
Workshop track - ICLR 2018

PPP-NET: PLATFORM-AWARE PROGRESSIVE SEARCH
FOR PARETO-OPTIMAL NEURAL ARCHITECTURES

Jin-Dong Dong1, An-Chieh Cheng1, Da-Cheng Juan2, Wei Wei2 & Min Sun1

National Tsing-Hua University, Hsinchu, Taiwan1

Google, Mountain View, CA, USA2

mark840205@gmail.com
{dacheng,wewei}@google.com
{anjiezheng@gapp,sunmin@ee}.nthu.edu.tw

ABSTRACT

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-
of-the-art performances in many applications such as image recognition. How-
ever, these techniques typically ignore platform-related constrictions (e.g., infer-
ence time and power consumptions) that can be critical for portable devices with
limited computing resources. We propose PPP-Net: a multi-objective architec-
tural search framework to automatically generate networks that achieve Pareto
Optimality. PPP-Net employs a compact search space inspired by operations
used in state-of-the-art mobile CNNs. PPP-Net has also adopted the progres-
sive search strategy used in a recent literature (Liu et al. (2017a)). Experimental
results demonstrate that PPP-Net achieves better performances in both (a) higher
accuracy and (b) shorter inference time, comparing to the state-of-the-art Con-
denseNet.

1 INTRODUCTION

While designing the architectures of neural networks (NNs) has been treated more like an art, the
emergence of more complex, sophisticated architectures has posed increasingly bigger challenges
for deep-learning practitioners, especially when platform-related constraints (e.g., latency) are in
presence. To overcome these challenges, new operations Howard et al. (2017); Zhang et al. (2017);
Huang et al. (2017a) have been designed to achieve higher computing efficiency than conventional
convolution. Designing these operations requires both profound domain knowledge and intensive
human efforts. Therefore, how to automatically generate a neural network—(a) achieves state-of-
the-art accuracy and (b) conforms to platform-related constraints—remains as an open & challeng-
ing question.

Recently, neural architecture search (NAS) has been proposed to generate network architectures that
achieve (or even beat) state-of-the-arts crafted by exports. Works in the field are usually divided
into two categories: Reinforcement Learning (RL) based approaches (see e.g., Zoph & Le (2016);
Baker et al. (2016); Zoph et al. (2017); Zhong et al. (2017)) and Genetic Algorithm (GA) based
approaches (see e.g., Real et al. (2017); Xie & Yuille (2017); Liu et al. (2017b); Real et al. (2018)).
One exception is the work by Liu et al. (2017a), which achieves comparable performance to the
state-of-the-art RL-based method by using a much more efficient search algorithm. However, all
the aforementioned works focus on optimizing only one single objective (e.g., accuracy). There
is also one previous work Kim et al. (2017) that searches network architectures by considering
both accuracy and inference time. Nevertheless, the training computational power required by their
algorithm is very significant, whereas their search space is naively small.

We propose Platform-aware Progressive search for Pareto-optimal Net (PPP-Net) – an efficient al-
gorithm to search Pareto-optimal architectures under multiple objectives (e.g., inference time and
accuracy). We define our search space by taking inspirations from state-of-the-art mobile CNNs,
which is more compact and efficient compares to usual NAS architectures. We have also adopted
the progressive search strategy used in Liu et al. (2017a) to speed up the search process. Experi-
mental results show that our method is able to discover architectures with better accuracy and faster
inference time comparing to the baseline approaches.

1

Workshop track - ICLR 2018

Figure 1: Panel (a): Search space design. We show the available layer operations of normalization (yellow
boxes) and convolutional (green boxes) (Left) and the block structure of PPP-Net (Right). Panel (b): blocks of
efficient CNNs. BN, DW, LG, G stands for Batch Norm, Depth-wise, Learned Group, Group, respectively. All
the group convolutions are implicitly followed by channel shuffle operation.

2 APPROACH

We propose Platform-aware Progressive search for Pareto-optimal Net (PPP-Net) – a framework
automatically generates neural networks with a predefined number of replicated blocks. PPP-Net
searches for block architectures to achieve Pareto-optimal performance over multiple objectives.

Search space design. Each block consists of multiple layers of two types - normalization (Norm)
and convolutional (Conv) layers. We progressively add layers following the Norm-Conv-Norm-
Conv order (Fig.1(a)-Right). The operations available for Norm (yellow boxes) and Conv (green
boxes) layers are shown in Fig.1(a)-Left. The block of other efficient CNNs are shown in Fig.1(b).
Our search space covers hand-crafted efficient operations to take advantages of prior human knowl-
edge on designing efficient CNNs. This not only ensures good quality of our searched architectures
but also reduces the searching time for PPP-Net.

Search Algorithm. Inspired by Liu et al. (2017a), we adopt Sequential Model-Based Optimization
(Hutter et al. (2011)) algorithm to search efficiently with the following four steps (Fig. 2(a)).

1. Mutate. For each `-layers block, we enumerate all possible ` + 1-layers blocks. Before
mutation, we keep K models. After mutation, we have K ′ models where

K ′ =

{
K × |Norm| , if ` mod 2 = 0

K × |Conv| , otherwise
(1)

2. Regress accuracy. We use a Recurrent Neural Network (RNN) to regress network accuracy
given its architecture. This avoids time-consuming training to obtain true accuracy of a
network with a slight drawback of regression error.

3. Select networks. Our main contribution is to use Pareto Optimality over multiple objectives
to select K networks (Fig.. 2(b)) rather than simply select top K accurate ones as in Liu
et al. (2017a). Note that other objectives like the number of parameters, FLOPs, and actual
inference time can be computed very efficiently.

4. Update regressor. We train the selected K networks each for N epochs. Then, we use the
evaluation accuracies (output) and the architectures (inputs) to update the RNN regressor.

Since we do not have a well-trained RNN at the beginning, we enumerate all possible 3-layers blocks
(|Norm| × |Conv| × |Norm| blocks) and train them for N epochs. Then, we use the evaluation

(a) (b)

Figure 2: Search algorithm. (a) is the flow diagram, ` is the layers in a block, K is the number of models
to train, and K′ is the number of models after Mutate. (b) is a symbolic figure of Pareto Optimality with two
objectives.

2

Workshop track - ICLR 2018

accuracies (output) and the architectures (inputs) to train the initial RNN regressor. Next, we follow
the four steps described above.

3 EXPERIMENTS

We conduct experiments on the CIFAR-10 dataset with standard augmentation. We aim at finding
different models that have comparably high accuracy but each possesses a unique characteristic (e.g.,
the number of parameters is fewer). In the experiment, we end searching at ` = 4, number of epochs
N is set to 10, number of models to train, K, is set to 128. For selecting the models, we consider
evaluation error rate, number of parameters, FLOPs, and actual inference time on our computing
platform 1 as the objectives. The output of our Pareto Optimality selection is plotted in Fig.3, we
further train the models on the Pareto front for 300 epochs and report the final results in Table.1

0 1 2

Number of Parameters (×106)

14

16

18

E
rr
or

R
at
e
(%

)

(a)

0 100 200

FLOPS (×106)

14

16

18

E
rr
or

R
at
e
(%

)

(b) (c)
Figure 3: Pareto front visualization. (a), (b) is evaluation error rate v.s. parameters, FLOPs, respectively.
(c) is parameters and FLOPs v.s. actual inference time, where the dot is params v.s. inference time and the
cross is FLOPs v.s. inference time of the same model. The green, yellow, cyan, and blue dots are the PPP-Net-
Baseline, PPP-Net-A, PPP-Net-B, and PPP-Net-C, respectively. Finally, CondenseNet (red dot) is included for
comparison.

In Fig.3(a,b), it is clear that error rate is inversely proportional to the number of parameters and
FLOPs (i.e., the larger the FLOPs, the lower the error rate). However, inference time is not sim-
ply proportional to other platform-agnostic objectives such as FLOPs and number of parameters
(Fig.3(c)) 2. Our results demonstrate that inference time is platform-aware since it depends on the
software and hardware implementation of the computing platform. For a better comparison, we also
plot the CondenseNet (also in our search space) performance in the plot even though it is not in
the Pareto front. In Table.1, our results (last group) are compared with state-of-the-art hand-crafted
mobile CNNs (middle group) and models using architecture search methods (first group). The infer-
ence time of CondenseNet is measured from their official open-sourced code run on our platform.
As for our searched models, PPP-Net-Baseline is conducted by choosing the max predicted accuracy
architecture without using Pareto Optimality selection. PPP-Net-A, PPP-Net-B, and PPP-Net-C are
chosen from the Pareto front where PPP-Net-A has 0.86x parameters and FLOPs of CondenseNet-86
with a comparable performance, PPP-Net-B has 0.65x parameters and FLOPs of CondenseNet-110
with a better performance, and PPP-Net-C is the best accuracy we can find in our Pareto front. Our
PPP-Net clearly strikes better trade-off among multiple objectives.

Table 1: Multiple Objectives Comparison. Missing values are the metrics not reported in their original
papers. Pareto front visualizations of our searched networks can also be found in Fig. 3.

Model Error rate Params FLOPs Time
Real et al. Real et al. (2017) 5.4 5.4M - -
NASNet-B Zoph et al. (2017) 3.73 2.6M - -
PNASNet-1 Liu et al. (2017a) 4.01 1.6M - -
DenseNet (k=12) Huang et al. (2017b) 5.24 1.0M - -
CondenseNet-110 Huang et al. (2017a) 4.63 0.79M 98.2M 0.040
CondenseNet-98 Huang et al. (2017a) 4.83 0.65M 81.3M 0.033
CondenseNet-86 Huang et al. (2017a) 5.0 0.52M 65.8M 0.028
PPP-Net-Baseline 4.36 11.39M 1364M 0.035
PPP-Net-A 5.28 0.45M 56.9M 0.025
PPP-Net-B 4.58 0.52M 63.5M 0.026
PPP-Net-C 4.36 11.29M 953M 0.030

1We run our training and inference on NVIDIA Titan X Pascal GPU.
2Our search algorithm is in Tensorflow and Table.1 is in PyTorch, which results in different inference time.

3

Workshop track - ICLR 2018

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. ICLR’17, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. arXiv preprint arXiv:1711.09224, 2017a.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. CVPR’17, 2017b.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. International Conference on Learning and Intelligent Optimiza-
tion, 2011.

Ye-Hoon Kim, Bhargava Reddy, Sojung Yun, and Chanwon Seo. Nemo: Neuro-evolution with
multiobjective optimization of deep neural network for speed and accuracy. ICML’17 AutoML
Workshop, 2017.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv preprint
arXiv:1712.00559, 2017a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. ICLR’18, 2017b.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Quoc Le, and
Alex Kurakin. Large-scale evolution of image classifiers. ICML’17, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

Lingxi Xie and Alan Yuille. Genetic cnn. ICCV’17, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning.
AAAI’18, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. ICLR’17,
2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

4

	Introduction
	Approach
	Experiments

