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Abstract. This paper presents an empirical study of population diversity mea-
sures and adaptive control of diversity in the context of a permutation-based al-
gorithm for Traveling Salesman Problems and Vehicle Routing Problems. We
provide detailed graphical observations and discussion of the relationship among
the four diversity measures and suggest a moderate correlation between diversity
and search performance under simple conditions. We also study the effects of
adapting key genetic control parameters such as crossover and mutation rates on
the population diversity. We are able to show that adaptive control of the genetic
operations based on population diversity effectively outperforms fixed parameter
genetic algorithms.

1 Introduction

Traditional genetic algorithms (GA) often suffer from loss of diversity due to premature
convergence of the population. As a result, the search is trapped in local optima. Hence,
the maintenance of diversity is one of the most fundamental issues of GA. Previous
studies on population diversity can be divided into two categories: diversity measures
and maintenance of diversity. A large amount of work has been devoted to diversity
measures, which includes early study of variance of fitness [11,3], and uncertainty [3].
Recently, other measures such as evolution history [14], distance [2], epistasis [7] and
measures in the phenotype and genotype space [15] have also been introduced. A survey
of population diversity measures in genetic programming (GP) can be found in [5].
Work on diversity maintenance includes crowding and preselection [13], self-adapting
mutation rates [9], etc. Some studies have been devoted to adaptive GA and population
diversity control. A good survey about aspects of adaptive GA can be found in [12].
Parameter control in general evolutionary algorithms is discussed in a recent survey by
Eiben, et al. [1], which includes references to other works on self-adaptation in GA.

The GA we are concerned with in this paper is one in which individual chromo-
somes are integer encoded, and the crossover operations are permutation-based [10].
In this type of GA, all individuals have the same set of distinct alleles (integers) in all
generations. The different permutations of the individuals decode into different fitness
values. Permutation-based GA is used to solve Traveling Salesman Problem (TSP) [8],
Vehicle Routing Problem (VRP) [4] and its variant Vehicle Routing Problem with Time
Windows (VRPTW) [16], and many other problems. TSP can be defined as: given a set
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of towns and the distances between them, determine the shortest path starting from a
given town, passing through all the other towns exactly once and returning to the first
town. The objective of VRP/VRPTW is to find routes for vehicles to service all the
customers at a minimal cost (in terms of number of routes and total distance traveled),
without violating the capacity and the travel time constraints of the vehicles and, in the
case of VRPTW, the time windows imposed by the customers. Both classes of problems
are in the NP domain.

We define and compare four important diversity measures, namely phenotypes,
genotypes, standard deviation of fitness and ancestral ids. These measures represent
diversity from different angles, hence the behaviors are also different. We perform a
comprehensive empirical study on the effects of genetic operations such as crossover
and mutation on the population diversity. A simple adaptive control function is applied
to maintain diversity at desirable levels through automatically varying application rates
of genetic operators. Benchmarks show that adaptive diversity control is able to strike a
balance between global exploration and local exploitation, and outperforms traditional
fixed parameter GA’s.

2 Canonical Algorithm

The basic algorithm for solving TSP/VRP uses a fixed-length integer-string representa-
tion for encoding, and a heuristic to decode the chromosomes into fitness values. The
algorithm starts with an initial population of 50 random individuals unless otherwise
stated, and selects individuals for reproduction. After reproduction through a number
of operations, the new population replaces the whole parent populations to complete one
generation. The algorithm runs for a fixed number of generations. We briefly introduce
some elements of this algorithm below.

The representation of a solution is a string of distinct integers of length K, where K
is the number of customers (cities). The string is known as a chromosome, whose length
is K. Each gene (integer) of the chromosome is a customer’s identifier. For example,

3−2−4−5−9−8−7−10−6−1−12−11

A problem-specific algorithm [17] is used to decode the string into solutions and
to compute the fitness. A binary tournament selection mechanism is used in this algo-
rithm. Three commonly used order-based crossover operators are applied to the mating
chromosomes. They are Partially Matched Crossover(PMX), Order Crossover(OX) and
Cycle Crossover(CX) [10]. Each will be applied independently in our experiments. The
probability of applying crossover operator to a pair of mating individuals is denoted by
pc.

We use a sequence insertion mutation, which is defined as relocating a subsequence
from one position of the chromosome to another position. Mutation rate is denoted by
pm. Besides mutation, we use a post-recombination operator called random immigrants
[6], that randomly generates chromosomes to replace randomly selected existing chro-
mosomes. Random immigrants is applied at a rate of pr.
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The algorithm can be summarized as follows.

GA-1 Initialize the population P with N chromosomes;
GA-2 Decode chromosomes to obtain fitness values in the population. Set crossover

rate pc, mutation rate pm and random immigrants rate pr;
GA-3 Create a new population by repeating the following steps:

1. Select two parent chromosomes from a population by Tournament Selection;
2. With a probability pc, crossover the parents to form two new children, other-

wise copy the parents to become offspring;
3. With probability pm, mutate the new offspring;
4. Place the new offsprings in a new population;

GA-4 Replace the old population with the newly generated population;
GA-5 Do random immigrants if required;
GA-6 If the stop criterion is satisfied, stop; else go to GA-2.

3 Diversity Measures

Four diversity measures, namely, the number of unique phenotypes, the fitness standard
deviation, the total distance among genotypes, and the number of unique ancestral ids,
are compared and studied in this paper. In what follows, P is a set of all chromosome
sequences in a population, N is the number of sequences in the population, and K is the
length of the sequences in P.

Phenotypes (ptype) The number of unique fitness values in the population, normalized
between 0 and 1. The computation takes O(N logN) time.

ptype(P) =
|U |−1
N −1

, (1)

where U ⊆ P, and ∀ fi ∈U and ∀ f j ∈U , fi �= f j if i �= j.
Standard deviation (stddev) The standard deviation of fitness values in a population

(O(N)):

stddev(P) =

√
∑N

i=1 ( fi − f )2

N −1
, (2)

where N is the population size and fi is fitness of the ith individual.
Genotypes (gtype) The sum of the edge distances between any two genotypes (indi-

vidual strings). Let s be an integer sequence that represents a genotype. We define
A(s) to be a set of arcs in s. The edge distance between genotype u and v is defined
as:

De(u,v) = |A(u)\A(v)|, (3)

In other words, edge distance is defined as the number of arcs in u but not in v.
Note that this number is equal to the number of arcs in v but not in u. The edge
distance here is different from the commonly used edit distance for measuring sim-
ilarity among sequences. This is because we are trying to measure the similarity in
subsequences, which is key in TSP and VRP.

gtype(P) =
∑i�= j De(P[i],P[ j]))
(K −1)(N −1)N

, (4)

where P[i] and P[ j] are the ith and jth genotypes in P. This takes O(N2K2).
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Ancestral id (uid) Each individual in the initial population has a unique id. During
crossover, two parents produce two children. One of the children inherits the
mother’s uid and the other inherits the father’s uid. One’s uid changes when it’s
mutated or being replaced in random immigrants procedure.

Unless otherwise noted, the benchmark problem used in this paper is R101 from
Solomon’s 100-node VRPTW problem set [16]. Problem R101 is characterized by ran-
domly distributed customer locations and short time windows for each customer. It is
one of “harder” problems in the problem set that have not yielded the optimal solution
as far as we know. Extract methods are required to obtain the optimal solution but the
cost is prohibitive.

With a fixed, 100% random initial population, and PMX crossover only, the basic
algorithm was run 10 times with the parameters: pc = 0.6, pm = 0 and pr = 0. In each
generation, the population diversity is recorded by four measures defined above. Fig. 1
through Fig. 4 demonstrate the natural evolution of these measures over 201 genera-
tions, without any mutation.
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Fig. 1. Evolution of Ptype over generations
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Fig. 2. Evolution of Stddev over generations
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Fig. 3. Evolution of Gtype over generations
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Fig. 4. Evolution of Uid over generations

Both phenotype measure and standard deviation measure displays a rather steep
phase transition at about the 100th generation and quickly converges to zero, except
stddev is more volatile. These two measures are similar because both are based on
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fitness values. Standard deviation measure is more sensitive to the variance in the pop-
ulation, therefore the large fluctuation is observed. Genotype decreases more gradually
but the descent happens right from the beginning, unlike ptype and stddev. This can be
explained because recombination causes convergence at the genotype level first, before
such change is reflected in the fitness values. The gradual descent of gtype measure also
suggests this measure can be more useful in early prediction and diversity control. The
rapid convergence of uid is a certainty because, with no mutation, the number of ids
will monotonically decrease. The selection mechanism (in which the fitter individuals
are preferred in mating) accelerates the decrease in unique ids.
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Fig. 5. Ptype rankings vs mean fitness rankings

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  5  10  15  20  25  30  35  40  45  50

M
ea

n 
F

itn
es

s 
R

an
ki

ng

Diversity Ranking

Fig. 6. Stddev rankings vs mean fitness rankings
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Fig. 7. Gtype rankings vs mean fitness rankings
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Fig. 8. Uid rankings vs mean fitness rankings

We ran the algorithm to 201 generations for 50 times, and plot the rankings of
accumulated diversity over 201 generations against the rankings of the mean fitness
at the 201st generation, for every diversity measure in Fig. 5 through 8. Notice in the
case of VRPTW, the fitness value is taken to be the total cost of a solution which is
a combination of the number of routes and the total distance. In these figures, both
diversity and fitness are ranking in ascending order.

Some moderate, “negative” correlation can be seen from all plots except that of uid.
In Fig. 5 through Fig. 7, dots are clustered near the upper-left to lower-right diagonal
line. In other words, the general trend is: the higher the diversity, the smaller the fitness
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value, or the better the search quality. The correlation is particularly evident in ptype
as it is defined by fitness values only. The randomness displayed in Fig. 8 is again the
result of early convergence of uid measure (Fig. 4).

The consistency of the four diversity measures can be estimated by taking the stan-
dard deviation of the average diversity over the 50 runs. The standard deviations are
σptype = 0.1004, σgtype = 0.0557, σstddev = 0.334, and σuid = 0.0068. Stddev measure
values were normalized to 1 before the calculation. Gtype and uid measures appear
more consistent than others, because of their low deviation. The very small deviation
of uid is due to its very premature convergence. The volatility of the stddev measure
shown in the graph contributes to its high variance and it is the least reliable measure of
the four.
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Fig. 9. Effect of PMX on Ptype
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Fig. 10. Effect of PMX on Stddev
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Fig. 11. Effect of PMX on Gtype
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Fig. 12. Effect of mutation on Uid

4 Effects of Genetic Operators on Diversity Measures

Methods of maintaining population diversity generally come in two categories: methods
based on the selection process and those based on genetic operators. In this paper, the
second approach is adopted. We hope to control the diversity through the three common
genetic operators defined in Section 2. Three sets of experiments with the following
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Fig. 13. Effect of mutation on Ptype
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Fig. 14. Effect of mutation on Stddev
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Fig. 15. Effect of mutation on Gtype
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Fig. 16. Effect of random immigrants on Uid

parameters were first conducted to demonstrate the independent effect of crossover,
mutation and random immigrants on diversity.

Crossover: pc = 0.3 · · ·0.9 (PMX), pm = 0, pr = 0 at steps of 0.1.

Mutation: pc = 0.4 (PMX) , pm = 0 · · ·0.60, pr = 0 at steps of 0.1.

Random immigrants: pc = 0.4 (PMX), pm = 0, pr = 0.1 · · ·0.4 at steps of 0.1.

Each set of parameters were tested 10 times and the mean diversity at each of the
201 generations was recorded by all four measures. We then plot the convergence graph
of the mean diversity for each diversity measure under different parameter settings, and
these are included in Fig. 9 through Fig. 19. Uid diversity is only affected by mutation
and random immigrants as only these two operators contribute new ids into the system,
therefore a plot of crossover effect on uid is not included.

One can observe from these plots that all three operators promote diversity by all
measures. With increasing crossover rate pc (Fig. 9, 10 and 11), The diversity curves are
spread out almost evenly, which suggests pc is a good tool in controlling the diversity.
For lower crossover rates (up to 0.8), population eventual converges; for higher pc, our
experiments show that population remains highly diversified even over many more gen-
erations. It is noted, however, when diversity drops below certain threshold, crossover
alone is not able to reverse the converging trend. This is especially evident in the ptype
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Fig. 17. Effect of random immigrants on Ptype
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Fig. 18. Effect of random immigrants on Stddev
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Fig. 19. Effect of random immigrants on Gtype
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and stddev measures, where the diversity curve is generally flat in the beginning, and
turns down sharply after some transition point.

The effect of various mutation rates on the diversity is visibly different from the
crossover. Fig. 12 shows that varying the mutation rate effectively sets the uid diver-
sity at corresponding levels, which is easy to understand, given the definition of uid.
Fig. 9 to Fig. 11 show a big jump in the diversity levels (in all three measures) from
pm = 0 to pm = 0.1, but the differences become less significant as pm increases. This
is due to the fact that mutation happens in genotype level and the changes are always
localized, therefore the effect is limited. Stronger diversifying forces can be seen in Fig.
16 through Fig. 19, except excessive random immigrants can drag down the overall fit-
nesses of the population uniformly, which causes some anomaly at pr = 0.4 in Fig. 18.
It is easy to prove that the population does not converge to uniformity when pm or pr is
non-zero. We can classify the use of random immigrants, crossover and mutation as di-
versification at the population, phenotype and genotype levels, respectively. Therefore,
a combination of all three operations is expected to give a more balanced and consistent
result in promoting diversity.

Fig. 20 shows the comparison among the three crossover operators. OX, PMX and
CX are applied to random population at pc from 0.1 to 0.9, and the number of genera-
tions when the gtype diversity reaches 0.5 is recorded for each setting. Apparently, OX
is the most effective in boosting diversity while CX is the least effective.
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5 Adaptive Control

From the previous sections, the positive correlation of diversity and search quality,
along with the fact that genetic operations promote diversity, motivate us to maintain
diversity at some healthy level so that more promising regimes in the search space can
be explored. One interesting way to control the diversity is to adaptively calibrate the
crossover/mutation rates against the changing population diversity. To illustrate the ben-
efits of adaptive control, we apply the following simple adaptive function on the rates
of crossover, mutation or random immigrants to maintain diversity at a target level.

p′ = max(pmin, min(pmax, p(1 +
ξ(dt −d)

d
))), (5)

where p is the current rate of genetic operations, p′ is the new rate in the next gener-
ation, d is the diversity of current population, dt is the target diversity, ξ is the control
sensitivity, and pmin, pmax are the lower and upper bounds of the rate.

In every generation of the algorithm, the crossover and mutation as well as ran-
dom immigrants rates are recomputed by (5), and the new rates will be used in the
recombination phase of that generation. The choice of (5) is based on the belief that the
population is further diversified when genetic operations are applied at higher probabil-
ity. So when d falls below dt , the new rate p′ is somewhat increased in (5). Contrary to
that, if d becomes larger than dt , probability will be decreased until d comes in line with
dt . A small ξ means gradual change in the rate, and that also translates into slower fluc-
tuation of the diversity, also known as the oscillation of the feedback control (Fig. 21).
Larger ξ causes the population diversity to follow more closely to the target diversity.
The oscillation, instead of monotonic convergence or divergence, allows the popula-
tion to concentrate on one region to optimize for a while, and then move on to other
regions. While (5) may appear simplistic and arbitrary, our experiments below already
demonstrate the clear advantage of the adaptive control. The search for better adaptive
functions remains an open area of research.

Setting the target diversity dt at 0.1 to 0.9, and using OX crossover alone, we ran
the basic algorithm five times to examine the significance of dt . The progression of
the mean fitness at various target gtype levels is plotted in Fig. 22. When diversity is
maintained at low levels, the population converges rather monotonically. When target
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diversity rises above 0.5, the population mean fitness starts to fluctuate, although such
fluctuation appears to subside with time. Because the mean fitness curve approximately
portrays the search horizon, a hovering curve essentially represents the traversal across
a terrain of peaks and valleys in the solution space. In other words, the population is
sufficiently diversified to explore a number of localities.

However, we also observe that the higher diversity levels generally result in higher
fitness values or worse search result. This is because our canonical GA has only limited
capability of local optimization, as the algorithm traverses across many domains. Thus
we propose to use some local search techniques such as greedy descent to exploit the
“good areas” further, as a complement to the global exploration provided by diversity
adaptive control. Fig. 22 also indicates that the oscillation is diminishing under overly
high diversity settings, e.g. dt ≥ 0.9. This is undesirable because the algorithm does not
have the chance to zoom in to some of the prospective good neighborhood. The optimal
value for dt is problem-specific and needs to be tuned for a class of problems.

In the last experiment, we compare the solution quality of adaptive GA and a fixed-
parameter GA which is based on our canonical algorithm. The benchmark problems are
the full set of Solomon’s VRPTW 100-node problems. Now, a mixed initial population
of both random and good solutions is used. The good individuals are obtained from
Push Forward Insertion Heuristic (PFIH) [16] and its 2-neighborhood. We will focus
on the gtype diversity as it behaves most consistently and is easy to control. OX is used
as the only crossover operator. The initial crossover and mutation rates are 0.77 and
0.1, respectively. These initial rates are obtained from some VRPTW literature and are
known to be standard.

We test-ran both the fixed parameter GA and the adaptive GA up to 500 generations,
with target diversity dt = 0.5 and ξ = 0.01. The reason for selecting dt = 0.5 is to take
advantage of the oscillation. In the fixed-parameter GA, pc = 0.77 and pm = 0.1. Our
preliminary tests indicate that these settings appear to be the best for fixed-parameter
GA.

The average results over 10 runs are compared in Table 1. Columns marked “Fixed”
and “Adaptive” record the solutions on the number of routes and total distance traveled,
in the two GA schemes tested. The smaller these numbers are, the better the solution.
Clearly, with the target diversity at 0.5, our adaptive GA consistently outperforms fixed-
parameter GA in terms of the quality of solutions, in all categories of VRPTW. The
average execution time, however, is somewhat longer than the fixed algorithm. This is
expected as the adaptive algorithm normally traverses more regions in the search space.

Table 1. Fixed parameter vs. adaptive algorithm

Category pc/pm Fixed Time Category Adaptive Time

C1 0.88/0.49 10/835.6 72 C1 10/828.9 80
C2 0.89/0.36 3/610.9 804 C2 3/589.9 735
R1 0.85/0.56 13.3/1263.4 131 R1 12.8/1242.7 305
R2 0.84/0.48 3.2/1021.4 1288 R2 3/1016.4 1308

RC1 0.85/0.57 13.1/1437.2 177 RC1 13/1412.0 239
RC2 0.84/0.49 3.9/1249.7 765 RC2 3.7/1201.2 883
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