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1 INTRODUCTION
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Abstract

Here we present practical methods for simulation and reconstruction

of in-line digital holograms recorded with plane and spherical waves. The

algorithms described here are applicable to holographic imaging of an

object exhibiting absorption as well as phase shifting properties. Opti-

mal parameters, related to distances, sampling rate, and other factors

for successful simulation and reconstruction of holograms are evaluated

and criteria for the achievable resolution are worked out. Moreover, we

show that the numerical procedures for the reconstruction of holograms

recorded with plane and spherical waves are identical under certain condi-

tions. Experimental examples of holograms and their reconstructions are

also discussed.

OCIS: (090.0090) Holography; (090.1995) Digital holography; (090.2880)
Holographic interferometry; (110.3010) Image reconstruction techniques; (120.3180)
Interferometry; (100.1830) Deconvolution.

1 Introduction

In-line holography relates to the original holographic scheme proposed by Gabor
[1, 2, 3]. It is of conceptually simple design, does not include optical elements
between sample and detector and has been employed since its invention in nu-
merous experiments using various types of waves, be it light, electrons or X-rays,
to name just a few. Nowadays, holograms are recorded by digital detectors and
are subject to numerical reconstruction, which constitutes the field of digital
holography [4]. A good overview of different types of holograms and the theory
dedicated to their formation and reconstruction is given in the book by Kim [5].
All simulation and reconstruction routines applied in digital holography employ
fast Fourier transforms (FFT). Most of the routines utilize single Fourier trans-
form, except the routine for plane waves based on the angular spectrum method
[6], where two Fourier transforms are involved. In general, optimal reconstruc-
tions are achieved when two Fourier transforms are employed [7]. The reason
is twofold. Firstly, when two Fourier transforms are involved in simulation or
reconstruction, the object and its hologram are sampled with a similar number
of pixels. For example, if the object occupies a quarter in the object plane, its
hologram will also occupy approximately a quarter of the detector area, and
vice versa. Secondly, when a single Fourier transform is employed, all of the fol-
lowing parameters are co-dependent and bound by one equation: the distance
between sample and detector, the number of pixels, the wavelength, the object
area size, and the detector area size. Thus, the correct reconstruction, provided
all distances are given by the experimental arrangement, can be achieved only
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2 HOLOGRAM FORMATION AND RECONSTRUCTION

at a certain fixed number of pixels, which is highly inconvenient. On the other
hand, a calculation of wave propagation that employs two Fourier transforms
makes it possible to avoid such dependency on the number of pixels. Here, we
summarize simple methods for simulation and reconstruction of holograms with
both plane and spherical waves. All of the algorithms described here employ two
Fourier transforms. Some of the methods described here, have been employed
in previous studies [8, 9, 10] but not been discussed in detail.

2 Hologram Formation and Reconstruction

By definition, in in-line holography, the reference wave and the object wave
share the same optical axis. Typically, the experiment is realized as follows: a
wave passes by an object located at positions in the plane. Part of the wave is
scattered by the object, thus creating the object wave O, and the unscattered
part of the wave forms the reference wave R. The two waves interfere beyond
the object and the interference pattern recorded at some distance is named the
hologram. In Fig. 1 two in-line holography schemes are displayed utilizing
plane respectively spherical waves. In-line holography with spherical waves is
also called Gabor holography [2, 3]. The incident wave distribution is described

Figure 1: In-line holography schemes realized with (a) a plane wave and (b) a
spherical wave.

by Uincident(x, y), with (x, y) being coordinates in the object plane, k =
2π

λ
, with

λ denoting the wavelength. An object is described by a transmission function
[8, 9]:

t(x, y) = exp (−a(x, y)) exp (iϕ(x, y)), (1)

where a(x, y) describes the absorption and ϕ(x, y) the phase distribution while
the wave is scattered off the object. From Eq. 1, it is obvious that the trans-
mission function t(x, y) = 1 where there is either no object or where a(x, y) = 0
and ϕ(x, y) = 0 implying that the distribution of the incident wave remains
undisturbed. This observation allows the object transmission function to be
rewritten as:
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2 HOLOGRAM FORMATION AND RECONSTRUCTION

t(x, y) = 1 + t̃(x, y), (2)

where t̃(x, y) is a perturbation imposed onto the reference wave, not necessarily
a small term however. Equation 2 is just a mathematical representation to allow
for separating contributions from reference respectively object wave. The wave-
front distribution beyond the object, the so-called exit wave, is then described
by:

Uexit wave(x, y) = Uincident(x, y) · t(x, y) =
= Uincident(x, y) + Uincident(x, y) · t̃(x, y), (3)

where the first term describes the reference and the second term describes the
object wave.

The propagation of the wave towards the detector is described by the Fresnel-
Kirchhoff diffraction formula:

Udetector(X,Y ) = − i

λ

∫ ∫

Uincident(x, y) · t(x, y)
exp

(

ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dxdy, (4)

where |r⃗P0
− r⃗P1

| =
∣

∣

∣
r⃗ − R⃗

∣

∣

∣
denotes the distance between a point in the object

plane P0 and a point in the detector plane P1, as illustrated in Fig. 1. Here
r⃗ = (x, y, z) and R⃗ = (X,Y, Z).

The distribution of the two waves at a detector positioned in the plane
(X,Y ) is described by R(X,Y ) and O(X,Y ), respectively. The transmission of
the recorded hologram is therefore given by:

H(X,Y ) = |Udetector(X,Y )|2 = |R(X,Y )|2 + |O(X,Y )|2 +
+R∗(X,Y )O(X,Y ) +R(X,Y )O∗(X,Y ), (5)

where the first term is the constant background created by the reference wave
alone, the second term is assumed to be small compared to the strong reference
wave term, and the last two terms give rise to the interference pattern observed
in the hologram.

Before reconstruction, the hologram must be normalized by division with
the background image:

B(X,Y ) = |R(X,Y )|2 . (6)

The background image is recorded under the exact same experimental con-
ditions as the hologram, but without the object being present. The distribution
of the normalized hologram

H0(X,Y ) =
H(X,Y )

B(X,Y )
− 1 ≈ R∗(X,Y )O(X,Y ) +R(X,Y )O∗(X,Y )

|R(X,Y )|2
(7)

does thus not depend on such factors as the intensity of the incident or reference
wave or detector and camera sensitivity. After the normalization procedure, the
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3 IN-LINE HOLOGRAPHY WITH PLANE WAVES

hologram can be reconstructed by applying routines that are described below.
The subtraction of 1 leaves only the interference term, which approaches 0 wher-
ever the object wave approaches 0, for example at the edges of the hologram.
Thus, the hologram H0(X,Y ) has a smaller folding-fringe effect on its edges due
to Fourier transformation. In addition, an apodization cosine window filter is
applied to the hologram to minimize effects due to the edges of the hologram
caused by the digital Fourier transform (see Appendix A).

The reconstruction of a digital hologram consists of a multiplication of the
hologram with the reference wave R(X,Y ) followed by back-propagation to the
object plane based on the Fresnel-Kirchhoff diffraction integral:

U(x, y) ≈ i

λ

∫ ∫

R(X,Y )H0(X,Y )
exp

(

−ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dXdY. (8)

The wavefront reconstructed from H0(X,Y ) corresponds to t̃(x, y) and 1
should be added to the reconstruction to obtain the transmission function t(x, y)
as follows from Eq. 2. Finally, Eq. 1 is applied to extract absorption and phase
distributions of the imaged object.

3 In-line Holography with Plane Waves

In this section we describe methods of simulating and reconstructing holograms
created with plane waves, as illustrated in Fig. 1(a). A plane wave is described
by a complex-valued distribution exp (i(kxx+ kyy + kzz)), where (kx, ky, kz)
are the components of the wave vector. By selecting the optical axis along the
propagation of the plane wave, we obtain kx = ky = 0, and by choosing the
origin of the z-axis so that z = 0 at the object location, we obtain the incident
wave:

Uincident(x, y) = 1. (9)

The exit wave behind the object given by Eq. 3 equals:

Uexit wave(x, y) = t(x, y). (10)

The wave propagating from the object plane (x, y) towards the detector
plane (X,Y ) is described by the Fresnel-Kirchhoff diffraction formula, see Eq.
4:

Udetector(X,Y ) = − i

λ

∫ ∫

t(x, y)
exp

(

ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dxdy, (11)

where

∣

∣

∣
r⃗ − R⃗

∣

∣

∣
=

√

(x−X)
2
+ (y − Y )

2
+ z2. (12)

The reconstruction of a digital hologram recorded with plane waves is given
by Eq. 8 where R(X,Y ) = 1:
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3 IN-LINE HOLOGRAPHY WITH PLANE WAVES

U(x, y) ≈ i

λ

∫ ∫

H0(X,Y )
exp

(

−ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dXdY. (13)

3.1 Large z-distance, Fresnel Approximation

When the z distance is sufficiently large so that the Fresnel approximation

z3 ≫ π

4λ

[

(x−X)
2
+ (y − Y )

2
]2

max
(14)

is fulfilled, Eq. 11 turns into:

Udetector(X,Y ) = − i

λz

∫ ∫

t(x, y) exp

(

iπ

λz

(

(x−X)
2
+ (y − Y )

2
)

)

dxdy,

(15)
where the constant phase factor was neglected. Equation 15 can be re-written
in the form of a convolution

Udetector(X,Y ) = t(X,Y )⊗ s(X,Y ) (16)

of the object transmission function t(x, y) with the Fresnel function:

s(x, y) = − i

λz
exp

(

iπ

λz

(

x2 + y2
)

)

, (17)

whose Fourier transform S(u, v) is given by:

S(u, v) = − i

λz

∫ ∫

exp

(

iπ

λz

(

x2 + y2
)

)

exp (−2πi (xu+ yv)) dxdy =

= exp
(

−iπλz
(

u2 + v2
))

, (18)

where (u, v) denote the Fourier domain coordinates.
It is important to note that for calculating the convolution, instead of com-

puting s(x, y) in real space and taking its Fourier transform, as it is for example
done in [11], it is better to directly calculate S(u, v) using Eq. 18, as it allows
for correct sampling. The coordinates in the object plane and in the Fourier
plane are sampled as explained in Appendix B. The pixel size in the Fourier
domain ∆F is given by the digital Fourier transform equation, see Eq. B.7:

∆F =
1

N∆
=

1

S
, (19)

where S×S is the area size, N denotes the number of pixels, and ∆ is the pixel
size in the hologram plane. In in-line holography with plane waves, the pixel
size in the hologram plane ∆ is equal to that in the object plane.
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3 IN-LINE HOLOGRAPHY WITH PLANE WAVES

The hologram simulation consists of the following steps:
(a) Calculating the Fourier transform of t(x, y). All digital Fourier trans-

forms mentioned in this work are centered, see Appendix B.
(b) Simulating S(u, v) = exp

(

−iπλz
(

u2 + v2
))

.
(c) Multiplying the results of (a) and (b).
(d) Calculating the inverse Fourier transform of (c).
(e) Taking the square of the absolute value of the result (d).

The reconstruction of a digital hologram recorded with plane waves is given by
Eq. 13 and can also can be represented as a convolution:

U(x, y) ≈ i

λ

∫ ∫

H0(X,Y )
exp

(

−ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dXdY ≈

≈ i

λz

∫ ∫

H0(X,Y ) exp

(

− iπ

λz

(

(x−X)
2
+ (y − Y )

2
)

)

dXdY =

= H0(x, y)⊗ s∗(x, y). (20)

The hologram reconstruction consists of the following steps:
(a) Calculating the Fourier transform of H0(X,Y ).
(b) Simulating S∗(u, v) = exp

(

iπλz
(

u2 + v2
))

.
(c) Multiplying the results of (a) and (b).
(d) Calculating the inverse Fourier transform of (c). The result provides

t̃(x, y).

It can be shown that a convolution can also be simulated also via an inverse
Fourier transforms as:

U(x, y) = FT

(

FT−1
(

H0(x, y)
)

· FT−1
(

s∗(x, y)
)

)

, (21)

where

FT−1
(

s∗(x, y)
)

=

(

FT
(

s(x, y)
)

)

∗

= S∗(u, v), (22)

where FT and FT−1 are the Fourier transform and inverse Fourier transform
respectively.

Using this approach, the hologram reconstruction consists of the following
steps:

(a) Calculating the inverse Fourier transform of H0(X,Y ).
(b) Simulating S∗(u, v) = exp

(

iπλz
(

u2 + v2
))

.
(c) Multiplying the results of (a) and (b).
(d) Calculating the Fourier transform of (c). The result provides t̃(x, y).

At very large distances, the Fresnel condition is replaced by an even stronger
Fraunhofer condition:

z ≫ π

λ

[

(x−X)
2
+ (y − Y )

2
]

max
(23)
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3 IN-LINE HOLOGRAPHY WITH PLANE WAVES

and the wave scattered by the object, given by Eq. 15, becomes

Udetector(X,Y ) = − i

λz
exp

(

i

λz

(

X2 + Y 2
)

)

×

×
∫ ∫

t(x, y) exp

(

−2πi

λz
(xX + yY )

)

dxdy (24)

which is just a Fourier transform of the object transmission function t(x, y). The
far-field Fraunhofer condition is realized in coherent diffractive imaging [12, 10].

3.2 Angular Spectrum Method

The angular spectrum method was first described by J. A. Ratcliffe [13], and has
been explained in detail by J.W. Goodman in his book [6]. The angular spec-
trum method does not use any approximations. It is based on the notion, that
plane wave propagation can be described by the propagation of its spectrum.
The components of the scattering vector

k⃗ =
2π

λ
(cosφ sin θ, sinφ sin θ, cos θ) (25)

are related to the Fourier domain coordinates (u, v) as following:

cosφ sin θ = λu

sinφ sin θ = λv (26)

whereby (λu, λv) are the direction cosines of the vector k⃗, and therefore the
following condition is fulfilled:

(λu)
2
+ (λv)

2 ≤ 1 (27)

The complex-valued exit wave Uexit wave(x, y) = t(x, y) is propagated to the
detector plane by calculation of the following transformation [6]:

Udetector(X,Y ) = FT−1

[

FT (t(x, y)) exp

(

2πiz

λ

√

1− (λu)
2 − (λv)

2

)]

, (28)

where (u, v) denote the same Fourier domain coordinates as defined above. The
reconstruction of the hologram is calculated by using the formula:

U(x, y) = FT−1

[

FT (H0(X,Y )) exp

(

−2πiz

λ

√

1− (λu)
2 − (λv)

2

)]

. (29)

The term exp

(

±2πiz

λ

√

1− (λu)
2 − (λv)

2

)

has to be simulated, and it has

non-zero values for the range of (λu, λv) constrained by Eq. 27, which thus
acts like a low-pass filter. Equation 27 sets the limit for the maximal possible
frequency in the Fourier domain umax

max:

λumax
max = 1. (30)
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3 IN-LINE HOLOGRAPHY WITH PLANE WAVES

Taking into account Eq. 26, we obtain: λumax
max = sin θmax

max = 1, where θmax
max is

the maximal possible angle of the scattered wave. The related resolution, given
by the Abbe criterion [14, 15] for θmax

max amounts to:

Resolution lateral =
λ

2 sin θmax
max

=
λ

2
. (31)

Thus, the condition given by Eq. 27 relates to the classical resolution limit.
Therefore, as long as imaging is done within the classical resolution limit, the
condition in Eq. 27 is always fulfilled and the wavefront propagation can be
calculated by applying the angular spectrum method.

The hologram is simulated as follows:
(a) Calculating the Fourier transform of t(x, y).

(b) Simulating exp

(

2πiz
λ

√

1− (λu)
2 − (λv)

2

)

.

(c) Multiplying the results of (a) and (b).
(d) Calculating the inverse Fourier transform of (c).
(e) Taking the square of the absolute value of the result (d).

The hologram reconstruction consists of the following steps:
(a) Calculating the Fourier transform of H0(X,Y ).

(b) Simulating exp

(

− 2πiz
λ

√

1− (λu)
2 − (λv)

2

)

.

(c) Multiplying the results of (a) and (b).
(d) Calculating the inverse Fourier transform of (c). The result provides

t̃(x, y).

3.3 Resolution in In-line Holography with Plane Waves

In general, the achievable lateral resolution in digital Gabor in-line holography
is defined by [4]:

RHolography =
λd

N∆
=

λd

S
, (32)

where d is the distance between sample and the detector, and S = N∆ is the
side length of the hologram. In practice, the resolution in in-line holography is
limited by the visibility of the finest interference fringes which are formed by
the interference between reference and object wave scattered at large diffraction
angles. Experimentally, at least if electrons are used, the achievable resolution
is often limited by the mechanical stability of the optical setup. Resolution can
quantitatively be evaluated by inspecting the Fourier spectrum of a hologram
[10], similar to the resolution estimation in coherent diffractive imaging [16, 17].
Given the highest observable frequency in the Fourier spectrum umax is detected
at pixel A from the center of the spectrum, its coordinate is given by:

umax = ∆FA. (33)

Using the relation sin θmax = λumax, where θmax is the maximal detected scat-
tering angle of the scattered wave, we obtain sin θmax = λ∆FA. With the
classical Abbe resolution criterion given by Eq. 31 we obtain:

8



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

Resolution lateral =
λ

2 sin θmax

=
1

2umax

=
1

2∆FA
=

S

2A
, (34)

whereby we substituted ∆F by the expression given in Eq. 19. Thus, by estimat-
ing the position of the highest visible frequency umax in the Fourier spectrum
of a hologram, the lateral resolution intrinsic to the hologram can easily be
evaluated by employing Eq. 34.

The axial resolution (in z-direction) can be defined as a depth of focus δ.
An ideal point scatterer when imaged by a diffraction-limited system will be
represented as an Airy spot, with 80 % of the intensity staying in the main
maximum at the defocus distance [18, 19]:

δ =
2λ

(2N.A.)2
, (35)

where N.A. is the numerical aperture of the system. This provides an estimate
for the axial resolution:

Resolution axial =
λ

(N.A.)2
. (36)

4 In-line Holography with Spherical Waves

In this section, we describe methods of simulating and reconstructing holograms
created by spherical waves, as illustrated in Fig. 1(b). This type of hologram is
also called a Fresnel or Gabor hologram. The incident wave in the object plane
is given by:

Uincident(x, y) =
exp (ikr)

r
, (37)

where r⃗ = (x, y, z) and z is the distance between source and object plane, as
indicated in Fig. 1. The exit wave beyond the object is given by Eq. 3:

Uexit wave(x, y) = Uincident(x, y) · t(x, y) =
exp (ikr)

r
· t(x, y). (38)

The propagation of the wave towards the detector is described by the Fresnel-
Kirchhoff diffraction formula, see Eq. 4:

Udetector(X,Y ) = − i

λ

∫ ∫

exp (ikr)

r
· t(x, y)

exp
(

ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dxdy, (39)

where r⃗ = (x, y, z) is a vector pointing from the source to a point in the object,

R⃗ = (X,Y, Z) is a vector pointing from the source to a point on the detector,

and
∣

∣

∣
r⃗ − R⃗

∣

∣

∣
is the distance between a point in the object plane and a point in

the detector plane (see Fig. 1(b)).
The reconstruction of a digital hologram recorded with spherical waves is

given by Eq. 8 where R(X,Y ) = exp(ikR)/R:

9



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

U(x, y) ≈ i

λ

∫ ∫

exp (ikR)

R
H0(X,Y )

exp
(

−ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dXdY. (40)

4.1 Paraxial Approximation

In the paraxial approximation, the following approximations are valid:

r ≈ z +
x2 + y2

2z
(41)

and

∣

∣

∣
r⃗ − R⃗

∣

∣

∣
≈ Z +

(x−X)
2
+ (y − Y )

2

2Z
. (42)

They allow the following expansion of Eq. 39:

Udetector(X,Y ) = − i

λZz
exp

(

2πi

λ
(Z + z)

)
∫ ∫

exp

(

iπ

λz
(x2 + y2)

)

t(x, y)×

× exp

(

iπ

λZ

(

(x−X)
2
+ (y − Y )

2
)

)

dxdy. (43)

By taking into account that z ≪ Z, we rewrite:

Udetector(X,Y ) = − i

λZz
exp

(

2πi

λ
(Z + z)

)

×

× exp

(

iπ

λZ

(

X2 + Y 2
)

)
∫ ∫

exp

(

iπ

λz
(x2 + y2)

)

×

×t(x, y) exp

(

−2πi

λZ
(xX + yY )

)

dxdy. (44)

In his original work, Gabor [3] arrived at a similar relation, where t(x, y) and
Udetector(X,Y ) constitute a Fourier pair, and thus Udetector(X,Y ) can be ob-
tained from t(x, y) by multiplying it with a spherical phase term and taking the
Fourier transform of the result, as is obvious from Eq. 44. However, such a single
Fourier transform approach is not optimal when applied to digital holograms.
To design a routine for wave propagation that employs two Fourier transforms,
we rewrite Eq. 44 in the form of a convolution [10]

Udetector(X,Y ) ≈ − i

λZz
exp

(

2πi

λ
(Z + z)

)

exp

(

iπ

λZ

(

X2 + Y 2
)

)
∫ ∫

t(x, y)×

× exp

(

iπ

λz

(

(

x−X
z

Z

)2

+
(

y − Y
z

Z

)2
))

dxdy (45)

of the transmission function with the Fresnel function s(x, y), whereby the latter
is given by Eq. 18.

The hologram is then calculated as:

10



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

H(X,Y ) = |Udetector(X,Y )|2 = |t(X,Y )⊗ s(X,Y )|2 . (46)

The coordinates in the object plane respectively in the Fourier domain are sam-
pled as explained in Appendix B. The pixel size in the Fourier domain is given
by the digital Fourier transform equation, see Eq. B.7:

∆F =
1

N∆Object

=
1

SObject

, (47)

where ∆Object = SObject/N is the pixel size in the object plane and SObject ×
SObject is the object area size.

Thus, a hologram is simulated by:
(a) Calculating the Fourier transform of t(x, y).
(b) Simulating

S(u, v) = exp
(

−iπλz(u2 + v2)
)

.
(c) Multiplying the results of (a) and (b).
(d) Calculating the inverse Fourier transform of (c).
(e) Taking the square of the absolute value of the result (d).

The size of the simulated hologram is equal to the size of the object area mul-
tiplied by the magnification factor:

M =
Z

z
. (48)

The hologram is reconstructed in the reciprocal order by:
(a) Calculating the inverse Fourier transform of H0(X,Y ).
(b) Simulating

S∗(u, v) = exp
(

iπλz(u2 + v2)
)

.
(c) Multiplying the results of (a) and (b).
(d) Calculating the Fourier transform of (c). The result provides t̃(x, y).

The size of the reconstructed object area is equal to the size of the hologram
divided by the magnification factor M .

4.2 Non-paraxial Approximation

When the incident spherical wave extends over larger angles, the paraxial ap-
proximation is no longer valid and the field propagation based on the Fresnel-
Kirchhoff diffraction formula Eq. 39 must be calculated. An approach that
allows the single Fourier transform integral to be transformed into the convo-
lution integral was presented by [20]. Below, we present an approach that uses
propagation through the source plane [9].

Simulation

To avoid difficulties with sampling, we design a two-step routine which employ-
ing two Fourier transforms. In the first step, the wave is propagated from the
object plane r⃗ = (x, y, z) to the source plane r⃗0 = (x0, y0, 0). In the second step,
the wave is propagated from the source plane to the detector plane [9, 21, 22].

In the first step, with the approximation r0 ≪ r, we expand:

11



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

|r⃗ − r⃗0| ≈ r − r⃗r⃗0
r

+
r20
2r

(49)

which, when substituted into Fresnel-Kirchhoff diffraction formula Eq. 40, re-
sults in:

U0(x0, y0) =
i

λ

∫ ∫

exp (ikr)

r
· t(x, y)exp (−ik |r⃗ − r⃗0|)

|r⃗ − r⃗0|
dxdy ≈

≈ i

λ

∫ ∫

exp (ikr)

r
· t(x, y)exp (−ikr)

r
exp

(

ik
r⃗r⃗0
r

)

exp

(

−ik
r20
2r

)

dxdy =

=
i

λz2
exp

(

− iπ

λz

(

x2
0 + y20

)

)
∫ ∫

t(x, y) exp

(

2πi

λz
(x0x+ y0y)

)

dxdy. (50)

Thus, the first step consists of an inverse Fourier transform of the object trans-

mission function t(x, y) multiplied with the spherical phase term exp

(

− iπ

λz
(x2

0 + y20)

)

.

The sampling in the source plane is given by the digital Fourier transform, see
Eq. B.7:

∆0 =
λz

N∆Object

=
λz

SObject

. (51)

In the second step, the wavefront is propagated to the detector plane, which is
described by the Fresnel-Kirchhoff diffraction formula:

Udetector(X,Y ) = − i

λ

∫ ∫

U0(x0, y0)
exp

(

ik
∣

∣

∣
r⃗0 − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗0 − R⃗

∣

∣

∣

dxdy. (52)

Here, the approximation r0 ≪ R holds and the following expansion can be
applied:

∣

∣

∣
r⃗0 − R⃗

∣

∣

∣
≈ R− R⃗r⃗0

R
= R− κ⃗r⃗0, (53)

where we introduced the emission vector (see Appendix C):

κ⃗ =
R⃗

R
=

(

X

R
,
Y

R
,
Z

R

)

= (κx, κy, κz) , (54)

R =
√

X2 + Y 2 + Z2.

We rewrite Eq. 52:

Udetector(κx, κy) = − i

λ

exp (ikR)

R

∫ ∫

U0(x0, y0) exp (−ikκ⃗r⃗0) dxdy =

= − i

λ

exp (ikR)

R

∫ ∫

U0(x0, y0) exp (−ik(x0κx + y0κy)) dx0dy0. (55)

12



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

Thus, the second step consists of just the Fourier transform of U0(x0, y0). The
phase factors in front of the integral vanish when the square of the absolute value
is calculated and the 1/R2 factor cancels out after normalization of the hologram
by division with the background image: B(X,Y ) = 1/R2. The remaining

constant factor is given by
∆2

0∆
2
Object

λ2z2
=

1

N2
.

The hologram is simulated by:
(a) Calculating the inverse Fourier transform of t(x, y).

(b) Simulating exp

(

− iπ

λz
(x2

0 + y20)

)

.

(c) Multiplying the results of (a) and (b).
(d) Calculating the Fourier transform of (c).
(e) Transformation from (κx, κy)-coordinates to (X,Y )-coordinates.
(f) Taking the square of the absolute value of the result (e).
(g) Multiplication with the factor 1/N2.

Reconstruction

The numerical reconstruction of a digital hologram consists of a multiplica-
tion of the hologram with the reference wave R(X,Y ) = eikR/R followed by
back-propagation to the object plane given by the Fresnel-Kirchhoff diffraction
formula Eq.40:

U(x, y) ≈ i

λ

exp (ikR)

R

∫ ∫

H0(X,Y )
exp

(

−ik
∣

∣

∣
r⃗ − R⃗

∣

∣

∣

)

∣

∣

∣
r⃗ − R⃗

∣

∣

∣

dXdY. (56)

Here again, we split the reconstruction routine into two steps, which employ two
Fourier transforms. In the first step the wave is propagated from the detector
plane R⃗ = (X,Y, Z) to the source plane r⃗0 = (x0, y0, 0). In the second step, the
wave is propagated from the source plane r⃗0 = (x0, y0, 0) to the object plane
r⃗ = (x, y, z).

In the first step, the approximation r0 ≪ R is fulfilled and the expansion
given by Eq. 53 can be inserted into Eq. 56:

U0(x0, y0) ≈
i

λ

exp (ikR)

R2

∫ ∫

H0(X,Y ) exp (−ikR) exp (ikκ⃗r⃗0) dXdY =

=
i

λ

∫ ∫

H(X,Y ) exp (ikκ⃗r⃗0)J(κx, κy) dκxdκy, (57)

where we took into account that H0(X,Y ) =
H(X,Y )

R2
and introduced the

Jacobian of the coordinate transformation:

J(κx, κy) =
Z2

(

1− κ2
x − κ2

y

)2
. (58)

We rewrite Eq. 57 as:

13



4 IN-LINE HOLOGRAPHY WITH SPHERICAL WAVES

U0(x0, y0) =
i

λ

∫ ∫

H(κx, κy) exp (ik(x0κx + y0κy))J(κx, κy) dκxdκy (59)

which is simply the inverse Fourier-transform of the holographic image in (κx, κy)-
coordinates. The transformation of the holographic image into (κx, κy)-coordinates
is described in Appendix C. In the second step, the field is propagated from
the source plane to the object plane, which is again calculated by the Fresnel-
Kirchhoff diffraction formula:

U(x, y) = − i

λ

∫ ∫

U0(x0, y0)
exp (ik |r⃗ − r⃗0|)

|r⃗ − r⃗0|
dx0dy0. (60)

Using the expansion given by Eq. 49, we obtain

U(x, y) ≈ i

λr
exp (ikr)

∫ ∫

U0(x0, y0) exp

(

−2πi

λz
(x0x+ y0y)

)

×

× exp

(

iπ

λz
(x2

0 + y20)

)

dx0dy0, (61)

which is a multiplication of with a complex spherical wave factor, followed by
a Fourier transform of the result. The reconstructed exit wave includes the
incident spherical wave. Thus, the result of Eq. 61 must be divided by the
incident wave to reveal the object transmission function:

t(x, y) = r exp (−ikr)U(x, y). (62)

The total integral transform involved in the second step is given by

t(x, y) ≈ i

λ

∫ ∫

U0(x0, y0) exp

(

−2πi

λz
(x0x+ y0y)

)

×

× exp

(

iπ

λz
(x2

0 + y20)

)

dx0dy0. (63)

When analytical integration is replaced by numerical integration, the total pre-

factor turns into:
∆2

0∆
2
κ

λ2
=

1

N2
, where ∆κ is the pixel size in κ-space and ∆0

is the pixel size in the source plane. ∆0 is derived from ∆κ by using Eq. B.7:

∆0 =
λ

N∆κ

. (64)

Thus, the hologram reconstruction includes the following steps:
(a) Transforming the hologram image to κ-coordinates.
(b) Calculating J(κx, κy) using Eq. 58.
(c) Inverse Fourier transform of the product of (a) and (b).

(d) Simulating exp

(

iπ

λz
(x2

0 + y20)

)

.

(e) Multiplying the results of (c) and (d).
(f) Calculating the Fourier transform of (e).
(g) Multiplication with the factor 1/N2. The result provides t(x, y).
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5 RELATIONSHIP BETWEEN HOLOGRAMS RECORDED WITH
PLANE RESPECTIVELY SPHERICAL WAVES

In the algorithms for in-line holography with spherical waves, the size of a pixel
in the hologram plane is equal to the size of a pixel in the object plane multiplied
by the magnification factor M given by Eq. 48.

4.3 Resolution in In-line Holography with Spherical Waves

Similar arguments as in the discussion above on resolution concerning in-line
holography with plane waves, also apply here. The practical resolution limit,
intrinsic to an in-line hologram recorded with spherical waves, can be estimated
from the highest frequency observed in its Fourier spectrum. The formula of
the resolution, similar to Eq. 34, is given by:

Resolution lateral =
S

2A ·M , (65)

where A is the pixel number at which the highest frequency in the Fourier do-
main is detected, S is the size of the hologram, and M denotes the magnification
factor.

5 Relationship between Holograms Recorded with
Plane Respectively Spherical Waves

It is worth noting that the reconstruction algorithms presented here consist of
similar steps regardless of the wavefront shape: inverse Fourier transform and
multiplication with the spherical phase factor followed by a Fourier transform.
The spherical wave factor is given by S∗(u, v), see Eq. 18:

S∗(u, v) = exp
(

iπλz
(

u2 + v2
))

. (66)

in the case of plane waves and by exp

(

iπ

λz
(x2

0 + y20)

)

in the case of spherical

waves. When written in digital form, these two terms are:

S∗(p, q) = exp
(

iπλz∆2
F

(

p2 + q2
))

and

exp

(

iπ

λz
∆2

0

(

p2 + q2
)

)

, p, q = 1...N, (67)

where p and q are the pixel numbers.
Substituting ∆F and ∆0 from Eq. 19 respectively Eq. 64, we obtain:

S∗(p, q) = exp

(

iπλz

N2∆2

(

p2 + q2
)

)

and

exp

(

iπλ

zN2∆2
κ

(

p2 + q2
)

)

. (68)

Taking into account that ∆ =
Splane

N
and ∆κ =

Sspherical

ZN
, where Splane×Splane

and Sspherical × Sspherical are the related sizes of the areas in the detector plane,
we obtain from Eq. 68:
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5 RELATIONSHIP BETWEEN HOLOGRAMS RECORDED WITH
PLANE RESPECTIVELY SPHERICAL WAVES

S∗(p, q) = exp

(

iπλz

S2
plane

(

p2 + q2
)

)

and

exp

(

iπλZ2

zS2
spherical

(

p2 + q2
)

)

. (69)

These two terms are equal when the following equation holds:

λz

S2
plane

=
λZ2

zS2
spherical

= α. (70)

The above equation implies that a hologram recorded with a spherical wave can
be reconstructed as it was recorded with plane waves, or vice versa, provided
that the following relation is fulfilled:

Splane =
z

Z
Sspherical. (71)

Examples of such reconstructions are shown in Fig. 2. Moreover, Eq. 70 implies

Figure 2: Optical hologram of a tungsten tip and its reconstruction. (a) Holo-
gram recorded with λ = 532 nm laser light by the in-line Gabor scheme with the
following parameters: source-to-detector distance Z = 1060 mm, hologram size
Sspherical × Sspherical = 325 × 325 mm2, source-to-object distance z = 1.4 mm.
The hologram exhibits a parameter α = 4.046 · 10−3. (b) Reconstructed ob-
ject using the algorithm for spherical waves. The size of the reconstructed area
amounts to 429× 429 µm2. (c) Reconstructed object assuming a planar wave-
front. The hologram size is set to Splane × Splane = 429 × 429 µm2 and the
reconstruction is obtained at a hologram-to-object distance of z = 1.4 mm.
Prior to the reconstruction, an apodization cosine-filter is applied to the edges
of the normalized hologram to minimize digital Fourier transform artefacts that
would otherwise arise due to a step-like intensity drop at the rim of the holo-
graphic record (see Appendix A).

that a uniquely defined factor α can be assigned to any hologram. Consequently,
holograms recorded with variable wavelengths, screen sizes or source-detector
distances can uniquely be reconstructed as long as α remains constant. This
approach however is only valid for a thin object which can be assumed to be in
one plane, or when the reconstruction at a certain plane within object distribu-
tion must be obtained. When reconstructing a truly three-dimensional object
by obtaining a sequence of object distribution at different z distances from the
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7 CONCLUSIONS

hologram, one must adjust the geometrical parameters at each reconstruction
distance. For example, from Eq. 71 it can be seen that the size of the recon-
structed area is scaled with the distance z.

6 Optimal Parameters

During the reconstruction procedure, the inverse Fourier transform of a holo-
gram is multiplied with the spherical phase term, which for example in the case
of plane waves equals to

S∗(u, v) = exp
(

iπλz(u2 + v2)
)

. (72)

Such a spherical phase function is correctly simulated with N ×N pixels when
it can be reduced to

exp

(

iπ

N
(m2 + n2)

)

m,n = 1...N, (73)

where m and n are the pixel numbers.
Taking into account the sampling u = m∆F and v = n∆F , and substituting

∆F from Eq. 19, we obtain the following condition for correct sampling (at
Nyquist or higher frequency) of the spherical phase term:

S2

λz
≤ N. (74)

This condition allows selecting optimal experimental parameters.

7 Conclusions

We have presented simple recipes for the numerical reconstruction of in-line holo-
grams recorded with plane and spherical waves. These methods are wavelength-
independent and can thus be applied to holograms recorded with any kind of
radiation exhibiting wave nature. Moreover, reconstructions of both absorbing
as well as phase shifting properties of objects can be achieved. We also demon-
strated that any digital hologram can be assigned a uniquely defined parameter
which defines its digital reconstruction.
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A APODIZATION COSINE FILTER

A Apodization Cosine Filter

Before reconstruction, the normalized hologram given by Eq. 7 is multiplied
with an apodization cosine filter to smooth the intensity at the hologram edges
down to zero and thus minimize the effects on the edges of the hologram due to
digital Fourier transform. The cosine filter is mathematically described by the
function

C(ρ) = cos2
( π

2ω
(ρ− η)

)

, η < ρ < η + ω

1, 0 < ρ < η (A.1)

0, ρ > η + ω,

where ρ =
√
X2 + Y 2 and C(ρ) distribution is shown in Fig. 3.

Figure 3: Intensity distribution of the apodization cosine filter and its amplitude
profile through the center of the image.
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B FROM ANALYTICAL TO FAST FOURIER TRANSFORM (FFT)

B From Analytical to Fast Fourier Transform
(FFT)

The analytical Fourier transform connecting two domains is given by:

U2(u, v) =

∫ ∫

U1(x, y) exp (−2πi(xu+ yv)) dxdy. (B.1)

The fast Fourier transform is calculated by using the following expression:

U2(p, q) = FFT (U1(p, q)) =

=
N
∑

m,n=1

U1(m,n) exp

(

−2πi

N
(mp+ nq)

)

, (B.2)

where m, n, p and q are the pixel numbers.
For a numerical calculation of the analytical transform by means of FFT, the

distribution U1(x, y) has to be sampled in (x, y) coordinates. Assuming that the
center of the coordinate system (x, y) is at the center of the distribution U1(x, y),
the sampling is done at the points

x =

(

m− N

2

)

∆1, m = 1...N, and

y =

(

n− N

2

)

∆1, n = 1...N (B.3)

and in the Fourier domain:

u =

(

p− N

2

)

∆2, p = 1...N, and

v =

(

q − N

2

)

∆2, q = 1...N. (B.4)

Here ∆1 and ∆2 are the pixel sizes in the two domains respectively, given by:

∆1 =
S1

N
and ∆2 =

S2

N
, (B.5)

where S1 × S1 and S2 × S2 are the sizes of the areas in the related domains.
For the phase term in Eq. B.1 we obtain:

2π(xu+ yv) = 2π∆1∆2

(

mp+ nq − N

2
(m+ p+ n+ q) +

N2

2

)

, (B.6)

which equals the phase term in Eq. B.2 provided the following condition is
fulfilled:

∆1∆2 =
1

N
. (B.7)

By substituting Eq. B.6 into Eq. B.1 and skipping the last term in Eq. B.6,
since it does not contribute to the phase, we obtain the formula for calculating
the centered Fourier transform:
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B FROM ANALYTICAL TO FAST FOURIER TRANSFORM (FFT)

U2(p, q) = exp (iπ(p+ q))
N
∑

m,n=1

U1(m,n) exp

(

−2πi

N
(mp+ nq)

)

exp (iπ(m+ n)) =

= exp (iπ(p+ q))FFT (U1(m,n) exp (iπ(m+ n))) . (B.8)

The inverse Fourier transform is calculated in a similar manner:

U2(p, q) = exp (−iπ(p+ q))FFT−1 (U1(m,n) exp (−iπ(m+ n))) . (B.9)

20



C κ-COORDINATES

C κ-coordinates

Considering the emission vector coordinates given by Eq. 54, we obtain the
maximal value for κx:

κx,max =
S/2

√

(S/2)2 + Z2
(C.1)

where S × S represents the detector size which provides the pixel size in κ-
coordinates:

∆κ =
2κx,max

N
. (C.2)

The transformation of the hologram from (X,Y ) coordinates to (κx, κy) co-
ordinates includes the following steps. The arrays of (κx, κy) are created as
follows:

κx =

(

m− N

2

)

∆κ, m = 1...N, and

κy =

(

n− N

2

)

∆κ, n = 1...N. (C.3)

Next, the value at each (κx, κy) pixel is assigned the value at a pixel (X,Y ) in
the hologram H(X,Y ), where:

X =
Zκx

√

1− κ2
x − κ2

y

, Y =
Zκy

√

1− κ2
x − κ2

y

. (C.4)

The transformation depends only on the numerical aperture of the system, that
is, on the source-to-detector distance and the detector size. The transformation
resembles visually the ”fish eye” effect, as illustrated in Fig. 4. The reverse
transformation from (κx, κy) coordinates to (X,Y ) is done in a similar manner.

Figure 4: Example of the appearance of an image when it is transformed from
(X,Y ) to (κx, κy) coordinates. (a) Chessboard image in (X,Y ) coordinates.
The image is assumed to have a size of 0.8×0.8 m2 on a detector which is 0.5 m
away from the source. These parameters correspond to a numerical aperture
= 0.625. (b) Chessboard image in (κx, κy) coordinates.
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