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MOBILE ROBOTS TRACKING USING COMPUTER VISION 

In this paper a global vision scheme applied to a fast dynamic game - robot soccer is presented. The process of robots 
positions and orientations estimation is divided into two steps. In the first step, the Bayer format image is acquired from 
camera, then the RGB image is interpolated and pixels are classified into a finite number of classes. At the same time, a 
segmentation algorithm is used to find corresponding regions belonging to one of the classes. In the second step, all the 
regions are examined. Selection of the ones that are parts of the observed object is made by means of simple logic 
procedures. A data filtering is used to improve identified noisy data. The novelty is focused on the optimization of the 
image acquisition algorithm as well as the processing time needed to finish the estimation of possible object positions. 
 
 
 
 
PRAĆENJE MOBILNIH ROBOTA KORIŠTENJEM RAČUNALNOG VIDA 

Dan je opis algoritma globalnog računalnog vida primijenjenog na brzu dinamičku igru – robotski nogomet. Proces 
određivanja pozicija i orijentacija robota sastoji se od dva koraka. U prvom koraku, iz kamere prenosi se slika u Bayer 
formatu, iz koje se potom interpolira RGB slika, a pikseli se klasificiraju u konačan broj klasa. Istovremeno, primjenjuje se 
algoritam segmentacije kako bi se izdvojilo odgovarajuće regije slike koje odgovaraju jednoj od klasi boja. U drugom 
koraku ispituju se sve pronađene regije, a odabir onih koje odgovaraju traženim objektima provodi se jednostavnom 
logičkom procedurom. Koristi se filtriranje kako bi se umanjio šum u izmjerenim vrijednostima. Doprinos ovog rada sastoji 
se u optimizaciji algoritma interpolacije slike i algoritma obrade slike za mjerenje pozicija i orijentacija objekata. 
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1 INTRODUCTION 

This paper presents a design of a global vision system for estimating current object positions and orientations on the 
playground. The MiroSot category soccer robots we have are without on-board sensors. Thus a precise and fast global 
vision has to be designed for robots control and navigation in an unknown, dynamically changing area. When designing the 
vision system, the following requirements have to be accomplished: 
• computational efficiency, 
• high reliability, 
• good precision, and 
• robustness to noise, changing of lightening and different color schemes. 
The last characteristic is essential for the system to function well when using it under different conditions present at 
competitions [8]. 
With color cameras, there are many possible ways to carry out the detection of robots wearing color dresses. All of them try 
to classify pixels of an image into one of a predefined number of classes. The most common approaches are: linear color 
thresholding, K-nearest neighbour classification, neural net-based classifiers, classification trees and probabilistic methods 
[7], [3], [6]. 
To obtain image of the observed scene a high speed IEEE-1394 digital color single CCD camera is used where image 
information on CCD sensor is given in so called Bayer format. This image is then reproduced to a full RGB image using 
bilinear interpolation algorithm. Further on a fast approach with constant thresholding and back-stepping algorithm is 



presented where a special effort is put into the efficiency aspect. The thresholds can be presented as boxes in 3-dimensional 
color spaces obtained by means of off-line learning. First an incoming pixel is classified into one of the predefined boxes, 
then the pixels belonging to one class (a connected region) are univocally labeled. With the main purpose of obtaining all 
fully connected regions, a back-stepping algorithm is applied. Both steps are done with just one scan of the image. Then the 
logic part and a simple optimization method are employed to select the proper regions from the previously generated ones. 
After this logic, the positions and orientations of the objects on the playground are estimated and extended Kalman filter is 
used to suppress noise of the estimated data. 
The paper is organized as follows. In section 2 a brief overview of the system is given. Image acquisition system and 
algorithm for image interpolation are presented in section 3. Section 4 and 5 focuses on the algorithms for pixel 
classification and image segmentation. The algorithm for object estimation and data filtering is illustrated in the section 6. 
The paper ends with conclusions and some ideas for future work. 

2 SYSTEM OVERVIEW 

The soccer robot set-up, Fig. 1, consists of ten MiroSot category robots (generating two teams) of size 7.5cm cubed, 
rectangular playground of size 2.2×1.8m, IEEE-1394 digital color camera and personal computer Pentium IV. The vision 
part of the program processes the incoming images, of a resolution of 640×480 pixels, to identify the positions and 
orientations of the robots and the position of the ball. Finally, the control part of the program calculates the linear and 
angular speeds, v and ω, that the robots should have in the next sample time according to current situation on the 
playground. These reference speeds are sent to the robots by a radio connection. 
To identify the orientations, each robot has to have two color patches. One is the team color and the other is the 
identification color patch. According to FIRA (Federation of International Robot-soccer Association) rules, the team color 
must be blue or yellow, the ball must be orange and identification colors can be any color except the team and ball color. 
The patch positions and shapes can be chosen freely. In our case, square patches were used. They were placed diagonally, 
with the team color being closer to the front part of the robot, Fig. 2. 

 

Fig. 1.  System overview 

 

Fig. 2.  Color patches on the robot 

3 IMAGE ACQUISITION AND INTERPOLATION 

Image is acquired using industrial digital color camera. It uses IEEE-1394 (Firewire) bus, which offers several advantages, 
e.g. relatively high bandwidth (400 Mbits/s today, several Gbits/s in the future), guaranteed bandwidth (allows 
uninterrupted live video to be transmitted without interruptions over the otherwise shared network), standardized 
specification for the cameras (D-Cam specification), flexibility and lower price of the entire vision system. 



In computer vision intended for robot soccer, it is very important that camera has frame rate as high as possible, because 
control of the robots that move at very high speeds (up to 2.4 m/s) is required, and there is no other control feedback than 
the image acquired with the camera. Having that in mind, an IEEE-1394 digital camera is used that can operate at 80 fps. 
Because of high frame rate and limited bus bandwidth, camera cannot transmit full RGB image, but transmits image in so 
called Bayer format. 
This means that, in order to record color images with a single sensor, the sensor is covered with color filter so that different 
pixels receive different colored illumination. This type of filter is known as a color filter array (CFA). The different color 
filters are arranged in well-known patterns across the sensor, though the most common arrangement is the Bayer CFA, 
which consists of filters with band-passes in three primary colors, red, green and blue (Fig. 3). Since each pixel registers 
only the illumination of the covering’s filter color, only one color per pixel is transferred via bus to the host computer, and 
the remaining color information is not detected by that pixel and must be estimated in host computer. Hence, in order to 
construct a full color image, interpolation algorithm has to be used [1]. 
 

 
Fig. 3.  Bayer CFA pattern 

 
Color interpolation algorithms can be classified into two groups, namely non-adaptive algorithms and adaptive algorithms. 
Non-adaptive algorithms denote those algorithms that perform interpolation in a fixed pattern for every pixel within a 
group. While adaptive algorithms imply that those algorithms can detect local spatial features present in the pixel 
neighborhood, and then make effective choices as which predictor should be used for that neighborhood. For the purpose of 
robot tracking, the non-adaptive algorithm called bilinear interpolation is chosen, because of its low computational time, 
possibility for further optimization using MMX instructions of the processor and acceptable quality of the resulting image. 
Bilinear interpolation explores four points neighboring the point, and assumes that the brightness function is bilinear in this 
neighborhood. Thus, a weighted value of the surrounding four pixels is calculated. Unfortunately, these weighted values 
produce a smoothening effect on the output image, which results with zipper effect on edges in color images (edges look 
like a zipper). Let Ri,j, Gi,j and Bi,j be the brightness of the red, green and blue pixel at position (i, j), respectively. If the 
camera has Bayer pattern like shown in Fig. 1. then we interpolate missing color information as follows. 
Interpolation of green component for pixels where we know the value of red or blue component is done by averaging the 
upper, lower, left and right green pixel values: 
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Interpolation of red or blue component for pixels where green component is known can be computed as the average of two 
adjacent pixel values in matching color: 
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Interpolation of red or blue component for pixels where blue or red component is known is computed as the average of four 
neighboring diagonal pixel values: 
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The example of interpolated image is given in Fig. 2. It can be seen that intensive zipper effect is present on edges, but 
quality of the image is still acceptable. The described bilinear interpolation algorithm is implemented using MMX assembly 
instructions of the processor, and this way interpolation time of 2.5 ms on Pentium IV 3 GHz processor is achieved, which 
is a very good result. 



    

Fig. 4.  Interpolated image (original and interpolated image) 

4  PIXEL CLASSIFICATION 

To enable detection of different color patches, each pixel has to be classified into one of the predefined colors. 

4.1 Color Space Transformations  

The color image can be presented by the use of different color space notations such as RGB, HSI, YUV and others. When 
using simple thresholds for pixel classification, HSI and YUV color spaces are most appropriate [4]. They code the 
information about chrominance in two dimensions (H and S or U and V) and only one dimension includes the information 
about intensity (I or Y). A particular color on the playground can be then described with wide areas between thresholds in 
the intensity dimension, while the threshold areas for other chrominance dimensions are narrow. However, these color 
spaces are more robust to different lightening conditions. 
Both RGB and YUV spaces were used in our experiments with constant thresholds. The second color space gave slightly 
better classification results. However, to obtain the YUV color representation, a time consuming transformation from the 
original RGB space had to be done. Although this transformation was optimized by using lookup tables it still requires more 
than 20 ms, while the rest of the program takes only 10 ms to identify objects from the image. Therefore, YUV or any other 
color space should be used only when it can be directly obtained from the frame grabber.  

4.2 Thresholding 

The basic idea is to classify each pixel according to the remembered color thresholds of each object. Initially, this part was 
done with the following code: 
for i=1 to number of colors on playground 
 if (R >= R_lower_boud AND R <=R_upper_bound AND 
    G >= G_lower_boud AND G <=G_upper_bound AND 
    B >= B_lower_boud AND B <=B_upper_bound  ) 
Pixel_color =i-th color; 
 else Pixel_color=background; 
end 
 
This simple part of the code requires 6 relational and 5 AND operations for each pixel classification. This code is repeated 
for each color that we want to classify.  
To improve this operation, i.e. to check all colors at the same time, an idea of parallelism was considered. Three N×32-bit 
integer arrays were allocated. Where N corresponds in size to the number of color levels (usually N=256) and the maximum 
number of colors to be classified is 32 respectively (Fig. 5). Each bit in a 32-bit memory location is associated with one 
color. Although the algorithm is able to classify 32 colors, only 13 different colors are enough for the purpose of the robot 
soccer game. Because the computer microprocessor has 32-bit arithmetics, the computational burden is the same as for only 
the 16-bit memory location. 
Let us suppose that we want to classify a yellow patch with the color values in the following range: 
200 <= R <=220 
230 <= G <=250 
10  <= B <= 30 
 
Suppose this color is associated with the 31st bit of each memory location. So in this case the highest bits in the memory 
locations between 200 and 220 in RClass, 230 and 250 in GClass and 10 and 30 in Bclass are set to 1, respectively. The 
same procedure is performed also for bits 0-30 for other color patches. 
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Fig. 5.  Look-up tables for pixel classification 
At the run time, memory locations with the index corresponding to current pixel R, G, B values are taken. The bitwise AND 
operation between the chosen memory locations gives the information about the classification of pixels. If the result has the 
31st bit set to 1, then the pixel is recognized as yellow. 
With this methodology, a multiple thresholding (the thresholds for all color patches checked at the time) is made in only 
one scan of the image. As the multiple threshold operation takes just two AND operations, it significantly reduces 
computational burden. 
To increase robustness of the presented algorithm to poor lightening conditions one must increase color thresholds for each 
object. However this increases number of classified pixels, because not only pixels belonging to the searched objects appear 
but also the ones belonging to camera noise and similar color patches. This can be circumvented if all classified pixels are 
transformed to some nonlinear color space such as HSI (Hue, Saturation, Intensity) and then again thresholded, but only 
with the first two dimensions (Hue and Saturation). This step filters out most of the noisy pixels. The important advantage 
of this approach is also its computational efficiency because only classified pixels (using RGB thresholds) are transformed 
to HSI color representation and not the whole image.  
 

5 IMAGE SEGMENTATION AND COMPONENT LABELLING 

To estimate patch positions, first the regions belonging to the ball, team and opponent team patches and all identification 
patches have to be located. The number of those regions on the playground (K) can be higher than the number of all patches 
due to noise. Image segmentation in K regions and labeling is done fulfilling the following five conditions [7]: 
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where  is a logical predicate, which takes the value one if all the pixels of the region accomplish a criterion of 
homogeneity. In our case, the homogeneity criterion is the equality in color. 

( )xP

According to the first and second conditions, the regions Ri together must occupy the entire image R and the regions must 
not have common pixels. Due to the third condition, there must be at least one path of pixels of the same color connecting 
any two pixels in the region. Moreover, the regions must be homogeneous with respect to the color and the neighbour 
regions must not have the same color, as stated in conditions four and five. 

5.1 Image Segmentation and Labelling Algorithm 

Pixel classification and image segmentation are merged by the aid of a corresponding algorithm. Its main property is that 
the image classification and segmentation is done with only one pass through the image, what considerably contributes to 
time efficiency. The results of the mentioned algorithm are labelled regions with the following information: 
• region number, 
• color, 
• number of pixels belonging to this region, 
• pointers to each pixel belonging to this region, 
• coordinates of the centre of the region, xavg and yavg. 
Before the algorithm starts running, one color space is selected for each component to be identified: ball, robot1, …, robot5, 
team, opponent robots and opponent team. 

5.2 Algorithm 

The algorithm for image segmentation and labeling can be summarized as follows: 



• The algorithm starts analysing the 1st pixel of a given region of interest (in our case the whole image). 
• If the color of the pixel under study is a valid color and is different from the color of the upper and left neighbor 

pixels, a new region is created (Fig. 6 a). 
• If the color of the pixel under study is a valid color (it belongs to one of the predefined color labels) and is equal to 

the color of the upper or left pixel, then the pixel under study is added to the region of the upper or left pixel (Fig. 
6 b). 

• If the color of the pixel under study is a valid color and is equal to the upper and left pixel colors, then (Fig. 6 c): 
o if the upper and left pixels belong to the same region, the pixel under study is added to this region, 
o otherwise, the pixel under study is added to the region with a bigger number of pixels, the pixels of the 

region with lower quantity of elements are copied to the bigger region, and then the region is deleted. 

 

 
 

Fig. 6.  Image segmentation and labeling 

6 POSITION ESTIMATION 

Objects are marked with color patches as shown in Fig. 3. To estimate objects position first correct regions which belong to 
the object has to be selected. Objects positions are then calculated from these regions. To suppress noise of the calculated 
position and orientation data extended Kalman filter is implemented. 

6.1 Object Estimation 

From all the possible valid regions identified as described in the previous section, a proper number of regions with the 
biggest area are selected. First, the team and opponent team regions are investigated. The region is a probable team patch if 
it is classified as team color and if the positions of other team patches satisfy the condition: 
 1

3( , ) 4idist region team d>  (4) 

where dist is Euclidean distance, region is the current testing region, teami are already chosen team regions and d1 is the 
size of the color patch (Fig. 2). To find the right identification region among all which are classified as a particular 
identification color, the following condition must be fulfilled: 
 1

3 ( , )4 id dist region ident d< 2<  (5) 

where region is the current testing region, identi are already chosen other identification regions (other robots) and d2 is the 
robot size (Fig. 2). 
Considering condition (1) and (2) all possible pairs (team and identification patch) which could represent mobile robots 
should be found. However situations where wrong pairs could be estimated still exist and are shown in Fig. 7. This could 
happen if more identification patches are associated with one team patch. 
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Fig. 7.  Different robots placement 
In Fig. 7, team patches are shaded and marked with different letters, while the identification patches are marked with 
numbers. Situation in Fig. 5a is not problematic because robots are far apart (correct pairs are A2, C1 and B3). The regions 
4 and D are not considered because their area is small, and are probably due to the noise. But in Fig. 5b wrong pairs could 
be estimated as C3 or C2. Similarly in Fig. 5c wrong estimates could be A2 and B1.The selection of correct pairs 
(representing the robots) should therefore globally satisfy (for all estimated robots) the condition that each team patch has 
its own identification patch. 
When the right regions representing color patches are found, the final estimated patch position can be improved by taking 
the weighted average of all region positions with the same classified color and less than distance d1 away. 
From known positions of the regions belonging to the objects, the object positions and orientations are calculated. The 
position of the ball is equal to its region position, while the i-th robot data (position xi, yi and orientation ϕi) are calculated 
as follows: 
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with xTi, yTi denoting i-th position of the team patch and xIi, yIi denoting i-th position of the identification patch.  
 

6.2 Data Filtering 

Calculated robot positions and orientations are corrupted with (camera and frame-grabber) noise and with other 
disturbances that appear during robot control, such as: wireless communication, wheel sliding and others. Noise level of the 
estimated data mostly depends on vision system initialization (determination of proper thresholds for certain patches). At 
proper process initialization the estimated data do not differentiate from the real data more than  ±1 mm for positions in ±1º 
for orientations. However, noise level increases at worse conditions. Furthermore, the estimated data contains 
approximately one sample delayed information because of image processing. All these problems can be efficiently solved 
by the use of the corresponding filter. To improve performance of motion controller, extended Kalman filter (EKF) is used 
[9]. 
Kinematics of a mobile robot with differential drive is defined by equation: 
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where b is the distance along the axle between the centers of the drive wheels, and vL  and vR  are circumferential speeds of 
the left wheel and right wheel, respectively (Fig. 8). 

 
Fig. 8.  Scheme of the robot 

Measurement vector of EKF is: 



 [ ]c c cx y θ=z  (8) 
State variables that are estimated by EKF are just filtered measurement variables, giving measurement model needed by 
EKF: 
  (9) ( ) ( ) ( )kk k= +z x n k
where n(k) is measurement noise with covariance matrix R. EKF is used to estimate expected values of these measurement 
variables: 
 ˆˆ ˆ ˆx y θ⎡ ⎤= ⎣ ⎦x  (10) 

State model used for EKF is obtained by discretizing equation (7) with discretization period T. Thus, time update equations 
of EKF are: 
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where −P  is a priori estimate error covariance matrix, P is a posteriori estimate error covariance matrix, Q is process noise 
covariance matrix, and A is Jacobian matrix of partial derivatives given by: 
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Measurement update equations of EKF are: 
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where K is the Kalman gain matrix. Designer has to set the values for covariance matrixes R, Q and P(0), and for initial 
values of state estimation ˆ (0)x . 
Kalman filter includes the system motion model in its filtering algorithm which enables efficient filtering. However when 
having a larger disagreement between the used motion model and the reality, the filtered states differ from the real system 
ones. In the case of the robot soccer set-up this could occasionally happen during objects collisions between robots or the 
ball. When such cases occur, the best solution is to initialize the filter with the current state values which enables a faster 
recovery of the filter. Unfortunately, there are also some phenomena which cannot be reliably or even approximately 
predicted, such as: wheel sliding on different surfaces (clean, unclean, rough, smooth), battery condition, and the like. 
The implementation of Kalman filter is validated on a real robot. First, noise variances were determined from an observing 
standing robot. The results from the above-presented filter for the robot can be seen in Fig. 9 where camera estimated data 
and filtered data are shown. 
 



 
Fig. 9.  Robot trajectory and orientation; real and filtered data 

 
From Fig. 9 it can be concluded that orientation data are more subjected to noise than position data. Therefore Kalman filter 
proved useful especially at orientation estimation. An important advantage is also prediction of the robot states in future or 
at least for the delay time resulting from image processing. The used model also does not include collisions among robots or 
between robots and boundary. Therefore in such cases the estimated data values could vary from real data. The best and 
simplest strategy and solution to collision situations is to initialize a filter with the current robot state values enabling a 
faster recovery of the filter. Another problem can appear when the robot data are wrongly estimated due to pure 
illumination conditions or bad vision system initialization. These outliers are partly filtered out because such behavior is 
unlikely according to robot model. The solution to these situations is to somehow detect the outlier measurements and 
simply ignore their values in equation (14). 
As already mentioned, at corresponding vision system initializations and good lightening conditions the noise level does not 
contaminate estimated data more than ±1 mm for positions in ±1º for orientations (evaluations taken when robots stand 
still). However, noise level increases at worse conditions. The data filtering presented is useful because it suppresses noise 
and other disturbances and eliminates delays resulting from image processing by predicting future robot states. The 
obtained filtered data therefore enables a better (more accurate and faster) robot control. 

7 CONCLUSIONS 

An approach towards establishing a fast and robust vision system for the purpose of robot soccer game is presented. 
Special consideration is given to optimization of computational work and robustness issues. Robustness is achieved by 
time-efficient algorithms which enable global image processing. Contrary, some vision systems used by other robot soccer 
teams employ local image processing to obtain the desired frame rate of vision system. The major disadvantage of these 
latter algorithms is loss of one or more objects (robots or ball) because of some unpredicted reasons (lightening conditions, 
collisions, bugs). The local search areas have to be increased until objects are found, which results in larger and irregular 
sample time. This could not happen with global image processing. However, disadvantage of the presented approach can 
appear if large number (more than 15) of different color patches have to be followed. Some of them could then become 
quite similar on camera image which could result in wrong objects estimation. The problem will be dealt with in future 
work by inclusion of object tracking algorithms. 
From the vision part perspective, our intention was to efficiently merge the following algorithms: image acquisition, 
classification, connected region determination and labeling. The applied approach is confirmed by a short time (10 ms on 2 
GHz Pentium IV computer) needed for an incoming image processing and all objects estimations.  
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