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Practical and Efficient Cryptographic Enforcement of Interval-Based
Access Control Policies

JASON CRAMPTON, Royal Holloway, University of London

The enforcement of access control policies using cryptography has received considerable attention in recent
years and the security of such enforcement schemes is increasingly well understood. Recent work in the area
has considered the efficient enforcement of temporal and geo-spatial access control policies, and asymptotic
results for the time and space complexity of efficient enforcement schemes have been obtained. However, for
practical purposes, it is useful to have explicit bounds for the complexity of enforcement schemes.

In this article we consider interval-based access control policies, of which temporal and geo-spatial access
control policies are special cases. We define enforcement schemes for interval-based access control policies for
which it is possible, in almost all cases, to obtain exact values for the schemes’ complexity, thereby subsuming
a substantial body of work in the literature. Moreover, our enforcement schemes are more practical than
existing schemes, in the sense that they operate in the same way as standard cryptographic enforcement
schemes, unlike other efficient schemes in the literature. The main difference between our approach and
earlier work is that we develop techniques that are specific to the cryptographic enforcement of interval-
based access control policies, rather than applying generic techniques that give rise to complex constructions
and asymptotic bounds.
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1. INTRODUCTION

In some situations, we may wish to use cryptographic techniques to enforce some form
of access control. Such an approach is useful when data objects have the following
characteristics: read often by many users; written once, or rarely, by the owner of the
data; and transmitted over unprotected networks. Fu et al. [2006] identify content
distribution networks, such as Akami and BitTorrent, as applications where some
kind of cryptographic access control is particularly suitable. In such circumstances,
protected data (objects) are encrypted, and authorized users are given the appropriate
cryptographic keys. When cryptographic enforcement is used, the problem we must
address is the efficient and accurate distribution of encryption keys to authorized
users.
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In recent years, there has been a considerable amount of interest in key encrypting
or key assignment schemes. In such schemes, a user is given a secret value—typically
a single key—which enables the user to derive some collection of encryption keys
which decrypt the objects for which she is authorized. Key derivation is performed
using the secret value and some information made publicly available by the scheme
administrator. The two objectives when designing such a scheme are to minimize the
amount of public information and the time required to derive a key. Unsurprisingly, it
is not possible to realize both objectives simultaneously, so tradeoffs have been sought.
Crampton et al. [2006] provide a survey of, and taxonomy for, key assignment schemes
and the various factors that affect the parameters described above.

At the same time, we have seen the development of access control models in which
time plays an important role in deciding whether access requests are authorized or
not [Bertino et al. 2001]. One particular application of such “temporal access control”
systems is the protection of data that is made available periodically as (part of) a
subscription-based service [Bertino et al. 2002]. Prior to 2006, a number of schemes for
enforcing temporal access control policies using cryptographic mechanisms appeared
in the literature, many of which have been shown to be insecure (see Atallah et al.
[2007b] for a summary of this work).

Atallah et al. [2007b], Ateniese et al. [2006], and De Santis et al. [2007b] described
the first key assignment schemes for temporal access control with provable security
properties. This work focused on two particular aspects:

—the development of schemes that provided key indistinguishability; and
—the reduction of the storage required for public information and the number of oper-

ations required for key derivation.

One shortcoming of their work is that the methods used to tackle the second of these
issues do not consider the actual requirements of the underlying access control policy.
Instead, generic techniques to reduce the diameter of a directed graph are applied. This
has two consequences: optimizations that are tailored to the particular characteristics
of the problem are not considered and only the asymptotic behavior of the constructions
is provided. Given that the number of time intervals m is likely to be rather small in
many practical applications, it is not clear that this kind of approach is the most
appropriate. Moreover, the absence of explicit bounds means that for small m it is not
at all obvious which scheme is optimal. In short, existing schemes may be efficient (for
large values of m) but it is questionable whether they are practical.

Atallah et al. [2007a] have also studied the enforcement of “geo-spatial” access control
policies. In this context, users are authorized to access data that belongs to particular
locations in a rectangular grid. Atallah et al. apply rather similar techniques (as those
used for temporal access control policies) to construct asymptotic bounds on the amount
of space and the number of derivation steps required.

In this article, we consider optimizations for both temporal and geo-spatial access
control policies that arise from a rather straightforward observation about the particu-
lar problem at hand. This enables us to present concrete schemes with precise bounds
on the amount of storage and the number of derivation steps required.

The space and time complexity of cryptographic enforcement schemes can be mea-
sured in “edges” and “hops,” respectively [Crampton et al. 2006]. For the enforcement
of a temporal access control policy with m time points, for example, we require m(m−1)
edges and

⌈
log2 m

⌉
hops,1 whereas Atallah et al. [2007b] require O(m2) edges and

O(log∗ m) hops, and De Santis et al. [2008] require O(m2 log m) edges and O(log∗ m)

1Henceforth, all logarithms are base 2, unless explicitly stated otherwise.
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hops.2 However, substantial multiplicative constants and lower-order terms may be
hidden by the O notation when it comes to the number of edges and the number of hops
required for key derivation.3

For values of m that are likely to be used in practice, these terms will be of consid-
erable importance. The actual number of hops required by the scheme of Atallah et al.
[2007b], for example, is 2 log∗ m+ 4, which, for many values of m of practical interest,
will be greater than �log m�. Moreover, the edge sets that are used in existing efficient
constructions require bespoke algorithms for key derivation and modifications to the
basic operation of a key assignment scheme [Atallah et al. 2007a]. In contrast, key
derivation for our constructions remains very simple.

Finally, we demonstrate that temporal and geo-spatial access control policies (at least
as they are understood in the context of key assignment schemes) are special cases of a
more general type of policy, which we call an interval-based access control policy. Such
policies are parameterized by an integer k, where temporal and geo-spatial policies
correspond to the cases k = 1 and k = 2, respectively. Perhaps the most important
contribution of this article is to describe how to construct a set of edges for an arbitrary
value of k and provide tight bounds on the number of edges and key derivation hops
required.

In summary, the main contributions of this article are:

—to generalize the problem of enforcement of temporal and geo-spatial access control
policies to the enforcement of interval-based access control policies;

—to provide tight bounds on the complexity of enforcing temporal, geo-spatial and
interval-based access control policies using key assignment schemes; and

—to provide simple, concrete constructions for such schemes.

In the next section, we describe some relevant background material; define what we
mean by an interval-based access control policy; and introduce the problem of enforcing
an interval-based access control policy using cryptographic mechanisms. In Section 3,
we consider temporal access control policies. The main contribution of this section is to
state and prove a rather general result and explore some special cases of this result.
In this section we also consider constructions in which the user may have more than
one key. In Section 4, we consider the related problem of cryptographic enforcement of
geo-spatial access control policies. We describe relevant related work in both Sections 3
and 4. In Section 5, we derive results for general interval-based access control policies.
We conclude with a summary of our contributions and some suggestions for future
work.

2. KEY ASSIGNMENT SCHEMES

Given a partially ordered set of security labels (L,�), an information flow policy
requires that each user u and protected object o be assigned a security label and
that information flows between objects and users are consistent with the ordering �:
specifically, u is authorized to read o, provided the security label of u is greater than
or equal to that of o [Bell and LaPadula 1976]. More formally, let λ : U ∪ O → L

2The function log∗ : N → N is the iterated log function, where log∗ m = 0 if m � 1 and log∗ m = 1 + log∗(log m)
for m > 1. The iterated log function grows very slowly: log∗ m � 4 for all m � 216 and log∗ m � 5 for all
m � 265536, for example.
3The schemes in the literature do not consider the multiplicative constants or lower-order terms. It is,
perhaps, an indication of the complexity of the constructions in the literature that we have not, despite
considerable effort, been able to determine the multiplicative constants in the expressions given for the
number of edges.
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be a labeling function that associates each entity with a security label. Then, u is
authorized to access o if and only if λ(u) � λ(o).

A key assignment scheme may be used to enforce an information flow policy. In
such a scheme, it is assumed that every node in L is associated with a symmetric
cryptographic key. For a given node x ∈ L, all objects associated with x are encrypted
with the appropriate key, and all users associated with x are given, or can derive, the
key for node x and for each node less than or equal to x.

More formally, a key assignment scheme comprises a set of keys
{
κ(x) : x ∈ L

}
and

a set of public information. Each object with security label x is encrypted with κ(x). A
user u with the key κ(λ(u)) must be able to derive κ(y) for any y � λ(u), using κ(λ(u))
and public information. Hence, a user can decrypt any object with security label λ(y),
where y � λ(u). The first such scheme was described by Akl and Taylor [1983]. The
parameters that characterize the behavior of a key assignment scheme are as follows:

—the number of keys that a user requires;
—the amount of public information that is required;4
—the amount of time taken to derive a key (equivalently, the number of operations

required to perform key derivation).

We could, trivially, give a user the key associated with each label for which she is
authorized; but this type of approach is rarely considered appropriate. Most of the
literature on key assignment schemes assumes that each user has a single secret value
and the keys for which she is authorized are derived from this secret value. In general,
the more public information employed by the scheme, the smaller the number of key
derivation steps required in the worst case.

2.1. Correctness and Security

A key assignment scheme that enforces an information flow policy for (L,�) must be
correct and secure. Informally, we say a key assignment scheme is

—correct if each user can derive the keys for which she is authorized; and
—secure if no set of users can derive a key for which none of them is authorized.

Recently, the notions of key recovery and key indistinguishability have been introduced
to capture in more formal terms what it means for a key assignment scheme to be
secure [Atallah et al. 2009; Ateniese et al. 2006]. Informally, to obtain a scheme with
the key recovery property, each node x ∈ V is associated with a secret value κ(x), and, for
each edge (x, y) ∈ E, we publish Encκ(x)(κ(y)), where Encκ (M) denotes the encryption
of message M using key κ. Then any user in possession of κ(x) can derive κ(y) in
one step, and for any z on a path from x containing e edges, κ(z) can be (iteratively)
derived in e steps. Such a scheme can be extended to one with the property of key
indistinguishability by associating a secret value σ (x) with each node x, making κ(x) a
function of σ (x) and using σ (x) to derive σ (y).

For the purposes of this article, it is sufficient to note that given a directed, acyclic
graph G = (V, E), there exists a key assignment scheme that has the property of
key indistinguishability, the amount of storage required is proportional to |E| (the
cardinality of E), and the number of derivation steps required is equal to the diameter
of G (the length of the longest path in G). The interested reader is referred to the
literature for further details [Atallah et al. 2009; Ateniese et al. 2006].

4The public information always includes a data structure encoding (L,�).
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2.2. Derivation-Storage Tradeoffs

A partially ordered set (L,�) can be represented by a directed, acyclic graph (V, E),
where V = L. There are two obvious choices for the edge set E: one is the full partial
order relation �; the second is to omit all transitive and reflexive edges from � to obtain
the covering relation, denoted �. The graph (L, �) is called the Hasse diagram of L, and
is the standard representation of L as a directed graph [Davey and Priestley 2002].

It can be seen that a key assignment scheme for a directed graph can be used
specifically to enforce an information flow policy. We may use the graph (L,�), in which
case key derivation can always be performed in one step. In contrast, key derivation
may require a number of steps when we use the graph (L, �). The tradeoff here is
that the second graph contains fewer edges, and hence the number of items of public
information that are required to support key derivation is smaller. The study of these
kinds of tradeoffs will be the focus of this article.

2.3. Interval-Based Access Control Policies

Let O be a set of protected objects, let U be a set of users, and let A1, . . . , Ak be
finite, totally ordered sets of cardinality n1, . . . , nk, respectively. We write A to denote∏k

i=1 Ai = A1 × · · · × Ak.
We say [xi, yi] ⊆ Ai, where 1 � xi � yi � ni, is an interval in Ai. We say that∏k
i=1[xi, yi] = [x1, y1]×· · ·× [xk, yk] ⊆ A is a hyperrectangle. We write HRec(A) to denote

the set of hyperrectangles in A.
We assume that each object o ∈ O is associated with a unique attribute tu-

ple (a1, . . . , ak) ∈ A, and each user u ∈ U is authorized for some hyperrectangle∏k
i=1[xi, yi] ∈ HRec(A). Then we say that a user u associated with

∏k
i=1[xi, yi] is autho-

rized to read an object o associated with tuple (a1, . . . , ak) ∈ A if and only if ai ∈ [xi, yi]
for all i. Such a policy may be enforced using cryptographic methods:

—each attribute tuple a = (a1, . . . , ak) ∈ A is associated with a cryptographic key, which
we denote by κ(a);

—all objects o that are associated with a are encrypted with κ(a); and
—u should be able to derive κ(a) whenever ai ∈ [xi, yi] for all i.

The problem that we consider in the remainder of this article is the construction of a
set of edges E for the set of nodes HRec(A), such that:

—for all
∏k

i=1[xi, yi] and all (a1, . . . , ak), there exists a path from
∏k

i=1[xi, yi] to (a1, . . . , ak)
if and only if ai ∈ [xi, yi],

—|E| is small; and
—the diameter of the graph (HRec(A), E) is small.

The first criterion requires that the graph implements the desired access control policy.
We say a set of edges E is policy-enforcing, or simply enforcing, if it satisfies this
criterion. The second means that we wish to keep the public storage requirements
small, while the final criterion requires that the complexity of worst-case key derivation
time be low.

In the remainder of this section we review two special cases of interval-based access
control that have been widely studied in the literature. To simplify our exposition and
comparison with related work, we consider these special cases in detail in Sections 3
and 4, before studying the general case in Section 5.

2.3.1. Temporal Access Control. When k = 1, we haveA = A1. It is customary to interpret
A1 as a finite set of n consecutive time points (see Atallah et al. [2007b]; De Santis et al.
[2008], for example). Each object is associated with a unique time point, and each
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Fig. 1. The Hasse diagram of (T4, ⊆).

user is associated with a set of consecutive time points (an interval). Without loss of
generality, we assume that the time points are in one-to-one correspondence with the
integers 1, . . . , n. We write [x, y] to denote the set {t : x � t � y}. Then each object is
associated with some integer x ∈ [1, n] and each user is associated with some interval
[x, y] ⊆ [1, n]. A user associated with interval [x, y] should be able to derive κ(t) for all
t ∈ [x, y].

Henceforth, we write Tn to denote the set of intervals in [1, n]: that is,

Tn
def= {[x, y] : 1 � x � y � n}.

We denote the set of all intervals by Tn because the partially ordered set (Tn,⊆) has a
natural representation as a triangular grid, as illustrated in Figure 1. We may refer to
Tn as an n-triangle. A node of the form [x, x] ∈ Tn is equivalent to a point x ∈ [1, n] and
will be called a leaf node. The set of leaf nodes corresponds to the totally ordered set of
time points 1, . . . , n.

2.3.2. Geo-Spatial Access Control. When k = 2, we have A = A1 × A2, which represents
a finite rectangular grid of points. In this case each object is associated with a unique
point in the grid, and each user is associated with a set of points that correspond to a
subrectangle of the rectangular grid [Atallah et al. 2007a]. Without loss of generality,
we assume A1 = {1, . . . , m} and A2 = {1, . . . , n}. Then each object is associated with
some point (x, y) and each user is associated with some rectangle [x1, y1] × [x2, y2] ={
(t1, t2) : t1 ∈ [x1, y1], t2 ∈ [x2, y2]

}
.

We write Tm,n (as an abbreviation of the more accurate Tm × Tn) to denote the set of
rectangles defined by a rectangular m× n grid of points: that is,

Tm,n
def= {[x1, y1] × [x2, y2] : 1 � x1 � y1 � m, 1 � x2 � y2 � n}.

Nodes of the form [x, x] × [y, y] – which may also be interpreted as the point (x, y) –
will be called leaf nodes. The set of leaf nodes corresponds to the set of points in the
rectangular m× n grid.

It is rather difficult to represent Tm,n in two dimensions for all but the smallest
values of m and n. Two different visualizations of T2,2 are shown in Figure 2: the first
simply illustrates it as a partially ordered set of subsets ordered by subset inclusion in
which rectangles are represented by filled circles; the second illustrates it by building
the rectangles on top of a 2 × 2 grid (in a manner analogous to the representation of
Tm used in Figure 1). In the second figure, nodes of the same color have the same area
(as rectangles): all rectangles of area 2 are filled in gray, whereas all rectangles of area
1 are filled white. Although the first visualization is perhaps easier to interpret, it is
the second visualization that we will have in mind when developing our constructions
in Section 4.

3. TEMPORAL ACCESS CONTROL

In this section we first describe two rather simple schemes that will be used as
“building blocks” for more complex schemes. Then, in Section 3.1, we describe a
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Fig. 2. Two representations of T2 × T2.

general construction in which users have a single key, and derive a number of concrete
constructions as special cases. In particular, we describe a construction for Tm in which
the resulting graph has O(m2 log log m) edges and diameter log log m. In Section 3.2 we
describe a construction in which users may have two keys.

Before proceeding any further, we note the existence of a lower bound on the cardi-
nality of an enforcing set of edges and the existence of an enforcing set of edges that
yields a graph of diameter 1.

PROPOSITION 3.1. Let E be an enforcing set of edges for Tm. Then |E| � m(m− 1).

PROOF. Suppose that E is an enforcing set of edges such that |E| < m(m− 1). Then
at least one nonleaf node [x, y], where y > x, has out-degree less than 2. This implies
one of two things:

—either there exists z ∈ [x, y] such that [z, z] is not reachable from [x, y]; or
—there exists an edge from [x, y] to [x′, y′] such that [x, y] 
= [x′, y′] and all z ∈ [x, y]

are reachable from [x′, y′].

In the first case, the edge set does not satisfy the requirement that [z, z] is reachable
from [x, y] if z ∈ [x, y]. In the second case, there are two possibilities:

—either [x, y] ⊂ [x′, y′], in which case there exists z ∈ [x′, y′] such that z 
∈ [x, y] and z
is reachable from [x, y], contradicting the requirement that z is reachable from [x, y]
only if z ∈ [x, y]; or

—[x, y] 
⊂ [x′, y′], so there exists z ∈ [x, y] such that z 
∈ [x′, y′] and [z, z] is reachable
from [x′, y′], which contradicts the requirement that z should be reachable only if
z ∈ [x′, y′].

The result follows.

PROPOSITION 3.2 (CRAMPTON [2009]). There exists an enforcing set of edges E such
that |E| = 1

6 m(m− 1)(m+ 4) and the diameter of (Tm, E) is 1.

PROPOSITION 3.3 (CRAMPTON [2009]). There exists an enforcing set of edges E such
that |E| = m(m− 1) and the diameter of (Tm, E) is �log m�.

To establish the above result, we now describe a construction, which we call binary
decomposition, that generates a set of edges with the stated properties. Binary
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Fig. 3. The binary decomposition of T7.

decomposition is a generalization of a construction we presented in an earlier
paper [Crampton 2009, Scheme 2]. Binary decomposition is optimal, in the sense that
any set of enforcing edges must have cardinality at least m(m− 1) (by Proposition 3.1).
We first introduce some additional notation: we write Dn to denote an n-diamond,
which is formed by joining two copies of Tn along the long diagonal; and we write Rm,n
to denote a rectangular grid of nodes of side lengths m and n.

Construction 3.4 (Binary decomposition). Let � = �m/2
 and r = �m/2�. Now Tm
comprises:

—a copy of T�, containing the minimal elements [1, 1], . . . , [�, �];
—a copy of Tr, containing the minimal elements [� + 1, � + 1], . . . , [m, m]; and
—a copy of rectangle R�,r, containing the remaining nodes in Tm.

This view of T7 is depicted in Figure 3(a). Notice that every interval represented by a
node in R�,r contains � and � + 1.

The first step in the construction of E, then, is to include an edge from every node
in R�,r to one node in T� and one node in Tr. In particular, for node [x, y] such that
x � � < y, we add edges from [x, y] to [x, �] and from [x, y] to [� + 1, y].

We now recursively apply this construction to T� and Tr, terminating when �, r � 1.
The construction of the edge set for T7 is illustrated in Figure 3.

3.1. Single-Key Constructions

Crampton [2009, §5.2] described a construction that generates an enforcing set of
edges E of cardinality 1

6 m(m− 1)(
√

m+ 4) such that the diameter of (Tm, E) is 2. The
construction was based on a factorization of m into two integers. We now prove a more
general result, in which we express m as the product of d integers and construct a set
of enforcing edges E such that the diameter of (Tm, E) is d. The result has a number of
interesting corollaries, which we also explore in this section.
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Fig. 4. Creating a 2-hop scheme for T12 using 1-hop schemes for T3 and T4.

THEOREM 3.5. Let m = ∏d
i=1 ai, where ai is an integer and 2 � ai � ai+1 for all i. Then

there exists an enforcing set of edges E such that

|E| = m2

6

d∑
i=1

(ai − 1)(ai + 4)
πi

, (1)

where πi = ∏i
j=1 aj, and the diameter of (Tm, E) is d.

The result is proved by induction on d and by partitioning Tm into “supernodes,” which
are copies of smaller triangles and diamonds. Informally, the inductive step works by
splitting Tm into a triangle Ta of supernodes, where m = ab, each nonleaf supernode is
a copy of Db and each leaf supernode is a copy of Tb. The application of the construction
to T12, where a = 3 and b = 4, is illustrated in Figure 4.

PROOF OF THEOREM 3.5. First consider the case d = 1. By Proposition 3.2, there exists
an edge set with cardinality 1

6 m(m− 1)(m+ 4) and the diameter of the graph is 1 = d.
Note that for d = 1, we have a1 = m and π1 = m in (1), so the result holds for d = 1.

Now let us assume the result holds for all d < D and consider m = ∏D
i=1 ai. For

convenience, we write b = ∏D
i=2 ai (that is, m = a1b). We first note that every node in

Tm can be written in the form [x + αb, y + βb], where 1 � x, y � b and 0 � α � β < a1.

—If α = β, then [x + αb, y + βb] belongs to a leaf triangle supernode which we denote
by T (α)

b , 0 � α < a1.
—If α < β, then [x + αb, y + βb] belongs to a nonleaf diamond supernode, which we

denote by D(α,β)
b , 0 � α < β < a1.

Note also that [x + αb, y + βb], where α < β, is the (disjoint) union of the intervals

[x +αb, b+αb], [1+ (α +1)b, b+ (α +1)b], . . . , [1+ (β −1)b, b+ (β −1)b], [1+βb, y+βb],

which belong, respectively, to T (α)
b , T (α+1)

b , . . . , T (β−1)
b , T (β)

b .
Now consider a node [x, y] ∈ D(0,a1−1)

b . (In other words, [x, y] belongs to the maximal
supernode in Ta1 .) Then, for each such [x, y], we define

Cx,y
def= {[x + αb, y + βb] : 0 � α < β < a1}.

Then each diamond supernode contains exactly one element of Cx,y and the elements of
Cx,y (ordered by subset inclusion) form a copy of Ta1−1. Since [x+αb, y+βb] is the union
of intervals in T (α)

b , . . . , T (β)
b , we can connect the nodes in Cx,y directly to the appropriate
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leaf nodes using a 1-hop construction for Ta1 , which requires 1
6a1(a1 − 1)(a1 + 4) edges.

Moreover, Cx,y = Cx′,y′ if and only if x = x′ and y = y′. Hence, there are b2 = m2/a2
1

different sets Cx,y (since there are b choices for each of x and y). Hence, we create a
total of m2

6a1
(a1 − 1)(a1 + 4) edges, which enable us to jump directly from any node in a

diamond supernode to some node in a leaf supernode. We denote this set of edges by
Eouter.

By the inductive hypothesis, there exists an enforcing set of edges Einner for T (α)
b ,

0 � α < a1. Moreover, since m/a1 = b = ∏D
i=2 ai and T (α)

b is a copy of Tm/a1 , we have by
the inductive hypothesis that

|Einner| = m2

6a2
1

D∑
i=2

(ai − 1)(ai + 4)
a2 . . . ai

.

In total, we require |Eouter|+a1 |Einner| edges (since there are a1 copies of Tb). Hence the
number of edges is given by

m2

6a1
(a1 − 1)(a1 + 4) + m2

6a1

D∑
i=2

(ai − 1)(ai + 4)
a2 . . . ai

= m2

6

D∑
i=1

(ai − 1)(ai + 4)
a1 . . . ai

,

as required.
Moreover, it is clear that the resulting set of edges E is enforcing if Einner is enforcing

(which it is, by the inductive hypothesis). Finally, the diameter of
(
T (α)

b , Einner
)

is D − 1
by the inductive hypothesis. Hence, the diameter of (Tm, E) is 1 + (D − 1) = D, as
required.

Example 3.6. The partial construction of a two-hop scheme for T12 is illustrated in
Figure 4. We divide T12 into copies of D4 and T4, yielding a copy of T3 in which the
nonleaf supernodes are diamonds and leaf supernodes are triangles (as depicted in
Figure 4(a)).

A one-hop construction for T3 requires seven edges, and must be duplicated for every
node in the root supernode (and there are 42 = 16 such nodes). Hence we require
7 · 16 = 112 edges to connect nodes in nonleaf supernodes to nodes in leaf supernodes.
(A subset of these edges is depicted in Figure 4(b).) Having done this, we can now get
from any node that is contained in a copy of D4 to a node in T4 in one hop.

It remains, therefore, to construct an edge set for each T4 supernode such that we
can get from any nonleaf node to a leaf node in one hop. We require 16 edges for each
of the three copies of T4 (a total of 48 edges). The construction therefore generates a
total of 160 edges.

In the statement of Theorem 3.5, note that ai � 2, so

m =
d∏

i=1

ai � 2d and d � log m.

Note also that the ith term in the summation

(ai − 1)(ai + 4)
πi

= 1
πi−1

(
ai + 3 − 4

ai

)
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is minimized when ai = 2. Finally, note that the difference between successive terms
in the summation is given by

(ai+1 − 1)(ai+1 + 4)
ai+1

− (ai − 1)(ai + 4),

which is approximately equal to zero when ai+1 ≈ a2
i . These observations lead to two

corollaries of Theorem 3.5. The first corollary provides a concise characterization of
the number of edges required for a d-hop solution when m = ad for some integer a
(which itself includes binary decomposition as a special case). The second of these
results provides an explicit bound for the number of edges required in a scheme with
log log m steps.

COROLLARY 3.7. If m = ad, then there exists an enforcing edge set E such that |E| =
1
6 m(m− 1)(a + 4) and the diameter of (Tm, E) is d = loga m. In particular, if m = 2d, then
there exists an edge set of cardinality m(m− 1) and a graph of diameter �log m�.

PROOF. By Theorem 3.5, we have

|E| = m2

6
(a − 1)(a + 4)

d∑
i=1

1
ai

= m2

6
(a − 1)(a + 4)

(
1

a − 1

) (
1 − 1

ad

)

= m2

6
(a + 4)

(
m− 1

m

)

= 1
6

m(m− 1)(a + 4).

And for a = 2, we have |E| = m(m− 1).

COROLLARY 3.8. Let m = 22d
for some integer d � 2. Then there exists an enforcing

edge set E such that

|E| < m2
(

1 + 1
6

log log m
)

and the diameter of (Tm, E) is log log m.

PROOF. We write m = 22221
222

223
. . . 22d−1

and apply Theorem 3.5, thereby obtaining
a d-hop scheme. In particular, we have a1 = 221

, ai = 22i−1
, i � 2, and πi = 22i

, i � 1.
Hence,

|E| = m2

6

(
3 · 8

4
+

d∑
i=2

(
22i−1 − 1

)(
22i−1 + 4

)
22i

)

= m2

6

(
6 +

d∑
i=2

(
1 + 3

22i−1 − 4
22i

))

<
m2

6

(
6 + (d − 1) + 3

d−1∑
i=1

1
22i

)
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<
m2

6

(
6 + (d − 1) + 3

∞∑
i=1

1
4i

)

= m2

6
(6 + d)

= m2
(

1 + 1
6

log log m
)

as required.

Remark 3.9. It is worth noting that log log m � 6 for all m � 226 = 264. In other
words, for all practical values of m, there exists an enforcing set of edges whose cardi-
nality is bounded by 2m2 and for which the number of derivation hops is bounded by
log log m.

3.2. Multikey Constructions

In this section we consider the tradeoff that is possible when we assume that users
may have two secret keys (rather than one). In Appendix A, we consider the additional
tradeoffs that are possible when the user may have more than two keys. The basic idea
is to define a set of special nodes T ′

m ⊆ Tm and a graph (T ′
m, E) such that:

—[z, z] ∈ T ′
m for all z;

—any interval [x, y] ∈ Tm is the union of no more than two intervals in T ′
m; and

—for every [x, y] ∈ T ′
m and every z ∈ [x, y], there exists a path in the graph (T ′

m, E) from
[x, y] to [z, z].

Then, if a user is assigned to interval [x, y], we know that [x, y] is the union of no more
than two intervals in T ′

m and for any z ∈ [x, y] there is a path to [z, z] in (T ′
m, E). In

other words, providing the user with the keys for the two appropriate intervals enables
the user to derive all keys for which she is authorized.

We first observe that any interval [x, y] such that x � �m/2� and y > �m/2� can be
written as [x, �m/2� ∪ [�m/2� + 1, y]. Recall that the binary decomposition construction
splits Tm in precisely this sort of way. These observations suggest the following recursive
construction. For simplicity, we assume that m is a power of two.

Construction 3.10 (2-key binary decomposition). We first apply Construction 3.4 to
Tm to obtain a set of edges E. We then identify the set of special nodes.

(1) If m = 1, then mark the node as a special node.
(2) If m > 1, then mark every node of the form

(a) [x, m/2], for x < m/2, as a special node;
(b) [m/2 + 1, y], for y > m/2 + 1 as a special node.

(3) Split Tm into Dm/2, T left
m/2 and T right

m/2 and recursively apply the node marking to T left
m/2

and T right
m/2 .

Then T ′
m is defined to be the set of special nodes, and we define the edge set to be

E′ = E ∩ {
(x, y) : x, y ∈ T ′

m

}
.

In other words, (T ′
m, E′) is the subgraph of the binary decomposition of Tm induced

by the set of special nodes T ′
m. The result of applying 2-key binary decomposition to T16

is shown in Figure 5, in which the special nodes are represented by filled circles. (The
marking of leaf nodes and identification of edges are conflated in the final part of the
figure.)
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Fig. 5. Applying Construction 3.10 to T16.

Then a key assignment scheme in which users may have two keys is implemented
by constructing a key assignment scheme for the key derivation graph produced by
Construction 3.10. A user associated with interval [3, 14], for example, would then be
given the keys for intervals [3, 8] and [9, 14].

PROPOSITION 3.11. Let m = 2d for some integer d. Then there exists a set of enforcing
edges E such that |E| < 2mlog m, (Tm, E) comprises two disconnected components, and
the diameter of each component is log m/2.

PROOF. Clearly, Construction 3.10 terminates after log m rounds. Moreover, s(m), the
number of special nodes in Tm, satisfies the recurrence s(m) < m+ 2s(m/2), from which
we deduce that s(m) < mlog m and, since the out-degree of each special node equals
2, we deduce that |E| < 2mlog m. Clearly, the diameter of (Tm, E) equals log m− 1 =
log m/2.

3.3. Related Work

A number of authors have used ‘binary tree encryption,” which can be used to enforce
temporal access control policies cryptographically (see Backes et al. [2006]; Canetti
et al. [2007], for example). In such schemes, assuming n = 2m for some integer m, the
parent node is [1, n] and the two child nodes of node [x, y] are

[
x,

x+y
2

]
and

[ x+y
2 + 1, y

]
.

Then any interval [x, y] ∈ Tn is the disjoint union of no more than 2(log n−1) intervals:
[2, 15] ∈ T16, for example, is the union of the intervals [2, 2], [3, 4], [5, 8], [9, 12],
[13, 14], and [15, 15]. In other words, we may enforce a temporal access control policy
using binary tree encryption, by supplying each user with at most 2(log n − 1) keys,
and key derivation time requires no more than log n steps. The great advantage of such
schemes is that the key of a child node can be derived directly from the key of the
parent, since the key derivation graph is a tree. Hence, binary tree encryption schemes
require no public information.

The focus of our work, however, is on schemes—arguably, more practical schemes—
in which users have a single key. Two groups of researchers have studied this form
of cryptographic enforcement of temporal access control in some detail. In this section
we discuss these two strands of research and our own work in this area. We then
summarize and compare the respective results to our work.
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—Atallah et al. [2007b] propose a number of schemes that reduce the number of edges
and the maximum number of hops for Tm, using techniques previously developed for
total orders [Atallah et al. 2006]. Henceforth, we will use the term chain, rather than
total order, and write Cm to denote the chain containing m elements.

Atallah et al. [2007b] treat Tm as the direct product of two orthogonal sets of
chains and apply short-cutting techniques for chains. To derive the key for inter-
val [z, z] ⊆ [x, y] given the key for [x, y], for example, their method requires us
to first derive the key for [z, y] using one chain (comprising intervals of the form
[1, y], . . . , [x, y], . . . , [y, y]), and then to derive the key for [z, z] using an orthogonal
chain (comprising intervals of the form [z, m], . . . , [z, y], . . . , [z, z]).

Any set of enforcing edges E for chain Cm, such that |E| = O
(

f (m)
)

and the
diameter of the graph (Cm, E) is O(d(m)), can be used to construct a set of enforcing
edges E′ for Tm such that

∣∣E′∣∣ is O(mf (m)) and the diameter of (Tm, E′) is O(d(m)).
More specifically, if the diameter of (Cm, E) is d, then the diameter of (Tm, E′) is 2d,
and if |E| = f (m), then

∣∣E′∣∣ = 2
∑m

i=1 f (i).
—De Santis et al. [2008] propose a number of schemes that take a quite different

approach, using earlier work due to Thorup [1995] and Dushnik and Miller [1941] to
reduce the diameter of Tm, and to Alon and Schieber [1987] to reduce the number of
edges (by increasing the number of keys).

Thorup [1995] showed that given a rooted, acyclic, planar, directed graph
G = (V, E), there exists a set Es of “shortcut edges” such that |Es| � |E| and the
diameter of (V, E ∪ Es) is O

(
log |V | log∗ |V |).

The second result they use is that, given a poset of dimension 2 with Hasse diagram
G = (V, E), there exists a set of shortcut edges Es such that the graph (V, E ∪ Es)
has diameter O

(
log∗ |V |) and |Es| is O

(
d |V | (3 log |V |)d−1

)
[De Santis et al. 2007a;

Dushnik and Miller 1941].
Alon and Schieber [1987], Yao [1982], and Bodlaender et al. [1994] have all studied

c-coverings, which are used to represent an interval as the union of no more than c
smaller intervals. De Santis et al. [2008] have considered the use of c-coverings in
their work to create multikey schemes in which each user requires no more than c
keys.

Both strands of the research just described include enforcement schemes in which
users may have multiple keys, as well as schemes in which users have precisely one
key. De Santis et al. provide several different ways of constructing key assignment
schemes for Tm, whereas Atallah et al. rely on schemes for chains to construct their
key assignment schemes. The schemes of De Santis et al. provide greater flexibility in
the choice of parameters, allowing, for example, a choice in the number of keys for a
particular scheme. In contrast, the schemes of Atallah et al. use three keys, because of
the data structures that are used to build their schemes. Moreover, the 3-key schemes of
Atallah et al. are rather artificial, in the sense that enabling keys have to be introduced
and more information needs to be stored both at the server side and the client side to
enable key derivation to take place [Atallah et al. 2007a, §5.3 and 5.4].

We previously introduced a number of schemes [Crampton 2009], including binary
decomposition, which we generalize in this article. The main distinguishing feature of
our work is the focus on improved schemes that are directly relevant to the problem
at hand, whereas prior work has simply applied existing short-cutting techniques,
without considering the particular characteristics of the graph Tm and its application
to temporal access control. Specifically, in our previous work and in this article, we
exploit the fact that it is not necessary to be able to derive keys for nonleaf intervals,
in contrast to the work of other researchers.
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Table I. A Comparison of Single-Key Constructions and Our Contributions

Scheme Public Storage Derivation
Atallah et al. [2007b, §4] O

(
m2 log m

)
4

O
(
m2)

O
(
log∗ m

)
De Santis et al. [2008, §3.1] O

(
m2)

O
(
log mlog∗ m

)
O

(
m2 log m

)
O

(
log∗ m

)
O

(
m2 log mlog log m

)
3

Crampton [2009, §3.1] m(m− 1) �log m�
Crampton [2009, §5] 1

6 m(m− 1)(
√

m+ 4) 2

This paper m2
(
1 + 1

6 �log log m�
)

�log log m�

Table II. A Comparison of Multikey Constructions and Our Contributions

Scheme Keys Public Storage Derivation
Binary encryption trees 2(log n − 1) 0 log n

Atallah et al. [2007b, §5] 3 O (mlog log m) 5
3 O (mlog log m) O

(
log∗ m

)
De Santis et al. [2008, §4] 2 O (mlog m) O (m)

3 O (mlog log m) O
(√

m
)

4 O
(
mlog∗ m

)
O

(
m

log m

)
De Santis et al. [2008, §4] 2 O

(
m2 log m

)
1

3 O
(
m

√
mlog log m

)
1

4 O
(

m2

log m

)
1

De Santis et al. [2008, §4] O
(
log∗ m

)
O (m) O

(
m

(log∗ m)3 log m

)
O

(
log∗ m

)
O

(
m(log∗ m)3)

1
This paper 2 2m�log m� �log m


3 5m�log log m� log m+ �log log m�
4 6m

⌈
log∗ m

⌉
log m+ ⌈

log∗ m
⌉

As a consequence of our more direct approach, we are able to define schemes for
which it possible to compute either exact values or tight upper bounds on storage and
derivation costs, whereas related work only describes asymptotic behavior. For large
values of m, such a description may be useful, but for smaller (and arguably more
relevant) values of m, our approach is more informative. Moreover, without knowing
the multiplicative constants and lower-order terms hidden by the O notation, it is
difficult to ascertain which scheme in the literature is the best to use for a particular
value of m. The relevant characteristics of comparable schemes in the literature and
those introduced in this article are summarized in Tables I and II.

4. GEO-SPATIAL ACCESS CONTROL

Atallah et al. have also applied their techniques to a graph in which the nodes cor-
respond to rectangles of the form I1 × I2, where I1 ∈ Tm and I2 ∈ Tn [Atallah et al.
2007a]. Each object is associated with a point (x, y) (equivalently, a “unit” rectangle
[x, x] × [y, y]), where x ∈ [1, m] and y ∈ [1, n]. If a user is associated with node I1 × I2,
then the user should be able to derive the key for each point [x, x] × [y, y] ∈ I1 × I2
(where x ∈ I1 and y ∈ I2). The set of points enclosed by a rectangle is defined by the
endpoints of the two intervals.

There are 1
2 m(m+ 1) and 1

2 n(n+ 1) such intervals in Tm and Tn, respectively, so there
are a total of 1

4 mn(m + 1)(n + 1) possible rectangles contained in Tm × Tn (and hence
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Fig. 6. Examples of rectangle types in a 2m× 2m grid.

nodes in the graph). Again, it is important to note that the user is not required to be
able to derive keys for all subsets of I1 × I2, only those subsets of the form [x, x] ×
[y, y].

Recall the binary decomposition technique for Tm (Construction 3.4): for a given
interval [x, y] such that x � �m/2
 and y � �m/2
 + 1, we connected [x, y] to two
intervals [x, �m/2
] and [�m/2
 + 1, y]. We now demonstrate how this technique can
be extended to Tm,n. Suppose, for illustrative purposes, that m = n = 16 and consider
the rectangle [3, 11] × [2, 14] (as illustrated schematically in Figure 6(a)). Then we can
decompose this rectangle into four smaller rectangles in which each interval contains
no more than 8 points: namely,

[3, 11] × [2, 14] = ([3, 8] × [2, 8]) ∪ ([3, 8] × [9, 14]) ∪ ([9, 11] × [2, 8]) ∪ ([9, 11] × [9, 14]).

We can repeat this decomposition for each of these four rectangles, so that each interval
contains no more than 4 points. It is easy to see that the out-degree of each node in
the resulting graph can be no greater than 4 and that the number of decompositions
required (and hence the diameter of the resulting graph) is 4 = log 16. Hence, we can
construct an enforcing set of edges E whose cardinality is bounded by 4

∣∣Tn,n
∣∣ = n2(n+1)2

and for which the diameter of the graph (Tn,n, E) is �log n�. However, we can reduce the
number of edges by conducting a more detailed analysis.

In the next section, we provide a tighter bound on the number of edges required
to construct a graph of diameter log n for Tn,n. We then consider constructions for
Tm,n, where m 
= n, and briefly look at multikey constructions, before comparing our
contributions with existing work.

4.1. Constructions for Tn,n

We first determine the number of edges required by a 1-hop scheme.

PROPOSITION 4.1. There exists an enforcing set of edges E such that

|E| <
1

36
n2(n + 1)2(n + 2)2 = 1

9
(n + 2)2|Tn,n|

and the diameter of (Tn,n, E) is 1.

PROOF. Every node in Tn,n is a rectangle and every point contained in each rectangle
should be reachable in a single hop. The area of each node corresponds to the number of
leaf nodes that are reachable from this node. Hence, the number of edges e(n) required
to construct a graph of diameter 1 for Tn,n is

∑n
i=1

∑n
j=1 aiji j, where aij is the number of

rectangles of area i j. Now the number of rectangles of area i j is the number of intervals
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of length i multiplied by the number of intervals of length j. Hence, we have

e(n) =
n∑

i=1

n∑
j=1

(n − i + 1)(n − j + 1)i j =
(

n∑
i=1

(n − i + 1)i

)2

= 1
36

n2(n + 1)2(n + 2)2.

In fact, e(n) is an overestimate for the number of edges required because we have
included n2 rectangles of area 1, which are leaf nodes. The result follows.

THEOREM 4.2. There exists an enforcing set of edges E such that

|E| = 1
3

n2(n − 1)(2n + 5) <
8
3

|Tn,n|

and the diameter of the graph (Tn,n, E) is bounded by �log n�.

PROOF. Given n = 2m, for some integer m, we can divide the n × n grid into four
m× m grids, which we label T (0,0)

m,m , T (0,1)
m,m , T (1,0)

m,m , and T (1,1)
m,m . Then there are three types

of rectangles in Tn,n (illustrated in Figure 6):

(1) those in which each vertex is in a different m-grid;
(2) those in which one pair of vertices is contained in one m-grid and the other pair of

vertices are in an adjacent m-grid; and
(3) those in which each vertex is in the same m-grid.

Then we construct an edge set in which:

—each Type 1 rectangle is connected to four child rectangles, one in each m-grid; and
—each Type 2 rectangle is connected to two child rectangles, one in each m-grid that

contains a pair of the rectangle’s vertices.

We then recursively construct an edge set for each copy of Tm,m. Hence, the number
of edges e(n) required by this construction is 4a + 2b + 4e(m), where a represents the
number of Type 1 rectangles and b represents the number of Type 2 rectangles.

We now compute a and b. Note that we have m choices for each of the four endpoints
of the intervals that define a Type 1 rectangle (since each vertex lies in a different
m-grid). Hence, a = m4. To compute b, we first consider the number of rectangles in
a pair of adjacent m-grids: we have m2 choices for the endpoints of the “long” side of
a Type 2 rectangle (that spans two m-grids), and 1

2 m(m+ 1) choices for the endpoints
of the “short” side (where the endpoints belong to the same m-grid). Clearly, there are
four different choices of adjacent m-grids, each containing the same number of Type
2 rectangles. Hence, b = 2m3(m + 1). Therefore, we deduce the following recurrence
relation for e(n).

e(n) = 4m4 + 4m3(m+ 1) + 4e(m)

= 4m3(2m+ 1) + 4e(m)

= 1
2

n3(n + 1) + 4e
(n

2

)
Using this recurrence relation, we prove by induction that e(n) = 1

3 n2(n − 1)(2n + 5).
Consider n = 2: it is easy to see by inspection that we require 4 + 8 = 12 edges, so

the result holds for n = 2 (since, using the formula, e(2) = 1
3 ·4 ·1 ·9 = 12). Now assume
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Fig. 7. A m× 4m grid and the various types of rectangles that may arise in it.

that the result holds for all n < N. Then,

e(N) = 1
2

N3(N + 1) + 4e
(

N
2

)
(by the recurrence relation)

= 1
2

N3(N + 1) + 4
3

N2

4

(
N
2

− 1
)

(N + 5) (by the inductive hypothesis)

= 1
6

N2(3N2 + 3N + N2 + 3N − 10)

= 1
3

N2(N − 1)(2N + 5)

as required. Moreover,

e(n) = 1
3

n2(n − 1)(2n + 5) = 1
3

n2(2n2 + 3n − 5) <
2
3

n2(n + 1)2 = 8
3

∣∣Tn,n
∣∣ .

It is evident that the construction terminates after no more than �log n� iterations and
that the diameter of the resulting graph will be �log n�.

4.2. Constructions for Tm,km

We now consider constructions for Tm,km, where m and k are integers. (These construc-
tions can be extended to Tm,n, for any integers m � n, by writing n = km + r where
0 � r < m.)

We consider an m × km grid to be k copies of an m × m grid, which we may label
T (1,1)

m,m , . . . , T (1,k)
m,m . Then all four vertices of a rectangle in Tm,km may belong to the same

m-grid, or one pair of vertices belongs to one m-grid and the other pair to another grid.
In other words, the number of possible choices of m-grids for the vertices of a rectangle
corresponds to the number of intervals in [1, k]. This is illustrated schematically for a
m× 4m grid in Figure 7. These observations suggest the following approach:

—For each rectangle in Tm,km that is not included in one copy of Tm,m, add edges to the
appropriate rectangles in two or more copies of Tm,m.

—Construct an enforcing set of edges for each copy of Tm,m.

In Section 3 we identified a number of schemes for Tk, and we have seen (in Theorem 4.2)
how to construct an enforcing set of edges E such that the diameter of Tm,m is log m.
Putting this together, we obtain the following result.

THEOREM 4.3. There exist enforcing sets of edges E1 and E2 such that

—|E1| = 1
12 km2((k− 1)(k+ 4)m(m+ 1) + 4(m− 1)(2m+ 5)) and the diameter of (Tm,km, E1)

is log m+ 1 = log 2m;
—|E2| = 1

6 km2(3(k − 1)m(m+ 1) + 2(m− 1)(2m+ 5)) and the diameter of (Tm,km, E2) is
log m+ log k = log km.

ACM Transactions on Information and System Security, Vol. 14, No. 1, Article 14, Publication date: May 2011.



Practical and Efficient Cryptographic Enforcement of Interval-Based Access Control Policies 14:19

PROOF. For each rectangle that belongs to two or more m-grids, we have m2 choices
for the vertices that belong to different m-grids and 1

2 m(m+ 1) choices for those that
belong to the same m-grid. Hence, in total, we have 1

2 m3(m+1) possible choices for such
rectangles. Hence, we can build a set of enforcing edges for the m × km grid, whose
cardinality is given by

1
2

m3(m+ 1)e(Tk) + ke(Tm,m), (2)

where e(Tk) is the cardinality of some enforcing set of edges for Tk, and e(Tm,m) is the
cardinality of some enforcing set of edges for Tm,m. The number of hops required will
be the number of hops for Tk, plus the number of hops required for Tm,m.

Each rectangle in Tm,km has nonempty intersection with T (1,x)
m,m , . . . , T (1,y)

m,m for some x
and y. To obtain E1, we add an edge from each rectangle in Tm,km to a single rectangle in
each of T (1,z)

m,m , z ∈ [x, y]. In other words, the number of edges required will be the number
of edges required for a 1-hop scheme for Tk multiplied by the number of rectangles in
each interval. Hence, using the 1-hop construction in the proof of Theorem 3.5 and
applying (2), we have

|E1| = 1
12

m3(m+ 1)k(k − 1)(k + 4) + 1
3

km2(m− 1)(2m+ 5)

= 1
12

km2((k − 1)(k + 4)m(m+ 1) + 4(m− 1)(2m+ 5)).

We require a single hop to get from any rectangle to a rectangle in a copy of Tm,m and we
require log mhops to get from any rectangle in Tm,m to a leaf node. Hence, the diameter
of (Tm,km, E1) is 1 + log m.

To obtain E2, we construct an enforcing set of edges that enables us to get from each
rectangle in Tm,km to a rectangle in a copy of Tm,m in log k hops. Using Construction 3.4,
we require k(k − 1) edges for each rectangle. Hence,

|E2| = 1
2

m3(m+ 1)k(k − 1) + 1
3

km2(m− 1)(2m+ 5)

= 1
6

km2(3(k − 1)m(m+ 1) + 2(m− 1)(2m+ 5)).

In this case the number of hops required in total is log k + log m.

COROLLARY 4.4. For k � 1, there exists an enforcing set of edges E such that

|E| < 2
∣∣Tm,km

∣∣ (1 + 1
3k

)
� 8

3

∣∣Tm,km
∣∣

and the diameter of (Tm,km, E) is log km.

PROOF. The result for k = 1 follows from Theorem 4.2. For k > 1, we have (from the
proof of Theorem 4.3)

E2 = 1
6

km2(3(k − 1)m(m+ 1) + 2(m− 1)(2m+ 5))

= 1
6

km2(3km2 + 3km− 3m2 − 3m+ 4m2 + 6m− 10)

= 1
6

km2(3km(m+ 1) + m2 + 3m− 10)
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<
1
6

km2(3km(m+ 1) + (m+ 1)(m+ 2))

= 1
6

km2(3km+ m+ 2)(m+ 1)

= 1
6

m(m+ 1)km(3km+ 3 + m− 1)

= 1
2

m(m+ 1)km(km+ 1) + 1
6

m(m+ 1)km(m− 1),

and, since
∣∣Tm,km

∣∣ = 1
4 m(m+ 1)km(km+ 1), we have

E2 = 2
∣∣Tm,km

∣∣ + 2
3

(
m− 1
km+ 1

) ∣∣Tm,km
∣∣ < 2

∣∣Tm,km
∣∣ (1 + 1

3k

)
,

as required. Clearly, 1+ 1
3k monotonically decreases as k increases, so |E2| is a maximum

when k = 1. Hence, |E2| < 8
3

∣∣Tm,km
∣∣.

4.3. Multikey Constructions

In Section 3.2, we showed how we could reduce the number of edges in an enforcing set
if we assumed that a user may be given two keys. Essentially, this assumption allows
us to reduce the number of nodes in the key derivation graph for Tn from approximately
1
2 n2 to n log n. We now develop an analogous approach for Tn,n.

First, we explain how the set of special rectangles is defined. We divide Tn,n into four
copies of Tm,m, where m = n/2. Then the following rectangles are defined to be special
nodes:

—[x, m] × [y, z], where x, y, z ∈ [1, m− 1];
—[x, y] × [z, m], where x, y, z ∈ [1, m− 1];
—[m+ 1, x] × [y, z], where x ∈ [m+ 2, 2m], y, z ∈ [1, m− 1];
—[x, y] × [z, m], where x, y ∈ [m+ 2, 2m], z ∈ [1, m− 1];
—[x, m] × [y, z], where x ∈ [1, m− 1], y, z ∈ [m+ 2, 2m];
—[x, y] × [m+ 1, z], where x, y ∈ [1, m− 1], z ∈ [m+ 2, 2m];
—[m+ 1, x] × [y, z], where x ∈ [m+ 2, 2m], y, z ∈ [m+ 2, 2m];
—[x, y] × [m+ 1, z], where x, y ∈ [m+ 2, 2m], z ∈ [m+ 2, 2m].

In other words, special nodes in Tn, where n = 2m > 2, are nonleaf rectangles in which
at least one endpoint is m or m+ 1. Having identified the special nodes in Tn,n, we then
recursively identify the special nodes in each copy of Tm,m. Figure 8 illustrates how a
Type 1 rectangle can be split into four special rectangles.

THEOREM 4.5. Let n = 2m for some integer m. Then there exists an enforcing set of
edges E for Tn,n such that |E| � 4n2(n−1), the graph (Tn,n, E) comprises four disconnected
components, and the diameter of (Tn,n, E) is �log n
.

PROOF. We first count the number of special rectangles. Without loss of generality, we
consider the copy of Tm,m in which all special rectangles contain an interval of the form
[x, m] for some x ∈ [1, m− 1] (corresponding to the bottom-left quadrant in Figure 8).5
Then the number of special nodes is the total number of rectangles in Tm,m minus the
number of rectangles that are not special nodes. Since a nonspecial rectangle cannot
contain an interval in which the upper endpoint is equal to m, the number of nonspecial

5By symmetry, each copy of Tm,m contains the same number of special rectangles.
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Fig. 8. Representing a Type 1 rectangle in T2m,2m as the union of four special rectangles.

rectangles is 1
4 (m− 1)2m2. Hence, the number of special rectangles is given by

1
4

m2(m+ 1)2 − 1
4

m2(m− 1)2 = m3.

By symmetry, Tn,n contains 4m3 = 1
2 n3 special rectangles in which at least one endpoint

is m or m+ 1.
The recursive construction implies that s(n), the total number of rectangles that will

be marked as special, satisfies the recurrence s(n) � n3/2 + 4s(n/2), from which we
deduce that s(n) � n2(n − 1). Since each special rectangle has out-degree no greater
than 4, we conclude that there exists an enforcing set of edges of cardinality no greater
than 4n2(n − 1).

4.4. Related Work

Atallah et al. [2007a, §4] propose a scheme for geo-spatial access control in which each
user has a single key, the number of key derivation steps is O (1), and the number of
edges is O

(
n4(log n2)3 log∗ n

)
. They then propose more complex schemes in which the

user has O (1) keys. These schemes require complex, auxiliary data structures and key
derivation algorithms. The number of edges required by their best scheme for Tm,n,
where m � n, is O

(
mn(log log m)2 log∗ m

)
.

It is difficult to compare the performance of our schemes with those of Atallah et
al. because most of their schemes use O (1) keys. The only scheme that uses a single
key has constant time key derivation (requiring no more than 9 hops) and requires
O

(
m2n2(log mn)3 log∗ mn

)
edges. The scheme is rather complicated and involves reduc-

ing the 4-dimensional poset (Tm,n,⊆) to a set of 1-dimensional posets (that is, chains)
and then constructing edge sets for each of these chains and edge sets to connect the
chains.

Recently, Yuan and Atallah [2009] used O (mn) copies of a scheme for a chain to
create a scheme in which the user requires O (1) keys and O

(
mn log∗ m

)
edges, and the

number of derivation steps is O (1). However, the article is rather vague on the details
of the scheme and how it compares to the closely related work of Atallah et al. [2007a],
described in the preceding paragraphs, so it is difficult to provide a direct comparison
with our work.

By Corollary 4.4, the number of edges required by our scheme is less than 2
3 mn(m+

1)(n+1) and key derivation takes no more than log mn steps. Moreover, our construction
is analogous to our binary decomposition for temporal access control: we will see in the
next section that our construction generalizes readily to higher dimensions; in contrast,
the extension of existing schemes to higher dimensions is nontrivial.
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5. INTERVAL-BASED ACCESS CONTROL

In this section we generalize temporal and geo-spatial access control to interval-based
access control. Consider

T k
n

def= Tn × · · · × Tn︸ ︷︷ ︸
k times

.

We call an element [x1, y1] × · · · × [xk, yk] ∈ T k
n a (k-dimensional) hyperrectangle and

write it
∏k

i=1[xi, yi]. A 1-dimensional hyperrectangle is an interval (as in Section 3)
and a 2-dimensional hyperrectangle is simply a rectangle (as in Section 4). In interval-
based access control, protected objects are associated with a “trivial” hyperrectangle∏k

i=1[xi, xi] (which is simply a point in k-dimensional space) and users are associated
with a hyperrectangle

∏k
i=1[xi, yi]. A user associated with hyperrectangle

∏k
i=1[xi, yi] is

authorized for an object associated with
∏k

i=1[zi, zi] if and only if zi ∈ [xi, yi] for all i.

THEOREM 5.1. There exists a set of enforcing edges E for T k
n such that

|E| = nk

2k

k∑
i=1

(
k
i

)
(3i − 1)(ni − 1)

2i − 1

and the diameter of (T k
n , E) is log n.

Note that substituting k = 1 and k = 2 into the above formula, we obtain |E| = n(n− 1)
and |E| = 1

3 n2(n− 1)(2n+ 5), confirming the results of Sections 3 and 4. Before proving
the above theorem, we state a useful result, which can be proved by induction.

PROPOSITION 5.2. Let k � 1, i � 0 and a0, . . . , at be integers and let n = 2m for some
nonzero positive integer m. If

f (n) − 2k f
(n

2

)
=

(n
2

)k t∑
i=0

ai

(n
2

)i
,

for all n, and f (1) = 0, then

f (n) =
(n

2

)k
(

a0 log n +
t∑

i=1

ai
ni − 1
2i − 1

)
.

PROOF OF THEOREM 5.1. Let n = 2m. Then we may split T k
n into 2k copies of T k

m. A
hyperrectangle has nonempty intersection with one or more of the 2k copies of T k

m. Our
proof proceeds by counting the number of copies of T k

m with which a hyperrectangle
intersects and how that, in turn, determines the number of edges required for that
hyperrectangle.

We first recall the methods of Sections 3 and 4. For k = 1 (Section 3), we split Tn
into two copies of Tm, and every interval in Tn has nonempty intersection with either
one or two copies of Tm. For k = 1, the two copies of Tm may be identified with the
1-bit string 0 and 1. The endpoints of [x, y] ∈ Tn are simply x and y. Then either both
endpoints (that is, x and y) belong to the same copy of Tm or they are in different copies.
In the first case there are 1

2 m(m+ 1) choices for the endpoints, since we require that
x � y; in the second case there are m2 choices, since we choose any value from the
copy of Tm corresponding to 0 for the lower endpoint and any value from the copy of
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Tm corresponding to 1 for the upper endpoint. And when k = 2 (Section 4), T 2
n may be

split into four copies of Tm labeled (0, 0), (0, 1), (1, 0), and (1, 1). An element of T 2
n is a

rectangle, which “straddles” one, two, or four copies of Tm depending on which of the
four copies of Tm contain the lower-left and upper-right corners of the rectangle (as we
saw in the proof of Theorem 4.2).

More generally, each copy of Tm in T k
n can be identified with a k-bit string. Then each

element of T k
n has two k-dimensional endpoints, which uniquely identify the two copies

of Tm to which those endpoints belong. More generally, each hyperrectangle in T k
n is

enclosed by some hyperrectangle comprising 2d copies of Tm for some integer d � k,
where d is determined by the endpoints. We wish to determine d for a given element
of T k

n .
We denote the “left” or “lower” endpoint of an element of T k

n by l = (l1, . . . , lk) ∈ {0, 1}k

and the “right” or “upper” endpoint by r = (r1, . . . , rk) ∈ {0, 1}k. Then we have li � ri, for
all i. Now the Hamming distance of l and r determines the “volume” of the enclosing
hyperrectangle, measured as multiples of T k

m. Specifically, if the Hamming distance
between the two endpoint strings is d (that is, li = 0 and ri = 1 for d values of i), then
the enclosing hyperrectangle contains 2d copies of Tm.

The number of pairs of strings with Hamming distance d is determined by the choice
of co-ordinates at which li 
= ri and the values chosen for the remaining positions.
Clearly, there are

(k
d

)
choices of d co-ordinate positions, and, having fixed those positions,

there are 2k−d choices for the values of the remaining k − d positions. Hence, the
number of different endpoints that are enclosed in a hyperrectangle of 2d copies of 2m is
2k−d

(k
d

)
.

Now an arbitrary element in
∏k

i=1[xi, yi] ∈ T k
n for which the Hamming distance of the

endpoints is d “straddles” 2d copies of Tm, and is the union of 2d elements of T k
m. (When

k = 1, for example, every interval in Tn is the union of 1 or 2 intervals contained in T (0)
m

and T (1)
m .) Therefore, 2d edges will be required to connect

∏k
i=1[xi, yi] to the appropriate

child hyperrectangles that are contained in copies of Tm.
For an arbitrary element

∏k
i=1[xi, yi] ∈ T k

n with endpoints l, r ∈ {0, 1}k, the value of
li ⊕ ri determines how many choices there are for xi and yi. Specifically, if li = ri, then
xi and yi belong to the same m-cube and there are 1

2 m(m+ 1) choices for the pair (xi, yi),
since we must ensure that yi � xi. However, if li < ri, then xi and yi belong to different
m-cubes and there are m2 choices for (xi, yi), since yi is necessarily greater than xi and
therefore we have a free choice of xi and yi from m values. Therefore, if the Hamming
distance of l and r is d, then the total number of choices for

∏k
i=1[xi, yi] is

(m2)d
(

1
2

m(m+ 1)
)k−d

= 1
2k−d

mk+d(m+ 1)k−d.

We conclude that the set of edges required to connect all hyperrectangles with Ham-
ming distance; d to the appropriate child hyperrectangles has cardinality a(d)b(d)c(d),
where

—a(d) = 2d is the number of children of a hyperrectangle with Hamming distance d;
—b(d) = 2k−d

(k
d

)
is the number of possible choices of enclosing hyperrectangles for a

hyperrectangle with Hamming distance d, and
—c(d) = 1

2k−d mk+d(m + 1)k−d is the number of choices of endpoints for each of the k
intervals comprising a hyperrectangle with Hamming distance d.
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Clearly, the Hamming distance d takes values between 0 and k, so the total number of
edges required, denoted e(n, k), satisfies the recurrence relation:

e(n, k) = 2ke(m, k) +
k∑

d=0

2d2k−d
(

k
d

)
1

2k−d
mk+d(m+ 1)k−d

= 2ke(m, k) + mk
k∑

d=0

(
k
d

)
(2m)d(m+ 1)k−d

and, applying the binomial theorem, we obtain

e(n, k) = 2ke(m, k) + mk(2m+ m+ 1)k = 2ke(m, k) + mk(3m+ 1)k.

Now, this total includes an edge for each hyperrectangle that is contained in a single
m-cube (when the Hamming distance is 0). For a recursive construction, we can omit
these edges (of which there are 2k 1

2k mk(m+ 1)k = mk(m+ 1)k). Hence, subtracting the
edges for hyperrectangles with Hamming distance 0, we obtain

e(n, k) = 2ke(m, k) + mk(3m+ 1)k − mk(m+ 1)k

= 2ke(m, k) + mk

(
k∑

i=1

(
k
i

)
(3m)i −

k∑
i=1

(
k
i

)
mi

)

= 2ke(m, k) + mk
k∑

i=1

(
k
i

)
(3i − 1)mi.

Replacing m by n/2, we obtain

e(n, k) = 2ke
(n

2
, k

)
+

k∑
i=1

(
k
i

)
(3i − 1)

(n
2

)i+k
.

Moreover, e(1, k) = 0 for all k. Hence, we may apply Proposition 5.2, thereby obtaining

e(n, k) = nk

2k

k∑
i=1

(
k
i

)
(3i − 1)(ni − 1)

2i − 1
, (3)

as required.
Clearly, the number of derivation steps d(n) obeys the recurrence relation

d(n) = 1 + d(n/2), from which it immediately follows that d(n) = log n.

COROLLARY 5.3. There exists a set of enforcing edges E such that

(3k − 1)nk(nk − 1)
2k(2k − 1)

< |E| <
(3k − 1)nk(nk + 1)

2k(2k − 1)

and the diameter of (T k
n , E) is log n.

PROOF. The term in the left-hand side of the inequality is simply the last term in the
summation in (3). Now note that

3i − 1
2i − 1

<
3i+1 − 1
2i+1 − 1
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for all i � 1. Hence, we have

e(n, k) = nk

2k

k∑
i=1

(
k
i

)
(3i − 1)(ni − 1)

2i − 1
<

nk(3k − 1)
2k(2k − 1)

k∑
i=1

(
k
i

)
(ni − 1)

<
nk(3k − 1)
2k(2k − 1)

k∑
i=1

(
k
i

)
ni <

nk(3k − 1)
2k(2k − 1)

(n + 1)k,

as required.

Remark 5.4. Since
∣∣T k

n

∣∣ = 1
2k nk(n + 1)k, the above result implies that |E| is

	(( 3
2 )k

∣∣T k
n

∣∣).
To conclude this section, we state and prove a result that provides an upper bound on
the number of edges required in an enforcing set when we assume that a user may
have up to 2k keys. We do not describe the recursive procedure that is used to label
special nodes, as it is a straightforward generalization of the techniques described in
Sections 3.2 and 4.3.

THEOREM 5.5. There exists a set of enforcing edges E such that

|E| � 2knk(nk−1 + log n − 1),

the graph of (T k
n , E) comprises 2k disconnected components and the diameter of the

graph is log n.

PROOF. Let n = 2m for some integer m. Then we can divide the hypercube T k
n into

2k copies of the hypercube T k
m. As before, without loss of generality, we consider the

hypercube T k
m in which all intervals are of the form [xi, yi] with [xi, yi] ∈ [1, m]. The

special hyperrectangles in this copy of T k
m have the form

∏k
i=1[xi, yi], where xi = m or

yi = m for some i. Since we can choose any one of k intervals in which to fix an endpoint,
the total number of special rectangles in a particular copy of T k

m is no greater than

km
(

1
2

m(m+ 1)
)k−1

= 1
2k−1

kmk(m+ 1)k−1.

There are 2k copies of T k
m, hence the total number of special rectangles of the form∏k

i=1[xi, yi], where xi = m+ 1 or yi = m for some i, is 2kmk(m+ 1)k−1 (compare the case
k = 2 in Section 4.3). Hence, s(n), the total number of special rectangles will satisfy the
following recursively defined inequality:

s(n) � 2kmk(m+ 1)k−1 + 2ks(m).

Rewriting, we have

s(n) − 2ks
(n

2

)
� 2k

(n
2

)k (n
2

+ 1
)k−1

,

and applying the binomial theorem, we obtain

s(n) − 2ks
(n

2

)
� 2k

(n
2

)k k−1∑
i=0

(
k − 1

i

) (n
2

)i
;
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finally, applying Proposition 5.2, we have

s(n) � 2k
(n

2

)k
(

log n +
k−1∑
i=1

(
k − 1

i

)
ni − 1
2i − 1

)
.

Now the maximum out-degree of any special hyperrectangle is 2k, so e(n) � 2ks(n); and
ni − 1
2i − 1

� ni+1 − 1
2i+1 − 1

for all n � 2 and all i � 1. Hence, we have

e(n) � 2knk

(
log n + nk−1 − 1

2k−1 − 1

k−1∑
i=1

(
k − 1

i

))
= 2knk(log n + nk−1 − 1),

as required.

There is little related work on interval-based access control for arbitrary dimensions.
Yuan and Atallah [2009], whose work was briefly described in Section 4, stated that
their methods for geo-spatial access control could be generalized to higher dimensions,
without providing any details. Srivatsa et al. [2008] generalized the notion of binary
encryption trees to geo-spatial access control and higher dimensions. The number of
keys and the number of key derivation steps required are O

(
2k+1 log n

)
where k is the

number of dimensions. The schemes we describe in this article are the first in which
each user has a single key.

6. CONCLUDING REMARKS

In this article we consider the enforcement of an interval-based access control policy,
which generalizes the temporal and geo-spatial access control policies in the litera-
ture [Atallah et al. 2007a; 2007b; De Santis et al. 2008]. Such policies can be enforced
using cryptographic methods, often called key assignment schemes. There are several
efficient key assignment schemes in the literature, in the sense that the amount of
storage and the time taken to derive cryptographic keys is considerably less than that
required if standard enforcement schemes are applied directly. These efficient schemes
exist due to the particular structure of the graph that is used to represent interval-
based access control policies. Existing work has used generic techniques for reducing
the diameter of the graph, without considering the particular relationship between the
access control policy and the desired graph.

In this article we have developed a number of efficient enforcement schemes that
have considerable advantages over existing ones. We focus on the development of novel
techniques to provide efficient schemes designed specifically for interval-based access
control policies, rather than using more generic techniques. Our approach enables us
to produce, in almost all cases, exact values for the number of edges and the number of
steps required to derive a key, in contrast to existing work in the literature (as shown by
Tables I and II). Moreover, we demonstrate that our constructions can be generalized to
higher dimensions, yielding new insights into the efficient cryptographic enforcement
of interval-based access control policies.

One disadvantage of our work in Section 5 is that we assumed that each dimension
contained intervals in Tn for some fixed n. In practical applications, this may not be a
reasonable assumption, and it may be prohibitively expensive to “pad” each dimension
and work with T k

N, where N = max {n1, . . . , nk} and ni is the number of points in the ith
dimension. One important aspect of our future work, therefore, will be to try to extend
our results in Section 5 for T k

n to the more general case Tn1 × · · · × Tnk.
Perhaps the most interesting area for future work is to consider more expressive

access control policies and their enforcement using cryptographic techniques. At the
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Fig. 9. The key derivation graph generated by applying Construction A.1 to T36.

moment, we consider intervals defined over a totally ordered set of attributes A. We also
intend to consider policies where A is some partially ordered set and users and objects
are associated with subsets of A. Of particular interest is the case where A is a powerset
defined over some set of attributes, since the resulting policies would be analogous to
those used in ciphertext-policy attribute-based encryption [Bethencourt et al. 2007].
We have recently published some preliminary results in this area [Crampton 2010].

APPENDIX

A. MULTIKEY CONSTRUCTIONS FOR TEMPORAL ACCESS CONTROL

A.1. The Case k = 3

Suppose that m = ab. Then we can treat Tm as a triangle Tb in which the leaf supernodes
are copies of Ta and the nonleaf supernodes are copies of Da. Now any interval [x, y]
can be represented as the union of no more than three intervals [x, z1], [z1 + 1, z2],
[z2 +1, y], where z1 and z2 are multiples of a. Then [z1 +1, z2] has the form [z′

1a+1, z′
2a],

for some integers z′
1 and z′

2, and can be represented as the interval [z′
1, z′

2] in Tb. Figure 9
illustrates T36 split into copies of T6 and D6. The interval [3, 25], for example, can be
represented as [3, 6] ∪ [7, 24] ∪ [24, 25], and [7, 24] can be treated as the interval [1, 3]
in a copy of T4 comprising interior copies of D6.

Hence, we only require key derivation edges between the “interior” maximal nodes
in each diamond supernode and the nodes in each triangle supernode. An exterior
maximal node is of the form [1, z′

1a] or [z′
2a + 1, m]: [1, z′

1a] is the union of the intervals
[1, a] and [a + 1, z′

1a]; and [z′
2a + 1, m] is the union of the intervals [z′

2a + 1, (b − 1)a]
and [(b − 1)a + 1, m]. In other words, all intervals corresponding to maximal nodes in
an exterior diamond supernode can be treated as the union of a leaf supernode and
an interior diamond supernode. Clearly, we can apply this construction recursively,
yielding the following construction.

Construction A.1. Let m = a1 . . . ak.

(1) Treat Tm as a tree Ta1 comprising supernodes Tm/a1 and Dm/a1 .
(2) Mark every node in the upper edges of each copy of Tm/a1 as a special node (as in

Construction 3.10).
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More formally, denote the ith leaf supernode by T (i)
m/a1

, 1 � i � a1. Then

T (i)
m/a1

= {
[x + (i − 1)m/a1, y + (i − 1)m/a1] : 1 � x � y � m/a1

}
,

and we define the set of special nodes to be

a1−1⋃
i=1

{
[x, (i − 1)m/a1, im/a1] : 1 � x � m/a1

} ∪
a1−1⋃
i=1

{[im/a1 + 1, y] : 1 � y � m/a1}.

(3) Mark the maximal node in each interior copy of Dm/a1 as a special node. This set of
nodes has the form {[im/a1 + 1, jm/a1] : 1 < i � j < a1}, and hence these nodes are
in one-to-one correspondence with Ta1−2 (under the mapping [im/a1 + 1, jm/a1] �→
[i−1, j−1]). Construct a set of key derivation edges for this set of nodes by applying
binary decomposition to Ta1−2.

(4) If m/a1 � 2, repeat for all leaf supernodes Tm/a1 .

Finally, define every key allocation edge that connects two special nodes to be a key
derivation edge.

The application of this construction to T36 is illustrated in Figure 9. The faint dashed
lines illustrate the recursive partitioning of T36 and copies of T6 into supernodes.

Now Step 1 adds no more than 2m special nodes6 and Step 2 adds 1
2 (a1 − 1)(a1 − 2)

special nodes. Hence, the number of special nodes satisfies the inequality

s(m) � 2m+ 1
2

(a1 − 1)(a1 − 2) + a1s
(

m
a1

)
.

Now, for a1 � √
m and ai+1 � √

ai, we have s(m) � 5
2 m + a1s(m/a1) and we can easily

prove by induction that s(m) � 5
2 mlog log m. By construction, the out-degree of each

node in the key derivation graph is 2, so e(m) � 5mlog log m.
Moreover, the number of hops d(m) satisfies the inequality

d(m) �
⌈
log(

√
m− 2)

⌉ + d(
√

m) <
1
2

log m+ 1 + d(
√

m).

Hence, we may conclude that d(m) � log m+ �log log m�.

A.2. The Case k � 4

For k = 3, we ensure that we can derive keys for the maximal nodes in each diamond
supernode using a single key. When k � 4, we simply require that we can derive keys
for the maximal nodes using k − 2 keys.

Let s(m, k) denote the number of special nodes required to construct a scheme with k
keys for Tm. Then we have

s(m, k) � 2m+ s(a1 − 2, k − 2) + a1s(m/a1, k).

Consider k = 4: let a1 = m/ log m and ai+1 = ai/ log ai, and recall that the number of
special nodes required by a 2-key scheme for Tm is no greater than mlog m. Then we
have

s(m, 4) � 2m+ m
log m

log
(

m
log m

)
+ m

log m
s(log m, 4) < 3m+ m

log m
s(log m, 4).

6In fact, Step 1 adds precisely m/a1 + (a1 − 2)(2m/a1 − 1) + m/a1 special nodes.
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From this inequality, we prove by induction that s(m, 4) � 3mlog∗ m. Clearly, the result
holds for m = 4. Suppose, then, that s(m, 4) � 3mlog∗ m for all m < N.

s(N, 4) � 2N + s
(

N
log N

, 2
)

+ N
log N

s(log N, 4)

� 2N + N
log N

log
(

N
log N

)
+ N

log N
3 log N log∗(log N)︸ ︷︷ ︸
by inductive hypothesis

< 3N + 3N log(log∗ N) = 3N(1 + log(log∗ N)) = 3N log∗ N.

Hence, we require no more than 6mlog∗ m edges to construct a 4-key scheme for Tm.
We also have

d(m) �
⌈
log(m/ log m)

⌉ + d(log m) � log m− log log m+ 1 + d(log m),

and there are at most
⌈
log∗ m

⌉
recursive steps, so (applying a similar argument to the

one used for k = 3) we have d(m) � log m+ ⌈
log∗ m

⌉
. We summarize the results of this

section in the following theorem, which is stated without proof.

THEOREM A.2. There exist enforcing sets of edges E1, E2, and E3 such that

—|E1| = 2mlog m, the graph (Tm, E1) comprises two disconnected components, and the
diameter of (Tm, E1) is �log m
;

—|E2| = 5mlog log m, the graph (Tm, E2) comprises three disconnected components, and
the diameter of (Tm, E2) is log m+ �log log m�;

—|E3| = 6mlog∗ m, the graph (Tm, E3) comprises four disconnected components, and the
diameter of (Tm, E1) is log m+ ⌈

log∗ m
⌉
;
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