on the reference tree using pplacer (Fig-

ures 1 and 5). The expanded region of the trees shown

in the figures highlights the Prochlorococcus clade,

known to be one of the most abundant phototrophs in

the global ocean. There are many sequences placed sis-

ter to the sequenced representatives but also many

sequences placed at internal nodes, that could represent

some as yet unsequenced strain of these cyanobacteria.

Simulation

Simulation experiments were conducted to verify overall

accuracy and to determine the relationship between

confidence scores and accuracy. The simulation removes

one taxon at a time from a given reference tree, simu-

lates fragments from that taxon, then evaluates how

accurately the placement method assigns the simulated

fragments to their original position. In order to evaluate

the accuracy of the placements, a simple topological dis-

tance metric is used. We have not simulated homopoly-

mer-type errors in the alignments, because such errors

should be treated by a pre-processing step and thus are

not the domain of a phylogenetic placement algorithm.

Furthermore, the emergence of more accurate very high

throughput sequencing technology [30] re-focuses our

attention on the question of speed rather than error

problems. Further details are given in the “Methods”

section.

A broad simulation analysis of pplacer performance

was done using 631 COG [59] alignments. The COG

alignments had between 19 and 436 taxa, with a median

of 41; they were between 200 and 2050 amino acids in

length, with a median of 391 (supplemental Figures S1

and S2). Reference phylogenetic trees were built based

on the full-length gene sequences for each of these

genes using PHYML [22] and the LG [18] protein sub-

stitution model (LG model chosen based on the evi-

dence presented in the corresponding paper). Each

taxon from each gene alignment was eliminated one at

a time from the reference set as described in “Methods";

ten reads were simulated from each, leading to a total of

334,670 simulated reads, which were aligned to a hidden

Markov model of the reference alignment. As is com-

monly done when analyzing a metagenome, the reads

were filtered by their HMMER E-value (in this case

10-5). Two normal distributions were used for read

length: a “long” read simulation with amino acid

sequence length of mean 85 and standard deviation of

20, and a “short” read simulation with mean 30 and

standard deviation of 7. After the HMMER step, the

“long” read simulation placed a total of 285,621 reads,

and the “short” one placed a total of 148,969 reads on

their respective phylogenetic trees.

The best resulting maximum likelihood placement

edge was compared to the placement with the highest

posterior probability to determine how well the confi-

dence scores reflect the difference between accurate and

inaccurate placements (Tables 1 and 2). Both methods

provide similar results, implying that the likelihood

weight ratio appears to be a reasonable proxy for the

more statistically rigorous posterior probability calcula-

tion, although posterior probability does a slightly better

job of distinguishing between accurate and inaccurate

placements for the short reads. Overall, accuracy is high

and there is a strong correlation between likelihood

weight ratio, posterior probability, and accuracy. Many

of the placements were placed with high confidence

score and high accuracy in large and small trees

(Figure 6). Reads from more closely related taxa are

easier to accurately place than more distantly related

taxa (Figure 7), although good placement is achieved

even when sequences are only distantly related to the

sequences in the reference tree.

Discussion
Likelihood-based phylogeny is a well developed way to

establish the evolutionary relationships between

sequences. Phylogenetic placement is a simplified ver-

sion of likelihood-based phylogenetic inference that

enables rapid placement of numerous short query

sequences and sidesteps some of the problems inherent

in applying phylogenetics to hundreds of thousands or
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Figure 5 Example application. Placement visualization of same results as in Figure 1. The notation “15_at_4”, for example, means that 15

sequences were placed at internal edge number 4. These edge numbers can then be used to find the corresponding sequences in the .loc.

fasta file. Placeviz output viewed using FigTree [75].
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millions of taxa. Phylogenetic placement is by no means

a replacement for classical phylogenetic inference, which

should be applied when query sequences are full length

and moderate in number.

Phylogenetic placement software sits in a category dis-

tinct from taxonomic identification software such as

MEGAN [10] or Phymm [13]. First, phylogenetic place-

ment software does not assign names to query

sequences, and instead returns an assignment of the

query sequences to edges of a phylogenetic tree. Second,

phylogenetic placement is designed to work with a sin-

gle reference phylogenetic tree built on a single align-

ment. Thus it is well suited for fine-scale analysis of

query sequences to provide detailed comparative and

evolutionary information at the single gene level. This

poses no problems when looking at a single marker

gene such as such as 16 S, but some scripting and auto-

mation is necessary when there are many genes of inter-

est. These challenges are somewhat mitigated through

program design and pipeline scripts [60], but phyloge-

netic placement methods may always require more work

than general purpose taxonomic classification software.

Phylogenetic placement is also different from packages

that construct a phylogenetic tree de novo in order to

infer taxonomic identity by clade membership. Such

packages, such as CARMA [61] and SAP [43,62], com-

bine sequence search, alignment, and phylogeny into a

complete pipeline to provide taxonomic information for

an unknown query sequence. Because different query

sequences will have different sets of reference taxa,

these methods are not phylogenetic placement algo-

rithms as described above. Also, because they are per-

forming a full phylogenetic tree construction, they either

use distance-based methods for faster results [43,61] or

are many orders of magnitude slower than phylogenetic

placement methods [62].

Pplacer is not the only software to perform likeli-

hood-based phylogenetic placement. The first pair of

software implementations were the “phylomapping”

method of [38], and the first version of the “MLTree-

Map” method of [39]. Both methods use a topologically

fixed reference tree, and are wrappers around existing

phylogenetic implementations: ProtML [63] for phylo-

mapping, and TREE-PUZZLE [64] for MLTreeMap.

Neither project has resulted in software that is freely

available for download (MLTreeMap is available as a

web service, but as it is tied to a core set of bacterial

genes it is not useful for scientists examining other

genes or domains). Also, by using a general-purpose

phylogenetic computing engine, they miss on opportu-

nities to optimize on computation and the resulting

algorithm is not linear in the number of reference taxa.

Both methods equip placement with a statistically justifi-

able but non-traditional confidence score: phylomapping

adapts the RELL bootstrap [65] to their setting, and

MLTreeMap uses the “expected maximum likelihood

weight ratio,” which has been discussed in [66].

AMPHORA also uses a hybrid parsimony and neighbor-

joining strategy to place query sequences in a fixed

reference tree [67].

The only other software at present that performs like-

lihood-based phylogenetic placement at speeds compar-

able of pplacer is the independently-developed

“evolutionary placement algorithm” (EPA) [28] available

as an option to RAxML [23]. Pplacer and the EPA

Table 1 Accuracy results for the mean 85 AA COG

simulation

range ML μ PP μ ML s PP s ML FC PP FC ML # PP #

0.0-0.1 - - - - - - 0 0

0.1-0.2 3.57 3.78 3.09 3.27 0.07 0.03 4149 2312

0.2-0.3 2.97 3.19 3.04 3.06 0.16 0.11 15123 9018

0.3-0.4 2.39 2.76 3.00 3.07 0.26 0.17 22696 18373

0.4-0.5 2.25 2.29 3.11 2.98 0.32 0.24 20120 23022

0.5-0.6 2.14 2.11 3.09 3.01 0.36 0.32 17228 20090

0.6-0.7 1.94 1.95 3.04 2.99 0.42 0.38 14113 16223

0.7-0.8 1.86 1.85 3.05 3.01 0.47 0.44 13527 14879

0.8-0.9 1.62 1.65 2.97 2.97 0.55 0.52 14850 15747

0.9-1.0 0.32 0.32 1.54 1.53 0.92 0.92 163815 165957

Error analysis for the COG simulation with the error metric described in the

text. As in Figure 6, simulated reads had a normally-distributed length with a

mean of 85 amino acids, and a standard deviation of 20. This table pools the

results, and shows mean (μ) and standard deviation (s) of the error, the

fraction placed correctly (FC), and the number of reads placed for pplacer

run in maximum likelihood (ML) and posterior probability (PP) modes. For

example, the “ML” columns in the row labeled 0.4-0.5 shows error statistics for

all of the reads in the simulation that had likelihood weight ratio between 0.4

and 0.5: there were 20120 such reads of which 32% were placed correctly,

and the corresponding error mean and standard deviation of about 2.25 and

2.29, respectively. This table demonstrates the effectiveness of the confidence

scores- as the confidence scores increase, the error decreases. We note that

the ML and PP methods have very comparable performance for this length of

read, and thus the quickly-calculated ML weight ratio can act as a proxy for

the more statistically rigorous posterior probability calculation.

Table 2 Accuracy results for the mean 30 AA COG

simulation

range ML μ PP μ ML s PP s ML FP PP FP ML # PP #

0.0-0.1 - - - - - - 0 0

0.1-0.2 3.67 3.94 3.23 3.31 0.09 0.05 7736 3583

0.2-0.3 3.24 3.48 3.26 3.23 0.16 0.11 17491 14308

0.3-0.4 2.64 2.98 3.23 3.26 0.26 0.17 17000 17600

0.4-0.5 2.51 2.46 3.30 3.11 0.33 0.25 11114 14572

0.5-0.6 2.27 2.27 3.26 3.10 0.40 0.33 8375 9894

0.6-0.7 2.11 2.03 3.14 3.08 0.45 0.41 6921 7771

0.7-0.8 1.83 1.76 3.06 2.98 0.52 0.50 6321 6530

0.8-0.9 1.51 1.44 2.92 2.83 0.62 0.60 7101 6873

0.9-1.0 0.22 0.20 1.22 1.17 0.94 0.94 66910 67838

Similar analysis as Table 1, but with a normally-distributed length with a mean

of 30 amino acids, and a standard deviation of 7. In this case, the posterior

probability calculation shows slightly superior ability to distinguish between

accurate and inaccurate placements than the likelihood weight ratio.
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both cache likelihood information on the tree to acceler-

ate placement, and both use two-stage algorithms to

quickly place many sequences. The two packages use

different acceleration heuristics, but only pplacer

offers guidance on parameter choices to use for those

heuristics via its “fantasy baseball” feature as described

below in the section on algorithmic internals. The EPA

allows for one parameter more flexibility than pplacer

for branch length optimization, and can perform place-

ment on partitioned datasets and inference on binary,

RNA secondary structure, and multi-state data. The

EPA offers single-process parallelization [68] (note both

the EPA and pplacer can easily be run in parallel as

multiple processes). The EPA leverages the efficient

memory representation of RAxML, such that an equiva-

lent run using the Gamma model of rate variation will

use half the memory of pplacer, and a run using the

CAT approximation will require one eighth of the mem-

ory. The EPA comes without a visualization tool such as

placeviz, although it can be visualized if run on their

webserver, or within the new MLTreeMap suite of Perl

scripts for visualization [60].

We have compared the performance of EPA and

pplacer in a study designed jointly by ourselves and

the authors of [28]. Pplacer and the EPA showed

comparable speed in placing metagenomic reads on

reference trees of different sizes (Figure 8). For accuracy,

we simulated from the 16 s alignments used for accu-

racy evaluation in [28]. As in their paper, we simulated

nucleotide reads of normally distributed length with

mean 200 and standard deviation 60. The error was

evaluated using the same topological error metric in two

ways: first, the error of the placement with the highest

likelihood (Figure 9), and second, the total error

weighted by the normalized likelhood weights (Figure

10). Each program was run with the four-category

gamma model of rate heterogeneity. There was no clear

difference in accuracy between EPA and pplacer for

these alignments with either of these ways of evaluating

the error. This is despite the fact that the “correct” pla-

cement was chosen to be that assigned by the EPA with

the full length sequence.

In contrast to the EPA, pplacer placements all sit

on a single reference tree with its associated branch

lengths fixed. Thus it is easy to compare the relative

location of placements, and to consider all placements

on a single tree. Placement locations along a branch are

useful in cases such as classification, where a placement

close to the root of a clade may be assigned membership

to that clade, whereas placements in the middle of the

same edge may not. The EPA, on the other hand, opti-

mizes the length of the branch of the reference tree as

well as the placement location along that branch; thus

Figure 6 Simulation with 631 COG alignments. Error analysis

from a simulation study using 631 COG alignments. Ten reads were

simulated from each taxon of each alignment, and then binned

according to the likelihood weight ratio of their best placement;

ranges for the four bins are indicated in the legend. There is one

scatter point in the plot for each bin of each alignment: the x-axis

for each plot shows the number of taxa in the tree used for the

simulation, and the y axis shows the average error for that bin. For

example, a point at (100, 1.2) labeled 0.5 - 0.75 indicates that the set

of all placements for an alignment of 100 taxa with confidence

score between 0.5 and 0.75 has average error of 1.2. As described in

the text, the error metric is the number of internal nodes between

the correct edge and the node placement edge.

Figure 7 Accuracy versus distance to sister taxon: COG

simulation. The relationship between accuracy and phylogenetic

(sum of branch length) distance to the sister taxon for the COG

simulation. For each taxon in each alignment, the phylogenetic

distance to the closest sister taxon was calculated, along with the

average placement error for the ten reads simulated from that

taxon in that alignment. The results were binned and shown in

boxplot form, with the central line showing the median, the box

showing the interquartile range, and the “whiskers” showing the

extent of values which are with 1.5 times the interquartile range

beyond the lower and upper quartiles. Outliers eliminated for clarity.
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each placement is done onto a slightly different refer-

ence tree. Presumably because the placement location

does not happen on a single reference tree, the place-

ment location is not reported by the program and this

information is lost [28].

We did not compare the RAxML parsimony insertions

wrapped by AMPHORA to these likelihood placements,

because we would be scoring a parsimony insertion

algorithm according to the original positions in a

maximum-likelihood tree. The difference between these

optimality criteria would naturally lead to some differ-

ences, which would be viewed by the scoring metric as

error. The innovative bootstrap-based taxonomic assign-

ment procedure in the AMPHORA package produces a

name rather than a phylogenetic placement, and thus

cannot be directly compared to the output of pplacer.

Conclusions
Pplacer enables efficient maximum likelihood and

posterior probability phylogenetic placement of reads,

making likelihood-based phylogenetics methodology

practical for large-scale metagenomic or 16 S survey

data. Pplacer can be used whenever a reference align-

ment and phylogenetic tree is available, and is designed

for ease of use for both single-run and pipelined appli-

cations. “Baseball” heuristics adapt to the difficulty of

the phylogenetic placement problem at hand, and come

with features which guide the user to an appropriate set

of parameter choices. The EDPL metric helps users

decide if edge uncertainty is a substantial problem for

downstream analysis. Pplacer offers tightly integrated

yet flexible visualization tools which can be used to view

both the placements and their uncertainty on a single

tree. Large-scale simulations confirmed the accuracy of

the pplacer results and the descriptive ability of the

confidence scores. Pplacer is freely available, comes

with a complete manual and tutorials, and can be used

via a web service.

Pplacer forms the core of a body of work we are

developing to facilitate and extend the utility of phyloge-

netic placement methodology. We have shown recently

[69] that phylogenetic placements (and uncertainty mea-

surements thereof) fit perfectly into a statistical

Figure 8 Speed comparison of pplacerand RAxML’s EPA

algorithm. Time to place 10,000 16 s rRNA reads of median length

198 nt onto a reference phylogenetic tree, with a 1287 nt reference

alignment. “Γ model” refers to a four-category gamma model of

rate heterogeneity [17], and “CAT” is an approximation which

chooses a single rate for each site [76]. Tests run on an Intel Xeon

@ 2.33 Ghz.

Figure 9 Top placement accuracy comparison of pplacerand

RAxML’s EPA algorithm. Accuracy comparison between EPA and

pplacer both run with the Γ model of rate variation, using reads

of mean length 200 simulated from the test data sets from [28]. The

x-axis numbers are the size of the data set used for simulation. The

y-axis shows the error for the placement with the highest likelihood

score.

Figure 10 Expected accuracy comparison of pplacerand

RAxML’s EPA algorithm. Comparison as in Figure 9 but scoring

the expected error, i.e. the total error weighted by the likelihood

weight ratios.
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framework generalizing weighted UniFrac [70] allowing

for statistical comparison and visualization of differences

between samples. In collaboration with another group,

we have also implemented a preliminary version of soft-

ware which automates the selection of appropriate refer-

ence sequences, as well as the assignment of taxonomic

names based on phylogenetic placements.

Methods
Pplacer algorithmic internals

Here we survey pplacer algorithmic developments.

The code implementing these algorithms is freely

available on the github code repository [71]. The

basic development that permits linear time and space

scaling in the size of the reference tree is that of pre-

calculation of likelihood vectors at either end of each

edge of the reference tree; this development is shared

by the EPA and SCUEAL [40] and the original idea

goes back much earlier. Using these cached likelihood

vectors, a naive algorithm might insert the query

sequence into each edge of the tree and perform full

branch length optimization using the cached likeli-

hood vectors. However, a substantial speed improve-

ment can be gained by performing a two-stage

algorithm, where the first stage does a quick initial

evaluation to find a good set of locations, and the sec-

ond stage does a more detailed evaluation of the

results from the first stage.

Pplacer’s “baseball” heuristics limit the full search

on the tree in a way that adapts to the difficulty of the

optimization problem. The first stage is enabled by cal-

culating likelihood vectors for the center of each edge;

these vectors can be used to quickly sort the edges in

approximate order of fit for a given query sequence.

This edge ordering will be called the “batting order.”

The edges are evaluated in the batting order with full

branch length optimization, stopping as follows. Start

with the edge that looks best from the initial evaluation;

let L be the log likelihood of the branch-length-opti-

mized ML attachment to that edge. Fix some positive

number D, called the “strike box.” We proceed down

the list in order until we encounter the first placement

that has log likelihood less than L - D, which is called a

“strike.” Continue, allowing some number of strikes,

until we stop doing detailed evaluation of what are most

likely rather poor parts of the tree. An option restricts

the total number of “pitches,” i.e. full branch length

optimizations.

The baseball heuristics allow the algorithm to adapt to

the likelihood surface present in the tree; its behavior is

controlled by parameters that can be chosen using

pplacer’s “fantasy baseball” feature. This option allows

automated testing of various parameter combinations

for the baseball heuristics. Namely, it evaluates a large

fixed number of placements, and records what the

results would have been if various settings for the num-

ber of allowed strikes and the strike box were chosen. It

records both the number of full evaluations that were

done (which is essentially linearly proportional to the

run time) and statistics that record if the optimal place-

ment would have been found with those settings, and

how good the best found with those settings is com-

pared to the optimal placement.

Placement speed can also be accelerated by using

information gained about the placement of a given

query sequence to aid in placement of closely related

query sequences. Before placement begins, pairwise

sequence comparisons are done, first in terms of num-

ber of mismatches and second in terms of number of

matches to gaps. Specifically, each sequence si is com-

pared to previous sequences in order; the sequence sj
that is most closely related to si with j < i is found and

assigned as si’s “friend.” If no sequence is above a certain

threshold of similarity then no friend is assigned. If si
and sj are identical, then sj’s placement is used for si. If

they are similar but not identical, the branch lengths for

sj are used as starting values for the branch length opti-

mization of si. This scheme is not a heuristic, but rather

an exact way to accelerate the optimization process. On

the other hand, such comparison is inherently an O(n2)

operation and thus may slow placement down given

more than tens of thousands of query sequences. In

such a case the user may choose to forgo the friend

finding process.

Pplacer’s speed is also linearly proportional to the

lengths of the query sequences, which is enabled

because the reference tree is fixed with respect to topol-

ogy and branch length. Specifically, as described below,

likelihood computations are performed such that the

sites without a known state (gaps or missing sites) can-

cel out of the computation of likelihood weight or pos-

terior probability. These sites are masked out of

pplacer’s computation and thus do not compute to

runtime.

Because of the extensive memory caching to accelerate

placement, pplacer consumes a nontrivial amount of

memory. The fixed contributions to memory use break

down as follows: a factor of two for quick and full eva-

luation of placements, two nodes on each edge, four

rate variation categories, four bytes per double precision

floating point number, and four (nucleotide) or 20

(amino acid) states. To get a lower bound for total

memory use, multiply this number, which is 128 bytes

(nucleotide) or 640 bytes (amino acid), with two times

the number of reference sequences minus three (the

number of edges), times the number of columns in the

reference alignment. Other data structures add on top

of that (Figure 3).
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Likelihood weight ratio, posterior probability, and EDPL

Posterior probability is calculated by first integrating out

the possible attachment locations and branch lengths

against a prior distribution of pendant branch lengths.

Let ℓi denote an edge of the reference tree, Ai the length

of that edge, a the attachment location along ℓi, b the

pendant branch length, L the phylogenetic likelihood

function (e.g. equation 16.9 of [19]), D the alignment,

Tref the reference phylogenetic tree, and P the prior

probability of a pendant branch length. We obtain the

Bayes marginal likelihood by direct two-dimensional

numerical integration:

 Bayes ref ref( , ) ( , , , ) ( ) i i
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The likelihood weight ratio is defined corresponding

ratio with marginal likelihood replaced by the ML likeli-
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where LML is the maximal likelihood obtained by

maximizing L(D|Tref , ℓi, a, b) with respect to branch

length parameters a and b. The expected (under boot-

strap replicates) likelihood weight ratio is the confidence

score used in [39]. Some justification for using likeli-

hood weight ratios is given in [66].

The expected distance between placement locations

(EDPL) is a simple summation given probabilities from

likelihood weight distributions or posterior probabilities.

Let pi = ℙ(ℓi|Tref, D) from either (2) or (3), let dij denote

the tree distance between the optimal attachment posi-

tions on edges ℓi and ℓj, and let L denote the total tree

length. Then the EDPL is simply

p p d Li j ij

ij

/∑ (4)

An extension of these ideas would be to integrate the

marginal likelihoods over the potential attachment posi-

tions on the edges of interest; we have not pursued such

a calculation.

Simulation design and error metric

The simulation procedure for a single gene is as follows.

Begin with an alignment A of full-length sequences for

the gene of interest, along with a phylogeny T derived

from that alignment. T is assumed to be correct.

Simulated fragments from a given taxon X are re-

placed in the phylogenetic tree, and their location rela-

tive to X’s original location is determined. The simula-

tion pipeline repeats the following steps for every taxon

X in the alignment A.

1. remove X from the reference alignment, making

an alignment AX .

2. build a profile HMM out of AX .

3. cut X and its pendant branch out of the tree T,

suppressing the resultant degree-two internal node.

Re-estimate branch lengths using AX , and call the

resulting tree TX .

4. simulate fragments from the unaligned sequence

of X by taking sequences of normally-distributed

length and uniformly-distributed position.

5. align these simulated fragments using the profile

HMM built from AX .

6. place the simulated fragments in TX with respect

to the reference alignment AX .

7. compare the resulting placements to the location

of X in T using our error metric described below.

Note that only branch lengths are re-estimated; if we

estimated TX de novo from AX then we would not be

able to compare the placements to the taxon locations

in T.

In order to evaluate the accuracy of the placements, a

simple topological distance metric is used. To calculate

this metric for the placement of a taxon X, highlight

both the edge of TX corresponding to the correct place-

ment and the edge of TX corresponding to the actual

placement of the simulated fragment. The error metric

then is the number of internal nodes between the two

highlighted edges. Thus, if the fragment is placed in the

correct position, then error is zero, and if it is placed

sister to the correct position, then the error is one, and

so on. This error metric is also used in [28].

Alignments and Reference Trees

Data for the analysis of speed and memory use was

drawn from [72]. The data came partitioned into two

files, the smaller of which was used for the reference

set. Sequences with at least 1200 non-gap characters

were selected from the reference set and the sequence

order was randomized. Reference trees were built on the
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first 200, 400, ..., 1600 sequences, and the other file was

used as the query set.

The EPA to pplacer accuracy comparison was done

using the simulation framework from [28]. The same

taxa were used to generate simulated nucleotide frag-

ments, which had normally distributed length with

mean 200 and standard deviation 60. These were aligned

to the reference alignments using HM-MER. Reference

tree branch lengths were re-estimated using RAxML

after deletion of the taxon used for simulation. The

standard version of the EPA reroots the tree at an arbi-

trary location; Alexandros Stamatakis modified the code

for this comparison so that the tree is rerooted at the

lexicographically (i.e. alphabetically) smallest node, and

branch order resorted similarly. Because of this reroot-

ing and resorting, the error could not be judged directly

from the reference tree, and so the correct placement

was assumed to be that chosen by the EPA with a full-

length sequence. Simulation data can be downloaded

from http://matsen.fhcrc.org/pplacer/data/10_EPA_com-

parison.tar.gz

Alignments for the COG simulation were downloaded

from the COG website [59]. The alignments were screened

for completeness and taxa with incomplete sequences were

removed. Alignment ends were trimmed to eliminate

excessive gaps on either end. For the GOS psbA analysis,

the - All_Metagenomic_Reads and All_Assembled_Se-

quences - were downloaded to a local computer cluster

from CAMERA [73]. A psbA and psbD reference align-

ment was made of eukaryotic plastid sequences using

sequences retrieved from Genbank and then included all

cyanobacteria with an HMM search of a local copy of

microbial refseq (from Genbank); alignment of was done

using Geneious alignment [74] and was hand edited.

Additional material

Additional file 1: Supplemental Table 1 – Example BLAST results.

Table showing how blastn will often retrieve the same GOS reads when

given chloroplast and cyanobacterial psbA query sequences. The first and

fourth columns show the query names, and the second and fifth column

shows the (identical) GOS top hits. The top 100 records shared by the

results of each BLAST search are shown.
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