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Practical Algorithms for Selection on Coarse-Grained

Parallel Computers

Ibraheem Al-furiah�, Srinivas Aluru, Sanjay Goil yand Sanjay Ranka

Department of Computer and Information Science

Syracuse University, Syracuse, NY 13244-4100

email: alfuraih, aluru, sgoil, ranka@top.cis.syr.edu

Abstract

In this paper, we consider the problem of selection on coarse-grained distributed

memory parallel computers. We discuss several deterministic and randomized algo-

rithms for parallel selection. We also consider several algorithms for load balancing

needed to keep a balanced distribution of data across processors during the execution

of the selection algorithms. We have carried out detailed implementations of all the

algorithms discussed on the CM-5 and report on the experimental results. We demon-

strate that the randomized algorithms are superior to their deterministic counterparts.

1 Introduction

Given a set ofN elements, a total order de�ned on the elements, and a number k, the selection

problem is to �nd the kth smallest element in the given set of elements. The problem has

several applications in computer science and statistics. A special case of the problem, often

found useful, is to �nd the median of the given data. The median of N elements is de�ned

to be the elment with rank dN
2
e.

Sequentially, the selection problem can be solved in O(N) time by using the deterministic

algorithm of Blum et. al. [8] or in O(N) expected time by using the randomized algorithm

of Floyd et. al. [12]. Both the algorithms work as follows: First, an element of the set is

estimated to be the median. The set is split into two subsets S1 and S2 of elements smaller

than or equal to and greater than the estimated median. If jS1j >= k, recursively �nd the

�Supported by scholarship from King AbdulAziz City for Science and Technology (KACST), Riyadh,

Saudi Arabia.
yThe work of this author was supported in part by NASA under subcontract #1057L0013-94 issued by

the LANL. The content of the information does not necessarily re
ect the position or the policy of the

Government and no o�cial endorsement should be inferred.
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element with rank k in S1. If not, recursively �nd the elment with rank (k�jS1j) in S2. Once

the number of elements under consideration falls below a constant, the problem is solved

directly by sorting and picking the appropriate element. The di�erence in the deterministic

and randomized algorithms lies in the process of selecting the estimated median. In the

deterministic algorithm, the set of elments is split into several subsets of constant size and

the median of each subset is found directly. The median of the set of these medians is found

using the deterministic selection algorithm, and is used as the estimated median. With

this, the estimated median will have at least a guaranteed fraction of the number of elments

below it and at least a guaranteed fraction of the elements above it, guaranteeing the O(N)

worst-case running time of the selection algorithm. In the randomized version, a random

element is selected to be the estimated median. The randomized algorithm has a worst-case

run time of O(N2) but has an expected run time of only O(N) and is known to perform

better in practice than its deterministic counterpart due to the low constant associated with

the algorithm.

Many parallel algorithms for selection have been designed for the PRAM model [2, 3, 4,

9, 14] and for various network models including trees, meshes, hypercubes and recon�gurable

architectures [6, 7, 13, 16, 21]. More recently, Bader et.al. [5] implement a parallel determin-

istic selection algorithm on several distributed memory machines including CM-5, IBM SP-2

and INTEL Paragon. In this paper, we consider and evaluate parallel selection algorithms for

coarse-grained distributed memory parallel computers. A coarse-grained parallel computer

consists of several relatively powerful processors connected by an interconnection network.

Most of the commercially available parallel computers belong to this category. Examples

of such machines include CM-5, IBM SP-1 and SP-2, nCUBE 2, INTEL Paragon and Cray

T3D.

The rest of the paper is organized as follows: In Section 2, we describe our model of

parallel computation and outline some primitives used by the algorithms. In Section 3, we

present two deterministic and two randomized algorithms for parallel selection. Selection

algorithms are iterative and work by reducing the number of elements to consider from

iteration to iteration. Since we can not guarantee that the same number of elments are

removed on every processor, this leads to load imbalance. In Section 4, we present several

algorithms to perform such a load balancing. Each of the load balancing algorithms can

be used by any selection algorithm that requires load balancing. In Section 5, we report

and analyze the results we have obtained on the CM-5 by detailed implementation of the

selection and load balancing algorithms presented. We conclude the paper in Section 6.
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2 Preliminaries

2.1 Model of Parallel Computation

We model a coarse-grained parallel machine as follows: A coarse-grained machine consists of

several relatively powerful processors connected by an interconnection network. Rather than

making speci�c assumptions about the underlying network, we assume a two-level model

of computation. The two-level model assumes a �xed cost for an o�-processor access inde-

pendent of the distance between the communicating processors. Communication between

processors has a start-up overhead of � , while the data transfer rate is 1
�
. For our complex-

ity analysis we assume that � and � are constant and independent of the link congestion

and distance between two processors. With new techniques, such as wormhole routing and

randomized routing, the distance between communicating processors seems to be less of a

determining factor on the amount of time needed to complete the communication. Further-

more, the e�ect of link contention is eased due to the presence of virtual channels and the

fact that link bandwidth is much higher than the bandwidth of node interface. This permits

us to use the two-level model and view the underlying interconnection network as a virtual

crossbar network connecting the processors. These assumptions closely model the behavior

of the CM-5 on which our experimental results are presented. Although the algorithms pre-

sented are analyzed under these assumptions, they are architecture-independent and can be

e�ciently implemented on meshes and hypercubes.

2.2 Parallel Primitives

In the following, we describe some important parallel primitives that are repeatedly used in

our algorithms and implementations. We state the running time required for each of these

primitives under our model of parallel computation. The analysis of the run times for the

primitives described is fairly simple and is omitted in the interest of brevity. The interested

reader is referred to [15]. In what follows, p refers to the number of processors.

1. Broadcast

In a Broadcast operation, one processor has an element of data to be broadcasted to

all other processors. This operation can be performed in O((� + �) log p) time.

2. Combine

Given an element of data on each processor and a binary associative and commutative

operation, the Combine operation computes the result of combining the elements stored

3



on all the processors using the operation and stores the result on every processor. This

operation can also be performed in O((� + �) log p) time.

3. Parallel Pre�x

Suppose that x0; x1; : : : ; xp�1 are p data elements with processor Pi containing xi. Let


 be a binary associative operation. The Parallel Pre�x operation stores the value of

x0
x1
: : :
xi on processor Pi. This operation can be be performed in O((�+�) log p)

time.

4. Gather

Given an element of data on each processor, the Gather operation collects all the data

and stores it in one of the processors. This can be accomplished in O(� log p + �p)

time.

5. Global Concatenate

This is same as Gather except that the collected data should be stored on all the

processors. This operation can also be performed in O(� log p + �p) time.

6. Transportation Primitive

The transportation primitive performsmany-to-manypersonalized communication with

possibly high variance in message size. If the total length of the messages being sent

out or received at any processor is bounded by t, the time taken for the communication

is 2�t (+ lower order terms) when t � O(p2 + p�=�). If the outgoing and incoming

tra�c bounds are r and c instead, the communication takes time 2�(r + c) (+ lower

order terms) when either r � O(p2 + p�=�) or c � O(p2 + p�=�) [20].

3 Parallel Algorithms for Selection

Parallel algorithms for selection are also iterative and work by reducing the number of

elements to be considered from iteration to iteration. The elements are distributed across

processors and each iteration is performed in parallel by all the processors. Let n be the

number of elements and p be the number of processors. To begin with, each processor is

given dn
p
e or bn

p
c elements. Otherwise, this can be easily achieved by using one of the load

balancing techniques to be described in Section 4. Let n
(j)
i be the number of elements in

processor Pi at the beginning of iteration j. let n(j) =
Pp�1

i=0 n
(j)
i . Let k(j) be the rank of the

element we need to identify among these n(j) elements. We use this notation to describe all

the selection algorithms presented in this paper.
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Algorithm 1 Median of Medians selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij =
n
p

rank - desired rank among the total elements

l = 0 ; r = n
p
� 1

On each processor Pi

while n > p
2

Step 1. Use sequential selection to �nd median mi of list Li[l; r]

Step 2. M = Gather(mi)

Step 3. On P0

Find median of M , say MoM , and broadcast it to all processors.

Step 4. Partition Li into �MoM and > MoM to give indexi, the split index

Step 5. count = Combine(indexi, add) calculates the number of elements < MoM

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n� count ; l = indexi ; rank = rank � count

Step 7. LoadBalance(Li; n; p)

Step 8. L = Gather(Li[l; r])

Step 9. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

3.1 Median of Medians Algorithm

The median of medians algorithm is a straightforward parallelization of the deterministic

sequential algorithm [8] and has recently been suggested and implemented by Bader et. al.

[5]. This algorithm requires load balancing at the beginning of each iteration.

At the beginning of iteration j, each processor �nds the median of its n
(j)
i = dn

(j)

p
e or

bn
(j)

p
c elements using the sequential deterministic algorithm. All such medians are gathered

on one processor, which then �nds the median of these medians. The median of medians is

then estimated to be the median of all the n(j) elements. The estimated median is broadcast

to all the processors. Each processor scans through its set of points and splits them into two

subsets containing elements less than or equal to and greater than the estimated median,

respectively. A Combine operation and a comparison with k(j) determines which of these

two subsets to be discarded and the value of k(j+1) needed for the next iteration.
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Selecting the median of medians as the estimated median ensures that the estimated

median will have at least a guaranteed fraction of the number of elments below it and at

least a guaranteed fraction of the elements above it, just as in the sequential algorithm.

This ensures that the worst case number of iterations required by the algorithm is O(log n).

Let n(j)max = max
p�1
i=0n

(j)
i . Thus, �nding the local median and splitting the set of points

into two subsets based on the estimated median each requires O(n(j)max) time in the jth

iteration. The remaining work is one Gather, one Broadcast and one Combine operation.

Therefore, the worst-case running time of this algorithm is
Plogn�1

j=0 O(n(j)max + � log p + �p).

Since n(j)max = O(n
p
), the running time is O(n

p
log n+ � log p log n+ �p log n).

This algorithm requires the use of load balancing between iterations. With load bal-

ancing, n(j)max = 1
2
n(j�1)max . Assuming load balancing and ignoring the cost of load balanc-

ing itself, the running time of the algorithm reduces to
Plogn�1

j=0 O( n

2jp
+ � log p + �p) =

O(n
p
+ � log p log n + �p log n).

3.2 Bucket-Based Algorithm

The bucket-based algorithm [17] attempts to reduce the worst-case running time of the above

algorithm without requiring load balance. First, in order to keep the algorithm determin-

istic without a balanced number of elements on each processor, the median of medians is

replaced by the weighted median of medians. As before, local medians are computed on

each processor. However, the estimated median is taken to be the weighted median of the

local medians, with each median weighted by the number of elments on the corresponding

processor. This will again guarantee that a �xed fraction of the elements is dropped from

consideration every iteration. The number of iterations of the algorithm remains O(log n).

The dominant computational work in the median of medians algorithm is the computation

of the local median and scanning through the local elements to split them into two sets based

on the estimated median. In order to reduce this work which is repeated every iteration,

the bucket-based approach preprocesses the local data into O(log p) buckets such that for

any 0 � i < j < log p, every element in bucket i is smaller than any element in bucket j.

This can be accomplished by �nding the median of the local elements, splitting them into

two buckets based on this median and recursively splitting each of these buckets into logp

2

buckets using the same procedure. Thus, preprocessing the local data into O(log p) buckets

requires O(n
p
log log p) time.

Bucketing the data simpli�es the task of �nding the local median and the task of splitting

the local data into two sets based on the estimated median. To �nd the local median, identify

the bucket containing the median and �nd the rank of the median in the bucket containing

the median in O(log log p) time using binary search. The local median can be located in the
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Algorithm 2 Bucket-based selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij =
n
p

C - is a constant

rank - desired rank among the total elements

l = 0 ; r = n
p
� 1

On each processor Pi

Step 0. Partition Li on Pi into logp buckets of equal size such that if r 2 bucketj, and s 2 bucketk,

then r < s if j < k

while(n > p
2)

Step 1. Find median mi of list Li[l; r] by �nding the bucket bktk containing the median

element using a binary search. This is followed by �nding the appropriate rank in

bktk. Let Ni be the number of remaining keys on Pi.

Step 2. M = Gather(mi) ; Q = Gather(Ni)

Step 3. On P0

mw = weighted median of M

WM = Broadcast(mw)

Step 4. Partition Li into � WM and > WM using the buckets to give indexi; the split index

Step 5. count = Combine(indexi, add) calculates the number of elements less than WM

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n� count ; l = indexi ; rank = rank � count

Step 7. L = Gather(Li)

Step 8. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

7



Algorithm 3 Randomized selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij =
n
p

rank - desired rank among the total elements

l = 0 ; r = n
p
� 1

On each processor Pi

while(n > p
2)

Step 0. ni = r � l + 1

Step 1. s = Pre�xSum(ni; p)

Step 2. Generate a random number nr (same on all processors) between 0 and n� 1

Step 3. On Pk where (nr 2 [s � ni; s])

mguess = Broadcast(Li[nr � (s � ni)])

Step 4. Partition Li into � mguess and > mguess to give indexi, the split index

Step 5. count = Combine(indexi, add) calculates the number of elements less than mguess

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n� count ; l = indexi ; rank = rank � count

Step 7. L = Gather(Li[l; r])

Step 8. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

bucket by the sequential selection algorithm in O( n

p log p
) time. The cost of �nding the local

median reduces from O(n
p
) to O(log log p+ n

p log p
). To split the local data into two sets based

on the estimated median, �rst identify the bucket that should contain the estimated median.

Only the elements in this bucket need to be split. Thus, this operation also requires only

O(log log p + n

p log p
) time.

After preprocessing, the worst-case run time for selection is O(log log p log n+ n

p logp
log n+

� log p log n+�p log n) = O( n

p logp
log n+� log p log n+�p log n) for n > p2 log log p. Therefore,

the worst-case run time of the bucket-based approach is O(n
p
(log log p+ logn

logp
)+� log p log n+

�p log n) without any load balancing.

3.3 Randomized Selection Algorithm

The randomized median �nding algorithm is a straightforward parallelization of the ran-

domized sequential algorithm described in [12]. All processors use the same random number
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generator with the same seed so that they can produce identical random numbers. Consider

the behavior of the algorithm in iteration j. First, a parallel pre�x operation is performed on

the n
(j)
i 's. All processors generate a random number between 1 and n(j) to pick an element

at random, which is taken to be the estimate median. From the parallel pre�x operation,

each processor can determine if it has the estimated median and if so broadcasts it. Each

processor scans through its set of points and splits them into two subsets containing ele-

ments less than or equal to and greater than the estimated median, respectively. A Combine

operation and a comparison with k(j) determines which of these two subsets to be discarded

and the value of k(j+1) needed for the next iteration.

Since in each iteration approximately half the remaining points are discarded, the ex-

pected number of iterations is O(log n). Let n(j)max = max
p�1
i=0n

(j)
i . Thus, splitting the set of

points into two subsets based on the median requires O(n(j)max) time in the jth iteration. The

remaining work is one Parallel Pre�x, one Broadcast and one Combine operation. Therefore,

the total expected running time of the algorithm is
Plogn�1

j=0 O(n(j)max + (� + �) log p) time.

Since n(j)max = O(n
p
), the expected running time is O(n

p
log n+ (� + �) log p log n).

In practice, one can expect that n(j)max reduces from iteration to iteration, perhaps by half.

This is especially true if the data is randomly distributed to the processors, eliminating any

order present in the input. In fact, by a load balancing operation at the end of every iteration,

we can ensure that for every iteration j, n(j)max =
1
2
n(j�1)max . With load balancing and ignoring

the cost of it, the running time of the algorithm reduces to
Plogn�1

j=0 O( n

2jp
+ (� + �) log p) =

O(n
p
+ (� + �) log p log n). Even without this load balancing, assuming that the initial data

is randomly distributed, the running time is expected to be O(n
p
+ (� + �) log p log n).

3.4 Fast Randomized Selection Algorithm

The expected number of iterations required for the randomized median �nding algorithm

is O(log n). In this section we discuss an approach due to Rajasekharan et. al. [17] that

requires only O(log log n) iterations for convergence with high probability.

Suppose we want to �nd the kth smallest element among a given set of n elements. Sample

a set S of o(n) keys at random and sort S. The element with rank m = dkjSj
n
e in S will have

an expected rank of k in the set of all points. Identify two keys l1 and l2 in S with ranks

m� � and m+ � where � is a small integer such that with high probability the rank of l1 is

< k and the rank of l2 is > k in the given set of points. With this, all the elements that are

either < l1 or > l2 can be eliminated. Recursively �nd the element with rank k � l1 in the

remaining n� (l1+ l2) elements. If the number of elements is su�ciently small, they can be

directly sorted to �nd the required element.

If the ranks of l1 and l2 are both < k or both > k, the iteration is repeated with a di�erent
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Algorithm 4 Fast randomized selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij =
n
p

rank - desired rank among the total elements

C - a constant

l = 0 ; r = n
p
� 1

On each processor Pi

while(n > p
2)

Step 0. ni = r � l + 1

Step 1. Collect a sample Si from Li[l; r] by picking ni
n�

n
elements at random on Pi between

l and r.

Step 2. S = ParallelSort(Si; p)

On P0

Step 3. Pick k1, k2 from S with ranks d ijSj
n
�

p
jSjlogne and d ijSj

n
+
p
jSjlogne

Step 4. Broadcast k1 and k2.The rank to be found will be in [k1, k2] with high

probability.

Step 5. Partition Li between l and r into < k1, [k1, k2] and > k2 to give counts less, middle

and high and splitters s1 and s2.

Step 6. cmid = Combine(middle, add)

Step 7. cless = Combine(less, add)

Step 8. If (rank 2 (cless; cmid])

n = cmid ; l = s1 ; r = s2 ; rank = rank � cless

else

if( rank < cless)

r = s1 ; n = cless

else

n = n� (cless + cmid) ; l = s2 ; rank = rank � (cless + cmid)

Step 9. L = Gather(Li[l:r])

Step 10. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

10



sample set. We make the following modi�cation that may help improve the running time

of the algorithm in practice. Suppose that the ranks of l1 and l2 are both < k. Instead of

repeating the iteration to �nd element of rank k among the n elements, we discard all the

elements less than l2 and �nd the element of rank k� rank(l2) in the remaining n� rank(l2)

elements. If the ranks of l1 and l2 are both > k, elements greater than l1 can be discarded.

Rajasekharan et. al. show that the expected number of iterations of this median �nding

algorithm is O(log log n) and that the expected number of points decreases geometrically

after each iteration. If n(j) is the number of points at the start of the jth iteration, only a

sample of o(n(j)) keys is sorted. Thus, the cost of sorting, o(n(j) log n(j)) is dominated by the

O(n(j)) work involved in scanning the points.

In iteration j, Processor P
(j)
i randomly selects n

(j)
i

n�

n(j)
of its n

(j)
i elements. The selected

elements are sorted using a parallel sorting algorithm. Once sorted, the processors containing

the elements l
(j)
1 and l

(j)
2 broadcast them. Each processor �nds the number of elements less

than l
(j)
1 and greater than l

(j)
2 contained by it. Using Combine operations, the ranks of l

(j)
1

and l
(j)
2 are computed and the appropriate action of discarding elements is undertaken by

each processor. A large value of � increases the overhead due to sorting. A small value of

� increases the probability that both the selected elements (l
(j)
1 and l

(j)
2 ) lie on one side of

the element with rank k(j), thus causing an unsuccessful iteration. By experimentation, we

found a value of 0:6 to be appropriate.

As in the randomized median �nding algorithm, one iteration of the median �nding

algorithm takes O(n(j)max+ (� +�) log p) time. Since n(j)max = O(n
p
) and log log n iterations are

required, median �nding requires O(n
p
log log n+ (� + �) log p log log n) time.

As before, we can do load balancing to ensure that n(j)max reduces by half in every iteration.

Assuming this and ignoring the cost of load balancing, the running time of median �nding

reduces to
Plog logn�1

j=0 O( n

2jp
+ (� + �) log p) = O(n

p
+ (� + �) log p log log n). Even without

this load balancing, the running time is expected to be O(n
p
+ (� + �) log p log log n).

4 Algorithms for load balancing

In order to ensure that the computational load on each processor is approximately the same

during every iteration of a selection algorithm, we need to dynamically redistribute the data

such that every processor has nearly equal number of elements. We present three algorithms

for performing such a load balancing. The algorithms can also be used in other problems that

require dynamic redistribution of data and where there is no restriction on the assignment

of data to processors.

We use the following notation to describe the algorithms for load balancing: Initially,
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Algorithm 5 Modi�ed order maintaining load balance

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

Step 0. navg = dn
p
e ; if p < n mod p, increment navg

Step 1. M = Global Concat( ni)

for j  0 to p� 1

Step 2. diff [j] = M [j] - navg

Step 3. If diff [j] is positive Pj is labeled as a source. If diff [j] is negative Pj is

labeled as a sink.

Step 4. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

if(source[Pi])

Step 5. li = jp src[i]j � diff [i]

Step 6. ri = jp src[i]j � 1

Step 7. Calculate the range of destination processors [Pl; Pr] using a binary search

on p snk.

Step 8. while(l � r)

Send [min(ri; p snk[Pl])� li] elements to Pl and increment l

if(sink[Pi])

Step 5. li = p snk[i]� diff [i]

Step 6. ri = p snk[i]� 1

Step 7. Calculate the range of source processors [Pl; Pr] using a binary search on

p src.

Step 8. while( l � r)

Receive [min(ri; p src[Pl])� li] elements from Pl and increment l

processor Pi contains ni elements. n is the total number of elements on all the processors,

i.e. n =
Pp�1

i=0 ni. Let nmax = max
p�1
i=0ni. Let navg = bn

p
c.

4.1 Order Maintaining Load Balance

Suppose that each processor has its set of elements stored in an array. We can view the n

elements as if they were globally sorted based on processor and array indices. For any i < j,

any element in processor Pi appears earlier in this sorted order than any element in processor

Pj . The order maintaining load balance algorithm is a parallel pre�x based algorithm that

preserves this global order of data after load balancing.
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The algorithm �rst performs a Parallel Pre�x operation to �nd the position of the ele-

ments it contains in the global order. The objective is to redistribute data such that processor

Pi contains the elements with positions navgi : : : navg(i + 1) � 1 in the global order. Using

the parallel pre�x operation, each processor can �gure out the processors to which it should

send data and the amount of data to send to each processor. Similarly, each processor can

�gure out the amount of data it should receive, if any, from each processor. Communication

is generated according to this and the data is redistributed.

In our model of computation, the running time of this algorithm only depends on the

maximum communication generated/received by a processor. The maximum number of

messages sent out by a processor is dnmax

navg
e + 1 and the maximum number of elements sent

is nmax. The maximum number of elements received by a processor is navg. Therefore, the

running time is O(navg + � nmax

navg
+ �nmax).

The order maintaining load balance algorithm may generate much more communication

than necessary. For example, consider the case where all processors have navg elements

except that P0 has one element less and Pp�1 has one element more than navg. The optimal

strategy is to transfer the one extra element from Pp to P0. However, this algorithm transfers

one element from Pi to Pi�1 for every 1 � i < p � 1, generating (p � 1) messages.

Since preserving the order of data is not important for the selection algorithm, the fol-

lowing modi�cation is done to the algorithm: Every processor retains minfni; navgg of its

original elements. If ni > navg, the processor has (ni�navg) elements in excess and is labeled

a source. Otherwise, the processor needs (navg � ni) elements and is labeled a sink. The

excessive elements in the source processors and the number of elements needed by the sink

processors are ranked separately using two Parallel Pre�x operations. The data is trans-

ferred from sources to sinks using a strategy similar to the order maintaining load balance

algorithm. This algorithm, which we call modi�ed order maintaining load balance algorithm

(modi�ed OMLB), is implemented in [5].

The maximumnumber of messages sent out by a processor in modi�ed OMLB is O(p) and

the maximum number of elements sent is (nmax � navg). The maximum number of elements

received by a processor is navg. The worst-case running time is O(navg+�p+�(nmax�navg)).

4.2 Dimension Exchange Method

The dimension exchange method is a load balancing technique originally proposed for hyper-

cubes [11]. In each iteration of this method, processors are paired to balance the load locally

among themselves which eventually leads to global load balance. The algorithm runs in log p

iterations. In iteration i (0 � i < log p), processors that di�er in the ith least signi�cant bit

position of their id's exchange and balance the load. After iteration i, for any 0 � j < b p

2i
c,

13



Algorithm 6 Dimension exchange method

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

for j  0 to logp� 1

Step 1. Pl = Pi XOR 2j

Step 2. Exchange the count of elements between Pi(ni) and Pl(nl)

Step 3. navg = d
ni+nl

2
e

if (ni > Navg)

Step 4. Send ni � navg elements from Li[navg] to processor Pl

Step 5. ni = navg

else

if ( Nl > Navg)

Step 4. Receive nl � navg elements from processor Pl at Li[ni]

Step 5. Increment ni by nl � navg

processors Pj2i : : : Pj2i+1�1 have the same number of elements.

In each iteration, p

2
pairs of processors communicate in parallel. No processor communi-

cates more than nmax

2
elements in an iteration. Therefore, the running time is O(� log p +

�nmax log p). However, since 2
j processors hold the maximum number of elements in itera-

tion j, it is likely that either nmax is small or far fewer elements than nmax

2
are communicated.

Therefore, the running time in practice is expected to be much better than what is predicated

by the worst-case.

4.3 Global Exchange

This algorithm is similar to the modi�ed order maintaining load balance algorithm except

that processors with large amounts of data are directly paired with processor with small

amounts of data to minimize the number of messages.

As in the modi�ed order maintaining load balance algorithm, every processor retains

minfni; navgg of its original elements. If ni > navg, the processor has (ni � navg) elements

in excess and is labeled a source. Otherwise, the processor needs (navg � ni) elements

and is labeled a sink. All the source processors are sorted in non-increasing order of the

number of excess elements each processor holds. Similarly, all the sink processors are sorted

in non-increasing order of the number of elements each processor needs. The information

on the number of excessive elements in each source processor is collected using a Global

14



Algorithm 7 Global Exchange load balance

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

Step 0. navg = dn
p
e ; if p < n mod p, increment navg

Step 1. M = Global Concat( ni)

for j  0 to p� 1

Step 2. diff [j] = M [j] - navg

Step 3. If diff [j] is positive Pj is labeled as a source. If diff [j] is negative Pj is

labeled as a sink.

Step 4. For k 2 [0; p�1] sort diff [k] for sources in descending order maintaining appropriate

processor indices. Also sort diff [k] for sinks in ascending order.

Step 5. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

Step 6. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

if(source[Pi])

Step 7. li = jp src[i]j � diff [i]

Step 8. ri = jp src[i]j � 1

Step 9. Calculate the range of destination processors [Pl; Pr] using a binary search

on p snk.

Step 10. while(l � r)

Send [min(ri; p snk[Pl])� li] elements to Pl and increment l

if(sink[Pi])

Step 7. li = p snk[i]� diff [i]

Step 8. ri = p snk[i]� 1

Step 9. Calculate the range of source processors [Pl; Pr] using a binary search on

p src.

Step 10. while( l � r)

Receive [min(ri; p src[Pl])� li] elements from Pl and increment l

15



Selection Algorithm Run-time

Median of Medians O(n
p
+ � log p log n + �p log n)

Bucket-based ����

Randomized O(n
p
+ (� + �) log p log n)

Fast randomized O(n
p
+ (� + �) log p log log n)

Table 1: The running times of various selection algorithm assuming but not including the

cost of load balancing

Concatenate operation. Each processor locally ranks the excessive elements using a pre�x

operation according to the order of the processors obtained by the sorting. Another Global

Concatenate operation collects the number of elements needed by each sink processor. These

elements are then ranked locally by each processor using a pre�x operation performed using

the ordering of the sink processors obtained by sorting.

Using the results of the pre�x operation, each source processor can �nd the sink processors

to which its excessive elements should be sent and the number of element that should be

sent to each such processor. The sink processors can similarly compute information on the

number of elements to be received from each source processor. The data is transferred from

sources to sinks. Since the sources containing large number of excessive elements send data

to sinks containing large number of excessive elements, this may reduce the total number of

messages sent.

In the worst-case, there may be only one processor containing all the excessive elements

and thus the total number of messages sent out by the algorithm is O(p). No processor

will send more than (nmax � navg) elements of data and the maximum number of elements

received by any processor is navg. The worst-case run time is O(navg + �p+�(nmax�navg)).

5 Implementation Results

The estimated running times of various selection algorithms are summarized in Table 1 and

Table 2. Table 1 shows the estimated running times assuming that each processor contains

approximately the same number of elements at the end of each iteration of the selection

algorithm. This can be expected to hold for random data even without performing any load

balancing and we also observe this experimentally. Table 2 shows the worst-case running

times in the absence of load balancing.

We have implemented all the selection algorithms and the load balancing techniques
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Selection Algorithm Run-time

Median of Medians O(n
p
log n+ � log p log n+ �p log n)

Bucket-based O(n
p
(log log p+ logn

logp
) + � log p log n + �p log n)

Randomized O(n
p
log n+ (� + �) log p log n)

Fast randomized O(n
p
log log n+ (� + �) log p log log n)

Table 2: The worst-case running times of various selection algorithms

on the CM-5. To experimentally evaluate the algorithms, we have chosen the problem of

�nding the median of a given set of numbers. We ran each selection algorithm without any

load balancing and with each of the load balancing algorithms described (except for the

bucket-based approach which does not use load balancing). We have run all the resulting

algorithms on 32k, 64k, 128k, 256k, 512k, 1024k and 2048k numbers using 2, 4, 8, 16, 32, 64

and 128 processors. For each value of the total number of elements, we have run each of the

algorithms on two types of inputs - random and sorted. In the random case, n

p
elements are

randomly generated on each processor. To eliminate peculiar cases while using the random

data, we ran each experiment on �ve di�erent random sets of data and used the average

running time. Random data sets constitute close to the best case input for the selection

algorithms. In the sorted case, the n numbers are chosen to be the numbers 0 : : : n � 1,

with processor Pi containing the numbers in
p
: : : (i + 1)n

p
� 1. The sorted input is a close

to the worst-case input for the selection algorithms. For example, after the �rst iteration

of a selection algorithm using this input, approximately half of the processors lose all their

data while the other half retains all of their data. Without load balancing, the number

of active processors is cut down by about half every iteration. The same is true even if

modi�ed order maintaining load balance and global exchange load balancing algorithms are

used. After every iteration, about half the processors contain zero elements leading to severe

load imbalance for the load balancing algorithm to rectify. Only some of the data we have

collected is illustrated in order to save space.

The execution times of the four di�erent selection algorithms without using load balancing

for random data (except for median of medians algorithm requiring load balancing for which

global exchange is used) with 128k, 512k and 2048k numbers is shown in Figure 1. The

graphs clearly demonstrate that all four selection algorithms scale well with the number of

processors. An immediate observation is that the randomized algorithms are superior to the

deterministic algorithms by an order of magnitude. For example, with n = 2M and p = 32,

the median of medians algorithm ran at least 16 times slower and the bucket-based selection

algorithm ran at least 9 times slower than either of the randomized algorithms. Such an order

of magnitude di�erence is uniformly observed even using any of the load balancing techniques
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Figure 1: Performance of di�erent selection algorithms without load balancing (except for

median of medians selection algorithm for which global exchange is used) on random data

sets.
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and also in the case of sorted data. This is not surprising since the constants involved in the

deterministic algorithms are higher due to recursively �nding the estimated median. Among

the deterministic algorithms, the bucket-based approach consistently performed better than

the median of medians approach by about a factor of two for random data. For sorted data,

the bucket-based approach which does not use any load balancing ran only about 25% slower

than median of medians approach with load balancing.

In each iteration of the parallel selection algorithm, each processor also performs a local

selection algorithm. Thus the algorithm can be split into a parallel part where the processors

combine the results of their local selections and a sequential part involving executing the

sequential selection locally on each processor. In order to convince ourselves that randomized

algorithms are superior in either part, we ran the following hybrid experiment. We ran both

the deterministic parallel selection algorithms replacing the sequential selection parts of it by

randomized sequential selection. The running time of the hybrid algorithms was in between

the deterministic and randomized parallel selection algorithms. We made the following

observation: The factor of improvement in randomized parallel selection algorithms over

deterministic parallel selection is due to improvements in both the sequential and parallel

parts. For large n, much of the improvement is due to the sequential part. For large p, the

improvement is due to the parallel part. We conclude that randomized algorithms are faster

in practice and drop the deterministic algorithms from further consideration.

To facilitate an easier comparison of the two randomized algorithms, we show their

performance separately in Figure 1. Fast randomized selection is asymptotically superior to

randomized selection for worst-case data. For random data, the expected running times of

randomized and fast randomized algorithms are O(n
p
+ (� + �) log p log n) and O(n

p
+ (� +

�) log p log log n), respectively. Consider the e�ect of increasing n for a �xed p. Initially,

the di�erence in log n and log log n is not signi�cant enough to o�set the overhead due to

sorting in fast randomized selection and randomized selection performs better. As n is

increased, fast randomized selection begins to outperform randomized selection. For large

n, both the algorithms converge to the same execution time since the O(n
p
) computational

time dominates. Reversing this point view, we �nd that for any �xed n, as we increase p,

randomized selection will eventually perform better and this can be readily observed in the

graphs.

The e�ect of the various load balancing techniques on the randomized algorithms for

random data is shown in Figure 2 and Figure 3. The execution times are consistently better

without using any load balancing than using any of the three load balancing techniques.

Load balancing for random data almost always had a negative e�ect on the total execution

time and this e�ect is more pronounced in randomized selection than in fast randomized

selection. This is explained by the fact that fast randomized selection has fewer iterations
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Figure 2: Performance of randomized selection algorithm with di�erent load balancing strate-

gies on random and sorted data sets.

(O(log log n) vs. O(log n)) and less data in each iteration.

The observation that load balancing has a negative e�ect on the running time for random

data can be easily explained: In load balancing, a processor with more elements sends some

of its elements to another processor. The time taken to send the data is justi�ed only if

the time taken to process this data in future iterations is more than the time for sending it.

Suppose that a process sends m elements to another processor. The processing of this data

involves scanning it in each iteration based on an estimated median and discarding part of

the data. For random data, it is expected that half the data is discarded in every iteration.

Thus, the estimated total time to process this data is O(m). The time for sending the data

is (� + �m), which is also O(m). By observation, the constants involved are such that load

balancing is taking more time than the reduction in running time caused by it.

Consider the e�ect of the various load balancing techniques on the randomized algorithms

for sorted data (see Figure 2 and Figure 3). Even in this case, the cost of load balancing more

than o�set the bene�t of it for randomized selection. However, load balancing signi�cantly
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Figure 3: Performance of fast randomized selection algorithm with di�erent load balancing

strategies on random and sorted data sets.

improved the performance of fast randomized selection.

In Figure 4, we see a comparison of the two randomized algorithms for sorted data with

the best load balancing strategies for each algorithm � no load balancing for randomized se-

lection and modi�ed order maintaining load balancing for fast randomized algorithm (which

performed slightly better than other strategies). We see that, for large n, fast randomized

selection is superior. We also observe (see Figure 4 and Figure 1) that the fast randomized

selection has better comparative advantage over randomized selection for sorted data.

Finally, we consider the time spent in load balancing itself for the randomized algorithms

on both random and sorted data (see Figure 5 and Figure 6). For both types of data inputs,

fast randomized selection spends much less time than randomized selection in balancing the

load. This is re
ective of the number of times the load balancing algorithms are utilized

(O(log log n) vs. O(log n)). Clearly, the cost of load balancing increases with the amount

of imbalance and the number of processors. For random data, the overhead due to load

balancing is quite tolerable for the range of n and p used in our experiments. For sorted
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Figure 4: Performance of the two randomized selection algorithms on sorted data sets using

the best load balancing strategies for each algorithm � no load balancing for randomized

selection and modi�ed order maintaining load balancing for fast randomized selection.

data, a signi�cant fraction of the execution time of randomized selection is spent in load

balancing. Load balancing never improved the running time of randomized selection. Fast

randomized selection bene�ted from load balancing for sorted data. The choice of the load

balancing algorithm did not make a signi�cant di�erence in the running time.

Consider the variance in the running times between random and sorted data for both the

randomized algorithms. The randomized selection algorithm ran 2 to 2.5 times faster for

random data than for sorted data (see Figure 5). Using any of the load balancing strategies,

there is very little variance in the running time of fast randomized selection (Figure 6). The

algorithm performs equally well on both best and worst-case data.

6 Conclusions

In this paper, we have tried to identify the selection algorithms that are most suited for fast

execution on coarse-grained distributed memory parallel computers. After surveying various

algorithms, we have identi�ed four algorithms and have described and analyzed them in

detail. We also considered three load balancing strategies that can be used for balancing

data during the execution of the selection algorithms.

Based on the analysis and experimental results, we conclude that randomized algorithms

are faster by an order of magnitude. If determinism is desired, the bucket-based approach

is superior to the median of medians algorithm. Of the two randomized algorithms, fast

randomized selection with load balancing delivers good performance for all types of input

distributions with very little variation in the running time. The overhead of using load
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Figure 5: Performance of randomized selection algorithm with di�erent load balancing strate-

gies � No load balancing (N), Order maintaining load balancing (O), Dimension exchange

method (D) and Global exchange (G).

4 8 16 32 64 128
Number of Processors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tim
e (

in 
se

co
nd

s)

Fast Randomized selection , random data
n = 2M

load balancing time

N O
D

G

4 8 16 32 64 128
Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tim
e (

in 
se

co
nd

s)

Fast Randomized selection , sorted data
n = 2M

load balancing timeN

O D
G

Figure 6: Performance of fast randomized selection algorithm with di�erent load balanc-
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balancing with well-behaved data is insigni�cant. Any of the load balancing techniques de-

scribed can be used without signi�cant variation in the running time. Randomized selection

performs well for well-behaved data. There is a large variation in the running time between

best and worst-case data. Load balancing does not improve the performance of randomized

selection irrespective of the input data distribution.
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