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Abstract
Principal component analysis (PCA) is a classical data analysis technique that finds linear transfor-
mations of data that retain the maximal amount of variance. We study a case where some of the data
values are missing, and show that this problem has many features which are usually associated with
nonlinear models, such as overfitting and bad locally optimal solutions. A probabilistic formulation
of PCA provides a good foundation for handling missing values, and we provide formulas for doing
that. In case of high dimensional and very sparse data, overfitting becomes a severe problem and
traditional algorithms for PCA are very slow. We introduce anovel fast algorithm and extend it to
variational Bayesian learning. Different versions of PCA are compared in artificial experiments,
demonstrating the effects of regularization and modeling of posterior variance. The scalability of
the proposed algorithm is demonstrated by applying it to theNetflix problem.
Keywords: principal component analysis, missing values, overfitting, regularization, variational
Bayes

1. Introduction

Principal component analysis (PCA) is a data analysis technique that can be traced back to Pearson
(1901). It can be used to compress data sets of high dimensional vectorsinto lower dimensional
ones. This is useful, for instance, in visualization and feature extraction.PCA has been exten-
sively covered in the literature (e.g., Jolliffe, 2002; Bishop, 2006; Diamantaras and Kung, 1996;
Haykin, 1989; Cichocki and Amari, 2002). PCA can be derived from anumber of starting points
and optimization criteria. The most important of these are minimization of the mean-square error
in data compression, finding mutually orthogonal directions in the data having maximal variances,
and decorrelation of the data using orthogonal transformations.

In the data compression formulation, PCA finds a smaller-dimensional linear representation of
data vectors such that the original data could be reconstructed from the compressed representation
with the minimum square error. Assume that we haven d× 1 data vectorsy1,y2, . . . ,yn that are
modeled as

y j ≈Wx j +m, (1)

whereW is a d× c matrix, x j arec× 1 vectors of principal components, andm is a d× 1 bias
vector. We assume thatc≤ d ≤ n. Principal subspace methods (e.g., Cichocki and Amari, 2002;
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Diamantaras and Kung, 1996) findW, x j andm such that the reconstruction error

C=
n

∑
j=1

‖y j −Wx j −m‖2 (2)

is minimized. In matrix notation, the data vectors and principal components can becompiled into
d× n andc× n matricesY = [y1 y2 . . . yn ] andX = [x1 x2 . . . xn ], andyi j , wik andxk j denote
the elements of the matricesY, W andX, respectively. The bias matrixM containsn copies of the
bias vectorm as its columns. Principal subspace methods findW andX such thatY ≈WX +M
and the minimized cost function is the sum of the squared elements (or Frobenius norm) of matrix
Y−WX −M :

C= ‖Y−WX −M‖2F . (3)

Without any further constraints, there exist infinitely many ways to performa decomposition that
minimizes (2) or equivalently (3). This can be seen by noting that any rotationor scaling ofW can
be compensated by rotating or scalingX accordingly, leaving the productWX the same. However,
the subspace spanned by the column vectors of the matrixW, called theprincipal subspace, is
unique.

PCA finds a specific representation of the principal subspace. It is traditionally defined using
the requirement that the column vectors ofW are mutually orthogonal, have unit length and, fur-
thermore, for eachk = 1, . . . ,c, the firstk vectors form thek-dimensional principal subspace. This
makes the solution practically unique (except for changing the sign, and in the special case of having
equal eigenvalues, e.g., Diamantaras and Kung, 1996; Jolliffe, 2002; Haykin, 1989). In this article,
we use the term PCA for methods which seek representations (1) by minimizing the error (2). Thus
we assume that once the principal subspace is found, it can be transformed into the PCA solution.
This is indeed true for the case of fully observed vectorsy j but can be more difficult in the case with
missing values, as we discuss in Section 4.

Let us now consider the same problem when the data matrixY has missing entries. In this paper,
we make the typical assumption that values aremissing at random(MAR) (Little and Rubin, 1987),
that is, given the observed data, the missingness does not depend on theunobserved data or latent
variables. An example where the assumption does not hold is when out-of-scale measurements are
marked missing. In the following example, the data matrix containsN = 9 observed values and 6
missing values (marked with a sign×):

Y =




y11 y12 y13 y14 ×
y21 y22 × × y25

× × y33 y34 ×


 .

A natural extension of PCA for the case with missing values would be to find a representation such
that Y ≈WX +M for the observed values. The rest of the matrixWX +M can be taken as the
reconstruction of missing values.

Although the PCA problem in the presence of missing values seems to be as easy as classical
PCA, there are some important distinctions: 1) There is no analytical solution available since even
the estimation of the data covariance matrix is nontrivial. Therefore, iterativelearning procedures
must be exploited. 2) The optimized cost function typically has multiple local minima and thus
finding the optimal solution is more difficult. 3) There is no analytical solution even for the bias
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Figure 1: Two examples of PCA with missing values. In the left, the missing value mechanism is
missing at random (MAR), while on the right, it ismissing not at random (MNAR). The
black dots represent fully observed samples, while the blue crosses represent observations
where only the horizontal value has been observed. The red circles represent the recon-
structions of the missing values produced by VBPCA. The dashed red ellipses represent
the estimated data covariance. On the left, the estimated covariance is quite closeto the
data covariance (black ellipse).

term m in (1), which is not generally equal to the row-wise mean of the data matrix, asin clas-
sical PCA. 4) Standard PCA approaches can easily lead to overfitting, thus regularization is often
required. 5) The algorithms may require heavy computations, especially forlarge-scale problems.
6) The concept of the PCA basis in the principal subspace is not easily generalized in the pres-
ence of missing values. 7) The choice of the dimensionality of the principal subspace is generally
more difficult than in classical PCA. Thus, the PCA problem has many features which are usually
associated with nonlinear models. This paper discusses some of these important issues providing
illustrative examples and presenting ways to overcome possible difficulties.

All the methods studied in this work assume MAR, so they cannot be expected towork in the
missing not at random (MNAR)case. Fig. 1 gives a first example of PCA with missing values. The
data contain 200 samples generated from a Gaussian distribution represented by the black ellipse.
In the first case (left subfigure), the vertical value is missing when the horizontal value is negative.
This setting is MAR since the missingness depends only on the observed data.In the second case
(right subfigure), the vertical value is missing when the vertical value itselfis negative. Now the
missingness depends on the missing data, and the missing value mechanism is thusMNAR. As
expected, the variational Bayesian PCA (VBPCA, see Section 3.3) workswell in the MAR case and
gives reasonable reconstructions for the missing values. Also, the vertical part of the bias termm is
estimated to be 1.13 which is much closer to the true value 1.10 than the row-wise mean 1.50 of the
observed values in the data.

PCA in the presence of missing values can be relevant for many data sets which appear in
practical applications. Sometimes, data sets contain relatively few missing observations and the
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problem is to adjust standard PCA algorithms to handle partially observed instances. The choice
of the algorithm is not very crucial in such a simple case, as most of the approaches would provide
similar solutions. However, in other applications, the available observations can be very sparse and
the modeling task is often to reconstruct the missing part from the observed data only. Examples
include collaborative filtering problems which is the task of predicting preferences by using other
people’s preferences (e.g., Hofmann, 2004), and historical data reconstruction in climatic records
(e.g., Kaplan et al., 1997).

Historically, the missing value problem in PCA was first studied by Dear (1959) who used only
one component and just one imputation iteration (see below). It was based on the minimum mean-
square error formulation of PCA introduced by Young (1941). Christoffersson (1970) also used a
one-component model for reconstructing missing values. Wiberg (1976)first suggested to directly
minimize the mean-square error of the observed part of the data. An algorithm by de Ligny et al.
(1981) already worked with up to half of the values missing. The missing values problem using
a multivariate normal distribution has been studied even earlier than using PCA, for instance, by
Anderson (1957). More historical references can be found in the book by Jolliffe (2002).

More recently, PCA with missing values was studied by Grung and Manne (1998). They pro-
posed using either the imputation or the faster alternatingW–X algorithm (see below). They dis-
cussed the overfitting problem and suggested to delete troublesome rows orcolumns from data.
Tipping and Bishop (1999) introduced the probabilistic formulation of PCA (PPCA). Although
they mentioned shortly missing data, they did not provide the formulas to be usedfor incomplete
data. Bishop (1999) introduced variational Bayesian PCA (VBPCA) forchoosing the number of
components in PCA. Raiko and Valpola (2001) reconstructed missing valueswith VBPCA to com-
pare some nonlinear models to it. Oba et al. (2003) applied VBPCA for missing value estimation in
gene expression profile data, and mentioned that it performs much better than the existing methods
for missing value estimation.

The present article reviews possible approaches to the problem with the emphasis on probabilis-
tic models and Bayesian methods. The rest of the article is organized as follows. In Section 2, we
present classical algorithms for PCA based on minimizing the reconstruction error similar to (2) and
the method based on estimation of the covariance matrix (imputation algorithm). We review how
the algorithms are normally used for fully observed data and explain how theycan be adapted to the
case with missing values. We explain possible difficulties of the standard methods including bad lo-
cally optimal solutions, numerical problems and overfitting. Simple examples are given to illustrate
these problems. In the same section, we discuss the properties of the imputationalgorithm, such
as implicit remedies against overfitting and overlearning and its expectation-maximization (EM)
interpretation.

Section 3 presents probabilistic models for PCA which provide a good foundation for handling
missing values. First, we introduce formulas for the probabilistic PCA model in the case with
missing values. Then, we describe Bayesian regularization for handling problems that arise when
data are sparse. We provide formulas for performing maximum a posterioriestimation and for
variational Bayesian inference.

In Section 4, we propose an extension of the PCA-basis notion to the case of incomplete data.
We also show how to find the PCA basis in a principal subspace estimated by different methods.
Section 5 provides formulas for computing missing value reconstructions andthe variance of the
predicted values. We briefly discuss possible ways to select the right number of principal compo-
nents to obtain reliable reconstructions.
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Section 6 discusses large-scale problems and computational complexity. In case of high dimen-
sional and very sparse data, overfitting becomes a severe problem andtraditional algorithms for
PCA are very slow. We introduce a novel fast optimization algorithm and show how to use it in
Bayesian models.

In Section 7, different versions of PCA are compared in artificial experiments, demonstrating
the effects of regularization and modeling of posterior variance. We demonstrate the importance of
tricks such as fixing hyperparameters for the early learning in variationalBayesian methods. The
scalability of the proposed algorithm is demonstrated by applying it to the Netflix problem. Finally,
we conclude in Section 8.

1.1 Notation

The following notation is used throughout the article. Bold capital letters denote matrices, bold
lower-case letters denote vectors, and normal lower-case letters denotescalars. The basic model
equation isy j ≈Wx j +m, where column vectorsy j are the data cases,W is the matrix that maps
the principal componentsx j to the data, andm is the bias vector. Indicesi = 1, . . . ,d and j = 1, . . . ,n
go over the rows and columns ofY, respectively. The index of a principal component is denoted by
k = 1, . . . ,c. Notationi j is used for the index ofyi j , the i j -th element of matrixY. O is the set of
indicesi j corresponding toobservedvaluesyi j , Oi is the set of indicesj (similarly O j is the set of
indicesi) for whichyi j is observed.|Oi | is the number of elements inOi andN = |O| is the number
of observed data elements. NotationA i: andA: j is used for thei-th row andj-th column of a matrix
A, respectively. BothA i: andA: j are column vectors. Thei-th row of W is denoted bywi = W i:,
and thej-th column ofX is x j = X: j . Table 1 lists the symbols used in the paper.

2. Least Squares Techniques

In this section, we present classical algorithms for PCA based on minimizing thereconstruction
error similar to (2) and the method based on estimation of the covariance matrix.

2.1 The Cost Function

The minimum mean-square error compression of data is the formulation for PCA(Young, 1941)
that can be generalized to the case with missing values in a very straightforward manner. The cost
function (2) is adapted such that the sum is taken over only those indicesi and j for which the data
entryyi j is observed (Wiberg, 1976):

C= ∑
i j∈O

(yi j − ŷi j )
2 , (4)

ŷi j = wT
i x j +mi =

c

∑
k=1

wikxk j +mi . (5)

In this section, we consider algorithms optimizing cost function (4), which we call the least squares
(LS) approach to PCA of incomplete data.

The cost function (2) in the fully observed case has practically unique (up to an arbitrary rota-
tion in the principal subspace) global minimum w.r.t. model parametersW, X, m provided that all
eigenvalues of the sample covariance matrix are distinct. Srebro and Jaakkola (2003) showed that
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d dimensionality of the data vectors (indexed byi)
n number of data vectors (indexed byj)
c number of principal components (indexed byk)
Y = {yi j} d×n data matrix
y j d-dimensional data vector (j-th column ofY)
ŷi j reconstruction of the data elementyi j

m = {mi} d-dimensional bias vector
M = [m m . . . m ], d×n bias matrix
mi posterior mean ofmi (scalar)
m̃i posterior variance ofmi (scalar)
W = {wik} d×c matrix for the mapping from principal components to the data
W:k k-th column of matrixW (d-dimensional vector)
wi i-th row ofW (c-dimensional vector)
wi posterior mean ofwi (c-dimensional vector)
W = [w1 w2 . . . wd ]

T, d×c matrix of posterior means ofwi

Σwi posterior covariance ofwi (c×c matrix)
w̃ik posterior variance ofwik (scalar)
X = {xk j} c×n matrix of principal components
x j c-dimensional principal component vector (j-th column ofX)
x j posterior mean ofx j (c-dimensional vector)
X = [x1 x2 . . . xn ], c×n matrix of posterior means ofx j

Σx posterior covariance ofx j (samec×c matrix for eachj)
Σx j posterior covariance ofx j (separatec×c matrix for eachj)
x̃k j posterior variance ofxk j (scalar)
C cost function to be minimized
O set of indicesi, j for whichyi j is observed
Oi set of indicesj for whichyi j is observed
O j set of indicesi for whichyi j is observed
γ learning rate (positive scalar)
ε j d-dimensional noise vector (j-th out ofn vectors)
vy noise variance (scalar)
N (x;µ,Σ) Gaussian pdf over variablex with meanµ and covarianceΣ
vm prior variance for the elements ofm (scalar)
vw,k prior variance for the elements ofW:k (scalar for eachk)
ξ = (vy,vw,k,vm) hyperparameters
θ parameters, typicallyθ = (W,X,m)

Table 1: Symbols used in the paper. See also Section 1.1 about notation.
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an extension to the weighted case, where each observation has a weight varying from 0 to 1, is a dif-
ficult non-convex problem where the cost function can have multiple localminima. We demonstrate
this phenomenon for a simple data set with missing values, that is with weights either0 (missing
value) or 1 (observed value). In our example, model (1) with one principal component and fixed
m = 0 is fitted to the data

Y =




0.8 0.8
1 ×
× 1


≈




w1

w2

w3


[

x1 x2
]
.

To discard the scaling ambiguity of the PCA solution, the column vectorW can be restricted to
have unit length. Thus, the minimized error can be represented as a function of two parameters
which define a unit length vector in the three-dimensional space. The costfunction in this simple
example has three local minima, as shown in Fig. 2: The global minimumW =±[0.49 0.62 0.62]T

corresponds to zero cost while the other two minima (close to±[0 1 0]T and±[0 0 1]T) provide a
non-zero error. Each of the two sub-optimal solutions reconstructs perfectly only three out of four
observed values inY.
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Figure 2: Example of local minima for the cost function (4). Data are three-dimensional (d = 3),
the model has one principal component (c = 1) and therefore the PCA solution can be
defined by a unit length vectorW. Left: The cost function plotted on a surface of unit
length vectors. Right: The same plot using the Euler vector representation:The matrixW
is constructed fromα andβ asW = eA [1 0 0]T with A a 3×3 matrix with four nonzero
elementsa12 = −a21 = α anda13 = −a31 = β. Coordinates in brackets correspond to
coordinates in Euclidian space in the left hand side plot.

The cost function (4) can be minimized using any optimization procedure. Twopossible ap-
proaches are presented in the following.

2.2 Alternating W–X Algorithm

Complete data.It is possible to optimize the cost function (3), and therefore to find the principal
subspace, by updatingW andX alternately. When either of these matrices is fixed, the other one
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can be obtained from an ordinary least squares problem. We will furtherrefer to this approach as
thealternating algorithm.

The algorithm alternates between the updates

X = (WTW)−1WTY, (6)

W = YXT(XXT)−1. (7)

This iteration can be efficient when only a few principal components are needed, that isc≪ d
(Roweis, 1998). The bias vectorm is the row-wise mean of the data and the above equations assume
that it has been subtracted from the data as a preprocessing step.

Incomplete data.Grung and Manne (1998) studied the alternating algorithm in the case of
missing values. In order to get the accurate least squares solution, we include the bias term into the
estimation procedure, yielding the update rules

x j =
(

∑
i∈O j

wiwT
i

)−1

∑
i∈O j

wi(yi j −mi) , j = 1, . . . ,n, (8)

mi =
1
|Oi | ∑

j∈Oi

[
yi j −wT

i x j
]
, (9)

wi =
(

∑
j∈Oi

x jxT
j

)−1

∑
j∈Oi

x j(yi j −mi) , i = 1, . . . ,d , (10)

wheremi is thei-th element ofm.

2.3 Gradient Descent Algorithm

Complete data.The basis of neural network implementation of PCA learning rules is a gradient
descent optimization procedure. Such algorithms work online, processingonly one input vectory j

at once. The learning rules implementstochasticgradient descent and the algorithms will eventually
converge to a basis in the principal subspace. Each data vector may haveto be processed several
times for convergence. The same can also be implemented in a batch procedure.

Using gradient descent for minimization of (4) w.r.t.W yields the update rule

W←W + γ(Y−WX)XT , (11)

whereγ > 0 is called the learning rate. Minimization w.r.t. matrixX can be performed using the
least squares solution in (6). Some neural algorithms use learning rules which either explicitly or-
thogonalizeW or which yield an orthogonalW at the convergence. Then the update ofX can be
simplified toX = WTY, which together with (11) is the batch version of the Oja learning algo-
rithm (Oja, 1983; Diamantaras and Kung, 1996). The biasm is again removed from the data as a
preprocessing step.

Incomplete data.In the presence of missing values, the gradient descent update rule forW is

W←W− γ
∂C
∂W

, with
∂C

∂wik
=−2 ∑

j∈Oi

(yi j − ŷi j )xk j ,
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whereŷi j is given in (5). MatrixX could be updated using (8) but a gradient-based update can also
be used:

X← X− γ
∂C
∂X

, with
∂C

∂xk j
=−2 ∑

i∈O j

(yi j − ŷi j )wik .

The bias termm can be updated using (9). As we discuss in Section 6.1, gradient-based learning
can be computationally more efficient than the alternating algorithm because there is no need to

compute matrices
(

∑i∈O j
wiwT

i

)−1
and

(
∑ j∈Oi

x jxT
j

)−1
in (8) and (10).

2.4 Numerical Problems and Overfitting

Least squares PCA methods can work well for data sets with few missing values but they may not
be applicable to sparse data sets because of severe problems with overfitting. Suppose that for some
j the number|O j | of observed measurementsyi j is smaller than the number of principal components
c. Then, the corresponding least square problem is ill posed: the matrix∑i∈O j

wiwT
i is rank deficient

and Equation (8) cannot be used. Moreover, even if|O j | is greater thanc, matrix ∑i∈O j
wiwT

i may
be badly conditioned and the correspondingx j can become infinitely large. This means that the
parameters would be overfitted to explain well a few observed values but the generalization ability
of the model would be poor (e.g., reconstruction of missing data would be very inaccurate). This is
exactly what happens in the vicinity of the two local minima in the example in Fig. 2.

The same problem can happen when the rows ofW are estimated using, for example, (10):
matrix ∑ j∈Oi

x jxT
j can be rank deficient or badly conditioned. This is more probable when some

rows ofY contain very few measurements. However, these problems can generally appear for any
data set and for any algorithm optimizing the cost function (4).

Overfitting problems can be avoided by using proper regularization. A common way to prevent
unbounded growth of model parameters is to add terms which penalize large parameter values into
the cost function. The amount of regularization can be determined, for instance, by cross-validation.
Another possibility is to use probabilistic methods (see Section 3) in which the extra penalty terms
come naturally from a probabilistic model.

2.5 Method Using Singular Value Decomposition

Complete data.Perhaps the most popular approach to PCA is based on singular value decomposition
(SVD) of the data matrix or (equivalently) eigen-decomposition of the sample covariance matrix.
SVD of the data matrix is given by:

Y = UΣVT ,

whereU is a d× d orthogonal matrix,V is ann× n orthogonal matrix andΣ is a d× n pseudo-
diagonal matrix (diagonal ifd = n) with the singular values on the main diagonal (e.g., Haykin,
1989). The PCA solution is obtained by selecting thec largest singular values fromΣ, by forming
W from the correspondingc columns ofU, andX from the correspondingc rows ofΣVT (Jolliffe,
2002). The biasm is again removed from the data as a preprocessing step.

PCA can equivalently be defined using the eigen-decomposition of thed×d covariance matrix
C of the column vectors of the data matrixY:

C =
1
n

YYT = UDUT .

1965



ILIN AND RAIKO

The diagonal matrixD contains the eigenvalues ofC, and the columns of the matrixU contain
the unit-length eigenvectors ofC in the same order (Cichocki and Amari, 2002; Diamantaras and
Kung, 1996; Jolliffe, 2002; Haykin, 1989). Again, the columns ofU corresponding to the largest
eigenvalues are taken asW, andX is computed asWTY. This approach can be more efficient for
cases whered≪ n, since it avoids the computation of then×n matrixV.

Incomplete data.The same approach cannot be directly used in the presence of missing values.
Estimating the covariance matrixC becomes difficult. Let us consider a simple (but incorrect)
estimate where we just leave out terms with missing values from the average foreach element ofC.
For the data matrix below, we get

Y =



−1 +1 0 0 ×
−1 +1 × × 0
× × −1 +1 ×


 , C =

1
n

YYT =




0.5 1 0
1 0.667 ×
0 × 1


 .

There are at least two problems. First, the estimated covariance 1 between the first and second
components is larger than their estimated variances 0.5 and 0.667. This clearly leads to the sit-
uation where the covariance matrix is not positive (semi)definite and some of itseigenvalues are
negative. Secondly, the covariance between the second and the third component could not be esti-
mated at all. For these reasons, this is a viable option only if the number of missingvalues is not
significant. There are many algorithms for finding a proper estimate of the covariance matrix (e.g.,
Ghahramani and Jordan, 1994; Boscardin and Zhang, 2004) but they are computationally intensive
iterative algorithms.

A simple alternative is an iterative procedure which performs PCA more directly. It alternates
between imputing the missing values inY and applying standard PCA to the infilled (complete) data
matrix Yc (e.g., Jolliffe, 2002). Initially, the missing values can be replaced, for example, by the
row-wise means ofY. The covariance matrix of the complete dataYc can be estimated without the
problems mentioned above, andW can be computed using its eigen-decomposition. The bias term
m can be updated as the row-wise mean ofYc. Next, the principal componentsX are calculated:

X = WT(Yc−M) ,

the reconstructions can be used as a better estimate for the missing values:

Yc =

{
Y for observed values
WX +M for missing values

and PCA can be applied again to the updated data matrixYc. This process can be iterated until
convergence. We will further refer to this approach as theimputation algorithm. In Appendix A,
we show that the imputation algorithm also minimizes the cost function (4) and that itimplements
the EM steps for a simple probabilistic model. This approach requires the use of the complete data
matrix, and therefore it is computationally very expensive for large-scaleproblems.

Although the imputation algorithm belongs to the class of least-squares PCA algorithms (i.e., it
does not use explicit regularization), it still provides some remedy againstoverfitting. Performing
SVD of a complete data matrix is equivalent to minimizing a cost function which is a sum of
two terms: the reconstruction error for the observed values (which is the true minimized error)
and the reconstruction error for the infilled missing data (which is a penalty term forcing the new
reconstructions of missing data to be close to the infilled values). Initialization ofthe reconstructions
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with the row-wise means of the data matrix introduces a bias in favor of the most “conservative”
solutions. In practice, there can be infinitely many solutions that provide the same reconstruction
error for the observed part but that have different reconstructions for the missing part. In such cases,
the effect of the initialization can last even if the algorithm is iterated indefinitely.

Our experiments show that the imputation algorithm also has resistance againstoverlearning.
By overlearning we mean situations when the training error decreases butthe generalization ability
of the model gets worse. Badly overfitted solutions correspond to regions inthe parameter space
where a small decrease of the training error can cause a large increaseof the test error. However, the
penalty term (which keeps the reconstructions of missing data close to the infilled values) makes the
steps shorter and learning can practically stop once the algorithm enters regions where the training
error changes very little. Thus, this regularization effect is due to early stopping.

3. Probabilistic Models for PCA

In this section, we presents probabilistic models for PCA which provide a good foundation for
handling missing values.

3.1 Probabilistic PCA

The probabilistic formulation of PCA offers a number of benefits, including well-founded regular-
ization, model comparison, interpretation of results, and extendability.Probabilistic PCA(Tipping
and Bishop, 1999) explicitly includes the noise term in a generative model

y j = Wx j +m+ ε j . (12)

Both the principal componentsx j and the noiseε j are assumed normally distributed:

p(x j) =N (x j ;0, I) , (13)

p(ε j) =N (ε j ;0,vyI) , (14)

whereN (x;µ,Σ) denotes the normal probability density function (pdf) over variablex with meanµ
and covarianceΣ. The parameters of the model includeW, m andvy. The model can be identified
by finding the maximum likelihood (ML) estimate for the model parameters using the EM algorithm
(Dempster et al., 1977).

Complete data. The E-step estimates the conditional distribution of the hidden variablesX
given the data and the current values of the model parameters:

p(X|Y,W,vy) =
n

∏
j=1

N
(
x j ;x j ,Σx j

)
,

where the covariance matrixΣx j is same for allx j :

Σx j = Σx = vy

(
vyI +WTW

)−1
, j = 1, . . .n,

and the meansx j can be summarized in the columns of matrix

X =
1
vy

ΣxWTY . (15)
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The M-step re-estimates the model parameters as

W = YX
T
(XX

T
+nΣx)

−1, (16)

vy =
1
nd

d

∑
i=1

n

∑
j=1

(
yi j −wT

i x j
)2

+
1
d

tr(WΣxWT) .

Note thatvy is updated as the mean-square error plus the extra term which accounts for the uncer-
tainty inX.

Tipping and Bishop (1999) showed thatW converges to the principal subspace. In the zero-
noise limit, that is forvy→ 0, the iterations (15)–(16) reduce to the least squares projections in
(6)–(7) (Roweis, 1998). Note also that the ML estimator form is given by the row-wise mean of the
data (Tipping and Bishop, 1999). Therefore, it can be computed once and removed from the data in
the preprocessing step.

Incomplete data.The generalization to the case with missing values happens as follows. First
we write an element-wise version of the probabilistic model in (12)–(14):

yi j = wT
i x j +mi + εi j , ∀i j ∈O,

p(x j) =N (x j ;0, I) ,

p(εi j ) =N (εi j ;0,vy) .

We treatwi , mi , andvy as model parameters andx j as latent variables and apply the standard EM
algorithm to arrive at the following update rules:

Σx j = vy

(
vyI + ∑

i∈O j

wiwT
i

)−1
, (17)

x j =
1
vy

Σx j ∑
i∈O j

wi(yi j −mi) , j = 1, . . . ,n,

mi =
1
|Oi | ∑

j∈Oi

[
yi j −wT

i x j
]
,

wi =
(

∑
j∈Oi

[
x jxT

j +Σx j

])−1

∑
j∈Oi

x j(yi j −mi) , i = 1, . . . ,d, (18)

vy =
1
N ∑

i j∈O

[(
yi j −wT

i x j −mi
)2

+wT
i Σx j wi

]
.

There are several distinctions compared to the fully observed data: 1) The optimalm depends
on other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance
Σx j is different for eachx j . 3) Each row ofW is recomputed based only on those columns ofX
which contribute to the reconstruction of theobservedvalues in the corresponding row of the data
matrix. The same applies to the computation of the columns ofX. Thus, the computations required
for incomplete data are generally heavier.

3.2 Examples of Overfitting with Probabilistic PCA

PPCA provides some remedy against overfitting, in contrast to the least squares approach. First,
a nonzero noise levelvy regularizes badly conditioned matrices∑i∈O j

wiwT
i in (17). Second, even
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if the noise level is small, badly conditioned matrices∑i∈O j
wiwT

i result in large values both in the
meansx j and in the covariance matricesΣx j . This diminishes the effect of large values inx j when
W is re-estimated using (18).

However, PPCA can overfit, for example, if the estimated number of principal components is
unreasonably large. In the example in Fig. 3, PPCA with one (c= 1) principal component is applied
to two-dimensional (d = 2) data and each data vector is only partly observed (i.e., eithery1 j or
y2 j is known for all js). The observations are represented by triangles placed on the two axes in
Fig. 3. The data points reconstructed with a trained PPCA model lie on a line, thus the model invents
correlations that are not observed in the data. In fact, there are infinitelymany PPCA models which
are equally good and the final solution (and hence the reconstructions) depends on initialization.
The situation would not change significantly if there were a few fully observed data vectors. Then,
the trained model would be defined by those few samples and it would not generalize well for new
data.

A similar overfitting example is presented in Fig. 4. There, three-dimensional data are described
well by a model withc= 1 principal component. The first two rows ofY are fully observed while
there are only two measurements in the third row (Fig. 4a). The reconstructions of the third row of
Y are very inaccurate because the model relies only on the two available observations.

3.3 Variational Bayesian PCA (VBPCA)

A common way to cope with the overfitting problem is to penalize parameter values which cor-
respond to more complex explanations of the data. A natural regularization inPCA is using pe-
nalization of large values in matricesW andX. In the Bayesian formulation, this is equivalent to
introducing a prior over the model parameters. For example, the PPCA modelin (12)–(14) can be
complemented with Gaussian priors over the elements of vectorm and matrixW:

p(m) =N (m;0,vmI) , (19)

p(W) =
c

∏
k=1

N (W:k;0,vw,kI) . (20)

Here, we use a zero mean prior form for the sake of simplicity. Including a mean hyperparameter
µ, that isp(m) = ∏i N (mi ;µ,vm), can be useful in practice.

The model (20) uses a shared prior for all elements in the same column ofW, parameterized
with vw,k. This is done to allow automatic selection of the right number of components needed for
PCA. The hyperparametersvm, vw,k can also be updated during learning (e.g., using the evidence
framework or variational approximations). If the evidence of the relevance of thek-th principal com-
ponent for reliable data modeling is weak, the correspondingvw,k should tend to zero. This is called
automatic relevance determination(e.g., Bishop, 2006). The prior in (19)–(20) also introduces a
bias towards the PCA basis within the principal subspace (Luttinen and Ilin, 2010).

Let us assume that we perform ML estimation of the hyperparametersξ = (vy,vw,k,vm) in the
probabilistic model defined in (12)–(14) and (19)–(20). This can be done using the EM-algorithm
if one treats the model parametersθ = (W,X,m) as hidden random variables. Implementation of
the EM algorithm would require the computation of the posterior of the hidden variablesp(θ|Y,ξ)
on the E-step. Unfortunately, the true posteriorp(θ|Y,ξ) does not have an analytic form and one
possible solution is to approximate it with a simpler pdfq(θ). This is justified by the variational
view of the EM algorithm (Neal and Hinton, 1999).
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Figure 3: A simple example of overfitting with PPCA: data are two-dimensional and each sample
contains only one observed value. The measurements are marked with blue and red trian-
gles at the two axes. The reconstructions provided by a trained PPCA model are shown
with crosses.
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Figure 4: Example of inaccurate reconstruction with PPCA. Left: The “true” values in the three
rows of Y are shown with blue lines. The first two rows are fully observed, the only
two observations in the third row are marked with circles. The PPCA reconstruction is
shown with red dots. Right: The blue dots is the scatter plot of the third row ofY (x-axis)
against the principal component estimated by PPCA (y-axis). The dots corresponding to
the two observations are marked with circles. The red crosses is the reconstruction of
the third row (x-axis) against the estimated principal component (y-axis). The estimated
correlation are due to the two fully observed data vectors.
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Using the variational approach (Wallace, 1990; Hinton and van Camp, 1993), the E-step is
modified to update the approximationq(θ) so as to minimize the cost function

C(q(θ),ξ) =
∫

q(θ) log
q(θ)

p(Y,θ|ξ)dθ =
∫

q(θ) log
q(θ)

p(θ|Y,ξ)
dθ− logp(Y|ξ) . (21)

On the M-step, the approximationq(θ) is used as it was the actual posteriorp(θ|Y,ξ) in order to
increase likelihoodp(Y|ξ). This can be seen as minimization of (21) w.r.t.ξ (Neal and Hinton,
1999).

The first term in (21) is the Kullback-Leibler divergence between the trueposterior and its
approximation. Since it is always non-negative, the cost function provides a lower bound of the
log-likelihood:

logp(Y|ξ)≥−C(q(θ),ξ) . (22)

This property can be used to compare solutions corresponding to different local minima of (21).
More details on variational methods can be found, for example, in the book by Bishop (2006).

The variational Bayesian (VB) approach to PCA can be implemented by minimization of (21)
w.r.t. the approximating pdfq(θ) andξ.1 The complexity of the cost function (21) depends on the
form of the approximating pdfq(θ). A computationally convenient form for the PCA model is

q(θ) =
d

∏
i=1

q(mi)
d

∏
i=1

q(wi)
n

∏
j=1

q(x j) . (23)

Then, the cost function can be minimized alternately w.r.t. one factorq(θi) in (23) while keeping the
other ones fixed. Because we use conjugate priors in (19)–(20), it is possible to findoptimalpdfs
q(θi) on each step: The optimalq(mi), q(wi) andq(x j) are Gaussian and their update boils down to
re-estimation of the corresponding means and covariance matrices.

In Appendix C, we present the update rules for the resulting algorithm, which we call VBPCA.
There, we assume incomplete data sets, the update rules for the fully observed data can be found in
the paper by Bishop (1999). Note the resemblance of the learning rules to the EM algorithm applied
to PPCA. The mean parametersW, X, m of the approximating pdfs can be used as estimates of
the corresponding model parameters. The covariance matricesΣwi , Σx j and variances̃mi reflect the
uncertainty about the corresponding quantities.

The advantages of the VB approach can be summarized in the following.

• VB learning is sensitive to posterior probability mass rather than posterior probability density,
which makes it more resistant against overfitting compared to point estimation (e.g., PPCA or
MAPPCA presented in Section 6.4). Typically, overfitted solutions correspond to high peaks
in the posterior density while robust solutions contain much of the posterior probability mass
in their neighborhood.

• The method provides information about uncertainty for the unknown quantities (in the esti-
mated posterior covariance matrices). This can be useful to detect unreliable results similar
to the one presented in Fig. 4. For example, the uncertainty of the reconstructions of missing
values can be estimated as we show in Section 5.

1. In the fully Bayesian treatment, the hyperparametersξ are also assigned priors and they are treated equally to the rest
of the parametersθ. We omit the effect of the prior for the hyperparameters to simplify the equations.
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• The VB cost function can be used for comparison between different solutions based on (22):
A smaller cost yields a greater lower bound of the solution evidence. This is auseful feature
for PCA of incomplete data as, in this problem, even simpler models can provide cost func-
tions with multiple local minima. A greater lower bound does not guarantee a bettersolution,
but still it seems to be a reliable measure in practice, see Figure 11 for an example.

4. Rotation in the Principal Subspace to the PCA Basis

A useful property of classical PCA is that the principal components are ordered by the amount of
data variance they explain, which allows an intuitive interpretation of the results. Such a represen-
tation is quite trivial for complete data sets but the extensions to the case of incomplete data is not
straightforward. In this section, we show how to find such a basis in the principal subspace esti-
mated by different algorithms for incomplete data. We refer to this basis as the PCA basis in the
principal subspace.

One can define the PCA basis forcomplete dataas the solution which minimizes (2) and which
satisfies the following conditions: 1) the principal components (in the rows ofX) are zero mean,
mutually uncorrelated and scaled to unit variance:

1
n

n

∑
j=1

x j = 0, (24)

1
n

n

∑
j=1

x jxT
j =

1
n

XXT = I (25)

and 2) matrixW has mutually orthogonal columns which are ordered according to their norms:

WTW = diag(s), (26)

sk ≥ sl , k< l , (27)

where diag(s) denotes a diagonal matrix with diagonal elementssk = ‖W:k‖2. Note that the nor-
malized columns ofW and their squared normssk are the eigenvectors and eigenvalues of the data
covariance matrix.

We propose to use the same conditions (24)–(27) to define the PCA basis in the principal sub-
space estimated forincomplete data. Note the important difference to the complete data case: The
PCA basis for complete data is unique (assuming distinct eigenvalues of the data covariance matrix)
and it does not depend on the dimensionality for the assumed principal subspace. This cannot be
guaranteed for incomplete data case: The principal subspace estimated withthe same algorithm us-
ing fewer components may differ from the leading directions of the PCA basisfound in the subspace
with more components.

In the following, we show how to transform a solution found with different algorithms to the
PCA basis such that conditions (24)–(27) are satisfied.
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4.1 Least Squares Approaches

The first step to transform a solution{W,m,X} found by a least squares algorithm (as presented in
Sections 2.2-2.3) is to center the rows inX to zero mean:

x j ← x j −µ, (28)

mpca= m+Wµ, (29)

with µ= 1
n ∑n

j=1x j . This ensures (24). The next step is to transform linearlyW andX:

Wpca= WUD1/2
x V, (30)

Xpca= VTD−1/2
x UTX , (31)

where matricesU, Dx are computed by eigen-decomposition

1
n

XXT = UDxUT (32)

andV is calculated by eigen-decomposition

D1/2
x UTWTWUD1/2

x = VDwVT . (33)

It is easy to show that the transformed solution satisfies (25)–(26):

1
n

XpcaXT
pca=

1
n

VTD−1/2
x UTXXTUD−1/2

x V

= VTD−1/2
x UTUDxUTUD−1/2

x V = VTD−1/2
x DxD

−1/2
x V = VTV = I ,

WT
pcaWpca= VTD1/2

x UTWTWUD1/2
x V = VTVDwVTV = Dw .

4.2 Probabilistic PCA

We show in Appendix B that the following conditions hold at the convergenceof PPCA:

1
n

n

∑
j=1

x j = 0, (34)

Σ∗ =
1
n

n

∑
j=1

[
x jxT

j +Σx j

]
= I , (35)

which can be seen as the analogue of (24)–(25). Note thatΣ∗ becomes the sample covariance matrix
of the principal components in the noiseless limit, whenvy→ 0. The extra requirements (26)–(27)
can be used to define the (practically) unique PCA basis for a PPCA solution. They resolve the
rotational ambiguity caused by the fact that any orthogonal transformationof the principal subspace
does not changeΣ∗ in (35).

One can easily perform a transformation of a PPCA solution such that (34)–(35) and (26)–(27)
hold. This is done by first normalizingx j to zero mean and updating the bias term similarly to (28)–
(29). Then, a rotation of the subspace is performed similarly to (30)–(33)with the exception that

1973



ILIN AND RAIKO

1
nXXT is replaced withΣ∗. Finally, one can rotate the posterior covariance matrices of the estimated
principal components:

Σx j ,pca= VTD−1/2
x UTΣx j UD−1/2

x V , (36)

which follows from (31).
Although the optimal PPCA solution satisfy at least conditions (34)–(35), convergence of the

learning algorithm to the optimal solution can be very slow. Therefore, performing the described
transformations during learning can speed up learning. In the experiments, we use the transforma-
tions after each iteration.

4.3 VBPCA

It can be shown (Luttinen and Ilin, 2010) that VBPCA described in Section3.3 converges to the
solution which satisfies (34)–(35) and the condition analogous to (26):

d

∑
i=1

[
wiwi

T +Σwi

]
= diag(s) , (37)

wherewi , Σwi are the posterior means and covariance matrices for the rows of matrixW (see Ap-
pendix C for notation details). Thus, one can simply use the ordering requirement (27) to define a
meaningful basis for a VBPCA solution. Performing a transformation that ensures (34)–(35) and
(37) during learning can speed up convergence (Luttinen and Ilin, 2010). The transformation can
be performed similarly to (30)–(33) with the exception thatXXT is replaced with∑n

j=1

[
x jxT

j +Σx j

]

in (32) andWTW is replaced with∑d
i=1

[
wiwi

T +Σwi

]
in (33). Finally, one can rotate the posterior

covariance matrices using (36) and

Σwi ,pca= VTD1/2
x UTΣwi UD1/2

x V .

In the experiments, we use the transformations after each iteration.

5. Reconstruction of Missing Values and Selection of Model Rank

PCA is a popular approach to the problem of missing value reconstruction. The estimated principal
components capture the correlations between different variables, whichallows for reconstruction of
missing values from the observed ones. The models discussed in this article compute reconstruc-
tions using (5), in whichwi , mi , x j are replaced with the respective posterior meanswi , mi , x j when
applicable. Additionally, one can estimate the uncertainty of the predictions forPPCA and VBPCA
by computing its variance

ỹi j = m̃i +wT
i Σx j wi +xT

j Σwi x j + tr(Σx j Σwi ) ,

wherem̃i , Σx j , Σwi represent the posterior uncertainties of the respective parameters andΣwi is
zero for PPCA. This is a useful feature of the probabilistic methods compared to the least-squares
approach.

The quality of reconstruction depends on the number of estimated principal components and
therefore selection of the model rank is an important problem. In this section,we briefly outline
possible solutions to this problem leaving out the detailed discussion.

1974



PRINCIPAL COMPONENTANALYSIS WITH M ISSING VALUES

The most straightforward way to define the rank of the model is to use cross-validation. The
data set is divided into training and validation parts, models with different ranks are fitted to the
training set and the the rank is selected based on the performance on the held-out validation set.

Another way is to use probabilistic methods for model selection. For example, Minka (2001)
developed a means to detect the dimensionality of the principal subspace forcompletedata using
Laplace’s method and Bayesian information criterion (BIC) applied to the PPCA model. He also
discussed other alternatives but his approach showed the best performance. However, the extension
of Laplace’s method to the case ofincompletedata is not straightforward. An additional difficulty
is the possibility that the posterior distribution over the model parameters has multiple modes cor-
responding to different principal subspaces. VBPCA can select the optimal number of components
automatically by setting some columns ofW to zero. However, the VB cost function may have
many local minima which correspond to different model ranks and exploring different local solu-
tions can be a tedious procedure. Hoff (2008) estimated the dimensionality ofthe principal subspace
in the complete data using a sampling procedure.

6. Speeding Up Learning For Sparse High-Dimensional Data Sets

Obtaining a reasonably good solution in appropriate time is a very important issue for
high-dimensional problems in which learning may take several days, as in theexample consid-
ered in Section 7.4. The algorithms presented in the previous sections scale differently to problems
with large dimensions and large degree of sparsity of observed values.

The computational complexities of different algorithms are summarized in Tables2 and 3. For
example, the alternating optimization algorithm for PPCA requires computation andinversion of

matrices∑ j∈Oi

[
x jxT

j +Σx j

]
and

(
vyI +∑i∈O j

wiwT
i

)
, which are generally unique for each row ofW

and each column ofX, respectively. The corresponding computational complexity isO(Nc2+nc3)
per iteration,2 which is quite a bit heavier thanO(ndc) per iteration (Roweis, 1998) required for
complete data.

The computational complexityO(Nc+nc) of the gradient method is small compared to previ-
ously reported results. For instance, Srebro and Jaakkola (2003) reported the complexityO(ndc2)
for a more general model which was a huge improvement over the complexityO(n3c3) of the al-
gorithms proposed even earlier. Using the numbers from the Netflix problemconsidered in Sec-
tion 7.4 (N ≈ 108, n≈ 480189,d = 17770,c = 30), we get rough estimates of the differences in
practice: Imputation algorithmnd2 ≈ 1014, (Srebro and Jaakkola, 2003)ndc2 ≈ 1012, alternating
W–X Nc2+nc3≈ 1011, and gradientNc+nc≈ 109.5.

Once the model has been learned and fixed, doing inference on a new sample is fast. Using the
alternating algorithm, it requires only one E-step withO(N0c2+c3), whereN0≤ d is the number of
observed values in the new sample, while imputation and gradient algorithms require a number of
iterations withO(dc) andO(N0c) each.

Efficient memory usage is an important issue for sparse data sets. It is preferable that the amount
of used memory scales linearly with the number of observed values regardless of the data matrix
dimensionalities. In Table 2, we provide the number of parameters estimated by different models,
which gives the lower bound for the amount of the required memory. Only theimputation algorithm

2. The computational complexity of the alternatingW–X scheme can be reduced if the matrices requiring inversion are
computed once for all rows (columns) ofY that have observed values at exactly the same columns (rows respectively).
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Number of Imputation Alternating Gradient
Section parameters with SVD W–X descent

LS 2 (d+n)c X X X

MAPPCA 6.4 (d+n)c X X

PPCA 3.1 (d+n)c+nc2
X

VBPCA 3.3 (d+n)(c+c2) X

PPCAd 6.3 (d+2n)c X

VBPCAd 6.3 (2d+2n)c X

Table 2: Memory requirements and applicability of optimization methods to different models. We
mark only the optimization schemes which can easily be implemented using the formulas
provided in this paper. Some of the methods mentioned here will be presented inthe
upcoming sections.

Imputation Alternating Gradient
with SVD W–X descent

O(nd2) O(Nc2+nc3) O(Nc+nc)

Table 3: Summary of computational complexities (per iteration) of different optimization methods,
assuming näıve computation of products and inverses of matrices and ignoring the com-
putation of SVD in the imputation algorithm.

requires memory for the complete data matrix, and even that requirement can be diminished at a cost
of greater time complexity.

6.1 Gradient-Based Learning

The gradient-based optimization scheme, extending the Oja learning algorithm toregularized PCA
models, can be very efficient for large-scale problems and sparse datasets. The computational
complexity of one iteration scales very well with dimensionalities, which can lead tofaster learning
in practice. The gradient-based approach can also be advantageous compared to the alternating
optimization scheme as the latter discards the joint effect of parametersW andX on the changes
in the cost function. This results in slow convergence without proper speed-up procedures (e.g.,
Honkela et al., 2003).

We also propose to use a speed-up to the gradient descent algorithm. In Newton’s method for
optimization, the gradient is multiplied by the inverse of the Hessian matrix. Newton’s method is
known to be fast-converging, but using the full Hessian is computationally costly in
high-dimensional problems (d≫ 1). We propose a simplified approach which uses only the diago-
nal part of the Hessian matrix and includes a control parameterα that allows the learning algorithm
to vary from the standard gradient descent (α = 0) to the diagonal Newton’s method (α = 1). The
final learning rules then take the form

θi ← θi− γ
(

∂2C

∂θ2
i

)−α ∂C
∂θi

.
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For example, the cost function (4) has the second-order derivatives

∂2C

∂w2
ik

= ∑
j∈Oi

x2
k j ,

∂2C

∂x2
k j

= ∑
i∈O j

w2
ik ,

which can be computed efficiently for sparse data. We showed the efficiency of the proposed op-
timization scheme in the application to large-scale PCA problems in our conference papers (Raiko
et al., 2008, 2007a).

6.2 Online Learning

In cases where the number of data samples is very large,n≫ d, it is wasteful to go through the
whole data set before updatingW (andm). Using online learning (Oja, 1983), one samplej is
processed at a time as follows: The principal componentsx j are inferred using (8) (or the E-step in
general), andW is updated using the gradient approach. When sweeping through the data, updates
concerning the latter samples benefit from using theW that has already been updated using the
earlier ones. This reduces the required number of iterations. Downsidesof this approach include
that determining the step size, or using speed-ups such as the one in Section6.1 or the conjugate
gradient, becomes difficult. Also, for enabling parallel implementation, one should process at least
a small batch of samples at a time before updatingW (e.g., Salakhutdinov et al., 2007). Online
learning was not considered in this paper.

6.3 Factorial Variational Approximations

The overfitting problem can be more severe for high-dimensional sparsedata sets. The situations
discussed in Sections 2.4 and 3.2 are more probable when data points are sparsely distributed in high
dimensions. Thus, methods penalizing large values of model parameters andtaking into account
their posterior uncertainty are especially relevant here.

The PPCA and VBPCA approaches, which take into account the posterioruncertainty at least
in X, are hardly applicable to large-scale problems. First, the computational burden of one iteration
of the alternatingW–X scheme is very large (see Table 3) and application of the gradient-based
optimization is cumbersome because of the need to computec×c covariance matrices. Second, the
required memory is at leastnc2 elements for storing posterior correlations only inX. This becomes
infeasible for many large-scale problems even for a decent number of principal components.

A possible solution is to take into account only some posterior correlations andto use variational
techniques for learning. For example, the posterior approximationq(θ) in VBPCA can be made
fully factorial leading to

q(θ) =
d

∏
i=1

q(mi)
d

∏
i=1

c

∏
k=1

q(wik)
k

∏
c=1

n

∏
j=1

q(xk j) . (38)

instead of (23). Such posterior approximation was used, for example, byRaiko et al. (2007b) for
PCA in the presence of missing values. The implementation proposed there wasbased on the
imputation algorithm and thus not easily scalable to high-dimensional sparse problems.

The fully factorial approximation (38) reduces significantly the number of variational parame-
ters. They now include the mean parametersmi , wik andxk j and the variance parametersm̃i , w̃ik,
x̃k j in addition to hyperparametersvy, vw,k, vm, which can be point-estimated. The corresponding
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cost function is given in Appendix D. It can be minimized in different ways,for example, by using
the gradient-based optimization scheme explained in Section 6.1. The complete algorithm works by
alternating four update steps:{w̃ik,∀i,k}, {x̃k j,∀k, j}, {wik,xk j,∀i,k, j}, and{vy,vw,k,vm,∀k}. The
required derivatives are reported in Appendix D. We will further refer to this algorithm asVBPCAd.

The idea of fully factorial approximation can also be used for reducing thecomplexity of PPCA.
The posterior of the hidden statesp(X|Y,W,m,vy) can be approximated to be fully factorial on
the E-step. The approximating pdf (38) can be fitted to the true posterior by minimizing the cost
function

CPPCA=
∫

q(X) log
q(X)

p(Y,X|W,m,vy)
dX ,

which is motivated by the variational view of the EM algorithm. The resulting update rules resemble
the ones of VBPCAd with the exceptions outlined in Fig. 5. We refer to this approach asPPCAd.

Note that the approximation used in PPCAd does not restrict the generality ofthe PPCA model
when it is applied tocompletedata. The variational approximation introduces a bias in favor of so-
lutions for which the form of the posterior approximation agrees with the formof the true posterior
(e.g., Ilin and Valpola, 2005). The posterior covariance matrixΣx j , which is the same for eachj in
the fully observed case, is diagonal if and only if the columns ofW are mutually orthogonal. There-
fore, restricting the posterior covariance to be diagonal guarantees that (26) holds at convergence.
Requirements (24)–(25) are fulfilled because of the assumed prior modelfor X. Thus, PPCAd for
complete data should converge to the PCA basis. PPCAd applied toincompletedata is biased in
favor of solutions in which the true posterior covariance matrices are closer to being diagonal. Note
also that the idea of speeding up learning by using transformations as described in Section 4.3 for
VBPCA, cannot be used for VBPCAd, because the transformations would break up the diagonality
of the posterior covariance matrices.

There is an interesting connection between the speed-up proposed in Section 6.1 and the fully
diagonal posterior approximation. The second order derivatives needed for the speed-up coincide
with the inverse of the posterior variance of each parameter, and thus theircomputation is practically
free.

6.4 Ignoring Posterior Uncertainty (MAPPCA)

A further simplification is to use maximum a posteriori (MAP) estimation for the modelparameters.
The minimized cost function is then minus log-posterior of the parameters. Assuming uniform prior
for hyperparametersvy, vw,k, vm, it is proportional to

CMAP =
1
vy

∑
i j∈O

(yi j −wT
i x j −mi)

2+N log2πvy+
1
vm

d

∑
i=1

m2
i +d log2πvm

+
c

∑
k=1

[
1

vw,k

d

∑
i=1

w2
ik +d log2πvw,k+

n

∑
j=1

x2
k j +nlog2π

]
. (39)

and it should be minimized w.r.t. the unknown quantitiesW, X, vy, vw,k, vm. We refer to this approach
as MAPPCA.

Minimization of (39) can be done by any suitable optimization procedure. Derivatives required
for gradient-based optimization are given in Appendix E. However, some difficulties should be
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avoided. First, using an improper prior for hyperparameters leads to a situation where the posterior
pdf is infinitely large whenvw,k→ 0, ∑d

i=1w2
ik→ 0. This can be overcome by penalizing too small

values of the variance hyperparameters. For example, a hyperparameter vz, which is a variance
parameter of the prior for a set of zero-mean variables{zi , i = 1, . . . ,M}, can be updated asvz =
2β+∑M

i=1〈z2
i 〉

2α+M , where
〈
z2
i

〉
denotes the expectation ofz2

i over the posterior, andα and β are some
small values (we usedα = 10−3 and β = 10−3). This update rule corresponds to broad priors
restrictingvz to be positive and it guarantees thatvz ≥ β

α+M/2. The maximum likelihood (ML)

estimatevz =
1
M ∑M

i=1

〈
z2
i

〉
is achieved whenα→ 0, β→ 0.3

Another issue is the non-identifiability of scaling betweenW andX. A practical way to avoid
this problem is to fix the scale by normalizing the rows ofX to zero mean and unit variance (after
each update) and compensating by scaling the columns ofW accordingly. This guarantees the
fulfilment of (24)–(25), which are the conditions justified by the prior model.

6.5 Summary of the PCA Variants

The differences between the six described variants of the PCA models aresummarized in Table 4
and Fig. 5. The approaches differ on the posterior models and on the useof prior for W andm. All
the variants can be derived as special cases of VBPCA by making simplifying assumptions, which
is shown in Fig. 5.

7. Experiments

We study the properties of the discussed algorithms first using artificial dataand then presenting
a case study using the Netflix competition data (Netflix, 2007). In the experiments with artificial
data, we generated data matricesY according to model (12)–(14) with fixed dimensionalitiesd, c
andn. The mixing matrixW was generated by taking a random orthogonal matrix and scaling its
columns by 1,2, . . . ,c. The bias termm was selected randomly from a Gaussian distribution with
variance 10. For one of the data sets (10-5-mlp), we nonlinearly transformed the resulting data. The
observed values were selected randomly inY and the rest of the data matrix was used to compute
the test reconstruction error.

We used four types of data sets in the experiments:

• Data Set 10-5-g: The data set is for the case whered≪ n and Gaussian components. We
generatedn= 1000 samples from a 10-dimensional Gaussian distribution withc= 5 principal
directions. The standard deviation of the noise in (14) was

√
vy = 0.5.

• Data Set 10-5-mlp: The data lie within a nonlinear manifold andd≪ n. The data were
generated by a random nonlinear transformation of five-dimensional Gaussian data to the
10-dimensional space and adding relatively small Gaussian noise. The transformation was
performed by randomly initialized multi-layer perceptron networks. The number of samples
wasn= 1000.

• Data Set 10-4-mog: The data set is a linear combination (12) of non-Gaussianx j andd≪ n.
We usedc = 4 independently distributed non-Gaussian components (elements ofx j ). The

3. In the formulas reported in the article, we always present the ML update rules, although more robust update rules
were used in practice.
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prior for W, m posterior forW, m posterior forX
LS uniform point point
PPCA uniform point full
PPCAd uniform point diagonal
VBPCA yes full full
VBPCAd yes diagonal diagonal
MAPPCA yes point point

Table 4: Variants of probabilistic approaches to PCA.

VBPCA

?

diagonal posterior

Σx j = diag(x̃k j)

VBPCAd

?

uniform prior
vw,k,vm→ ∞
point posterior

Σwi ,m̃i → 0

PPCA

?

diagonal posterior
Σx j = diag(x̃k j)

PPCAd
?

uniform prior
vw,k,vm→ ∞
point posterior

w̃ik,m̃i → 0

?

point posterior
Σx j → 0

LS �

point posterior
x̃k j→ 0

MAPPCA

-

uniform prior
vw,k,vm→ ∞

?

point posterior
Σwi ,m̃i ,Σx j → 0

Figure 5: Relationships between the PCA variants are easily described by deriving each of them as
a special case of VBPCA. The corresponding update rules can also bederived from the
VBPCA update rules using the given restrictions.
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Figure 6: The distributions of the four components used to generate the 10-4-mog data set.

Data Set d n c Gaussianity Square root of variances
10-5-g 10 1000 5 yes [5 4 3 2 1 0.5 ... 0.5]

10-5-mlp 10 1000 5 no varying by nonlinear transformation
10-4-mog 10 1000 4 no [4 3 2 1 0.5 ... 0.5]
100-10-g 100 100 10 yes [10 9 ... 1 0.1 ... 0.1 ]

Table 5: Characteristics of four types of data sets used in artificial experiments.
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distributions of the four components are presented in Fig. 6. The standarddeviation of the
noise in (14) was

√
vy = 0.5. The number of samples wasn= 1000.

• Data Set 100-10-g: The data set is for the case whered ≈ n and small noise. The data were
generated from a 100-dimensional Gaussian distribution withc= 10 principal directions. The
standard deviation of the noise in (14) was

√
vy = 0.5. The number of samples wasn= 100.

The ratio of missing values was varied for all data sets. We used data sets withrelatively small
dimensionalities in order to test the performance of many alternative algorithms ina reasonable
time. The summary of the data sets is shown in Table 5.

Different PCA algorithms considered in this article were used to estimate the samenumberc
of principal components that was used for generating the data (see Table5). The algorithms were
initialized randomly except for the imputation algorithm which has a standard procedure of infilling
missing values with the row-wise means ofY.

The performance of the algorithms was assessed by the speed of their convergence and the
accuracy in the task of missing value reconstruction. We computed three quantities: the average

training root mean square (RMS) reconstruction error
√

1
N ∑i j∈O(yi j − ŷi j )2, the average test RMS

reconstruction error and the average time to convergence. Averaging was done across 30 different
data sets of the same type and the same ratio of missing values. The algorithms were run until the
deviation of the training error was less than 0.0001 during 100 iterations. This stopping criterion
was used to estimate the time to convergence.

7.1 Performance of Least Squares Approaches and MAPPCA Whend≪ n

In this section, we present the performance of three techniques:

• LS: the least squares approach which optimizes the cost function (4) using the gradient-based
procedure with the speed-up explained in Section 6.1

• LS (es): the same algorithm which also used early stopping: 20% of data wasreserved as
validation set and learning was stopped when the reconstruction error for the validation set
started to increase

• LS (imp): the imputation algorithm presented in Section 2.5

• MAPPCA: method presented in Section 6.4. We used the gradient-based optimization proce-
dure with the speed-up explained in Section 6.1.

The estimated performance of the four algorithms is presented in Fig. 7. There, we also show
the results of VBPCA which turned out to be the most accurate method. We summarize the observed
results in the following.

The gradient-based LS approachcan be used for data sets with a relatively small amount of
missing data. For such data sets, it provides reasonable accuracy, converges fast and scales well to
high-dimensional data. However, its performance deteriorates fast with the increase of the ratio of
missing values. The algorithm can get stuck at regions where learning proceeds very slowly and
overfitting problems become very frequent. When overfitting happens, some parameter values can
grow very large to explain perfectly only part of data. This results in verybad generalization and
large test reconstruction errors (see discussion in Section 2.1). Thus,this method can badly overfit

1981



ILIN AND RAIKO

0

0.5

1

1.5

2

2.5

av
er

ag
e 

R
M

S
 e

rr
or

a a ab b bc c cd d de e e

10% missing 30% missing 50% missing

 

 
a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

0

1

2

3

25

27

29

av
er

ag
e 

tim
e 

to
 c

on
ve

rg
en

ce

a a ab b bc c cd d de e e

10% missing 30% missing 50% missing

 

 
a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

(a) Data Set 10-5-g

0

1

2

3

4

5

6

7

av
er

ag
e 

R
M

S
 e

rr
or

a a ab b bc c cd d de e e

10% missing 30% missing 50% missing

 

 

a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

0

1

2

35

38

41

44

av
er

ag
e 

tim
e 

to
 c

on
ve

rg
en

ce

a a ab b bc c cd d de e e

10% missing 30% missing 50% missing

 

 

a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

(b) Data Set 10-5-mlp

0

0.5

1

1.5

2

av
er

ag
e 

R
M

S
 e

rr
or

a a ab b bc c cd d de e e

10% missing 40% missing 50% missing

 

 
a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

0

0.5

1

1.5

28
30

32

34

av
er

ag
e 

tim
e 

to
 c

on
ve

rg
en

ce

a a ab b bc c cd d de e e

10% missing 40% missing 50% missing

 

 
a. LS (es)

b. LS

c. LS (imp)

d. MAPPCA

e. VBPCA

(c) Data Set 10-4-mog

Figure 7: Left: Average test RMS errors (colored bars) and training RMS errors (white bars) ob-
tained from 30 realizations of data sets of three types. Right: Average time to conver-
gence, in seconds, estimated in the same way. Note the different scale on ther.h.s. plots
for VBPCA.
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even in relatively simple problems. We observed similar performance for the alternating optimiza-
tion (see Section 2.2) of the sum-squared cost function: The alternating optimization procedure
provided similar reconstruction errors but it seemed to get stuck in regions with slow convergence
more often.

The simplest strategy ofearly stoppingdid not seem to improve the performance of the LS
algorithms. On the contrary, the obtained accuracy was the worst among theconsidered approaches.

The imputation algorithmcan also be a good choice for data sets with a relatively small amount
of missing data. The algorithm converges fast, provides good accuracyand it has less problems with
overfitting compared to explicit optimization of the sum-squared error. However, the complexity of
the required computations grows fast with the increase of the dimensionalities,and therefore the
algorithm is hardly applicable to large-scale data sets.

MAPPCAis a fast algorithm which provides reasonable accuracy for data sets witha relatively
small amount of missing data. In many cases, it slightly outperforms the LS approaches in terms
of the reconstruction accuracy. It is also less prone to serious overfittingproblems compared to
explicit optimization of (4). Again, similar performance was observed for MAPPCA optimized
with the alternating optimization procedure explained in Section 2.2.

7.2 Performance of More Advanced Probabilistic Approaches Whend≪ n

In this section, we present the performance of the more advanced probabilistic approaches:

• PPCA presented in Section 3.1

• PPCAd which is PPCA with fully factorial variational approximation explained inSection 6.3

• VBPCA presented in Section 3.3

• VBPCAd which is VBPCA with fully factorial variational approximation explained in Sec-
tion 6.3.

We used the gradient-based optimization procedure with the speed-up explained in Section 6.1 for
training PPCAd and VBPCAd.

Fig. 8 presents the estimated performance of the algorithms for three data setswith d≪ n. We
also show the results of MAPPCA for comparison. We summarize the results in the following.

Approaches using variational approximations, especially VBPCA and VBPCAd, may suffer
from the underfitting problem. The algorithms may converge to a sub-optimal solution (corre-
sponding to a local minimum of the VB cost function) in which some potentially useful principal
components are not used. The algorithms seem to find such sub-optimal solutions more often for
sparse data. Special care has to be taken to avoid such local minima. For example, in the presented
experiments we fixed priors forW to be very broad at the beginning of learning and this helped
improve the performance of VBPCA and VBPCAd significantly. See also the experiment showing
the effect of the broad priors in Section 7.3.

PPCAd is a very efficient algorithm for data sets withd≪ n. Its reconstruction accuracy is
comparable to the best results (obtained with VBPCA) but the algorithm converges fast and scales
well to high-dimensional problems. The difference of the accuracy of PPCAd compared to the best
results of VBPCA becomes more noticeable when the ratio of missing values or the number of
estimated principle components increase.
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Figure 8: Left: Average test RMS errors (colored bars) and training RMS errors (white bars) ob-
tained from 30 realizations of data sets of three types. Right: Average time to conver-
gence, in seconds, estimated in the same way. Note the different scale on ther.h.s. plots
for VBPCA.
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VBPCAdprovides similar performance to PPCAd for data sets withd≪ n but it is more prone
to the underfitting problem mentioned earlier.

VBPCAandPPCAare the most accurate algorithms in these experiments. However, they are
also very slow because of the required computations of the posterior covariance matrices. Thus,
the methods are computationally very expensive to use in high-dimensional problems but if they
are feasible, they are worth trying. The difference in the accuracy of VBPCA and PPCA is not
noticeable in these experiments. This is likely due to the fact that the numbern of samples was very
large and the effect of priors was very small. VBPCA is also more prone to the underfitting problem
compared to PPCA.

7.3 Performance in Difficult Sparse Problems

In this section, we test the performance of the considered algorithms on a more challenging data
set 100-10-g. The data set is quite sparse (up to 75% of values are missing) and the numbern of
samples is very small compared to the data dimensionalityd. Sparse data sets withd≈ n can appear
in some practical applications. For example, in collaborative filtering the number of users can be
comparable to the number of ranked items and the number of missing values can be large. Here we
used Gaussian data withn= d = 100,c= 10 principal directions and with relatively small noise.

Fig. 9 presents the performance of the considered algorithms for these data. The LS algorithms
and MAPPCA do not provide good performance because of overfitting problems. The probabilistic
approaches perform much better and the best results are obtained with VBPCA. The advantage
of VBPCA becomes more significant for data sets with many missing values. Theexperiments
also show a larger effect of using priors in VBPCA and VBPCAd (in comparison with PPCA and
PPCAd) for data sets with a relatively small number of samples.

One of the reasons for the superior performance of the VB approach isits ability to select
automatically the optimal rank of the model by cutting off useless principal components. Model
selection is useful even in such artificial tests (when the number of principal components used
for data generation is known) because the number of components which are useful for reliable
reconstruction of missing data can turn out to be smaller than the model rank used for generating
the data. Thus, the reported accuracy of the algorithms alternative to VBPCA and VBPCAd might
be improved if model selection was explicitly performed for them (e.g., by cross-validation).

In Section 7.2, we pointed out that the downside of the VB model selection is theexistence
of multiple sub-optimal solutions corresponding to different local minima of the VB cost function.
Solutions in which the effect of some components is set to zero are potentially attractive for the
method. In order to avoid sub-optimal solutions, we fixed the priors forW to be very broad at the
beginning of learning for VBPCA and VBPCAd in our experiments. We showthe effect of the
number of iterations with fixed broad priors on the resulting accuracy in Fig.10.

A useful feature of the VB approach is that the value of the VB cost function at a local minimum
can be used to estimate the accuracy of the corresponding model. This follows from the fact that the
VB cost gives the lower bound of the likelihood, as shown in (22). In Fig.11, we demonstrate the
correlations between the accuracy of a trained VBPCA model and the corresponding value of the
cost function. In that experiment, we initialized VBPCA in two different waysand applied it to 30
realizations of the 100-10-g data set with 80% of missing data. The negativeresult was that different
initializations led to different VBPCA solutions for most of the 30 realizations. The positive result
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Figure 9: Left: Average test rms errors (colored bars) and training rmserrors (white bars) obtained
from 30 realizations of data set 100-10-g. Right: Average time to convergence, in sec-
onds, estimated in the same way.

was that the solutions with the smaller cost function values generally providedbetter reconstruction
accuracy. Similar results were obtained for VBPCAd (not shown here).

Thus, in order to find aglobally good VB solution, one could, in practice, run the learning
algorithm many times. The algorithm should be run untilfull convergence, otherwise the cost
function values cannot be used for model comparison. Running VBPCA can be computationally
heavy because it is the slowest algorithm among the considered ones. Therefore, VBPCAd is an
attractive alternative for large-scale data sets.

7.4 Experiments with the Netflix Data

We have tested different PCA approaches in the task of collaborative filtering. The Netflix (2007)
problem is a collaborative filtering task that has received a lot of attention recently. It consists of
movie ratings given byn = 480189 customers tod = 17770 movies. There areN = 100480507
ratings from 1 to 5 given, and the task is to predict 2817131 other ratings among the same group of
customers and movies. 1408395 of the ratings are reserved for validation(or probing). Note that
98.8% of the values are thus missing.
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Figure 10: The underfitting effect for VBPCA when the priors are updated too early: Box plots of
test (left) and training (right) RMS errors depending on the number of iterations with
fixed broad priors forW (x-axes) at the beginning of learning. VBPCA was applied to
30 data sets of type 100-10-g with 75% of missing values.
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Figure 11: Test RMS error (y-axis) against cost function values (x-axis) obtained with VBPCA for
30 realizations of the data set 100-10-g with 80% of missing values. Two initializations
were used for each realization: random (the corresponding local minima are shown with
triangles) and with 100 iterations of PPCAd (the corresponding local minima are shown
with circles). The dotted lines connect two solutions obtained for the same realization.
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The PCA approach is one of the most popular techniques considered by the Netflix contestants
(e.g., Funk, 2006; Bell et al., 2007; Salakhutdinov et al., 2007; Paterek, 2007; Lim and Teh, 2007).
In our recent conference papers (Raiko et al., 2007a, 2008), we tried to estimatec = 15 principal
components from the data using unregularized (LS) PCA, MAPPCA, and VBPCAd approaches.
We reproduce the results for the LS approaches in Fig. 12. The results clearly show that overfitting
is a serious problem for this sparse data set and the LS approach fails. It is also evident that the
alternating optimization algorithm is very slow and it can hardly be used for such high-dimensional
data. The imputation algorithm is also infeasible in this problem (Raiko et al., 2008). The proposed
remedy is to use probabilistic approaches.

Fig. 13 presents the results obtained with MAPPCA and VBPCAd using a varying number of
principal components. MAPPCA starts to overfit after about five hours of computation, that is, the
RMS error on the test data (lower curves) starts to degrade even if the RMS error on the training
data is still diminishing. This does not happen with VBPCAd as the validation error seems to
decrease monotonically. The experiments also confirm that VBPCAd is computationally scalable to
very large problems. We also tried to run VBPCA, but the straightforward Matlab implementation
turned out to be too slow to produce meaningful results. The experiments were run on a dual cpu
AMD Opteron SE 2220 using Matlab and the implementations did not use parallel computing.

Our best RMS error for the probing Netflix data was 0.9055 and it was achieved with VBPCAd
with 50 components. The same model re-trained using both training and probing data provided an
RMS error 0.8990 on the quiz set. The only pre/post-processing that we used was bounding the
reconstructions ˆyi j such that 1≤ ŷi j ≤ 5. This is a good result compared to conceptually similar
models developed by other contestants. For example, Bell et al. (2007) reported an RMS error
of 0.9135 with basic factor analysis with 40 components. Lim and Teh (2007)studied a model
which basically implements VBPCA and they reported an RMS error of 0.9141 for a model with
30 components. Salakhutdinov and Mnih (2008b) reported the probing RMS error 0.9280 for an
SVD method which essentially implements the LS approach. Their constrained probabilistic matrix
factorization model provided a probing RMS error 0.9016 but it used extra informations and more
sophisticated priors. The accuracy of our VBPCAd model is comparable tothe accuracy of an
MCMC approach applied to a similar generative model (Salakhutdinov and Mnih, 2008a). The
RMS error achieved with a model with 60 components trained by MCMC was 0.8989 for the quiz
set.

Besides reconstruction of missing values, probabilistic PCA methods provideextra information
which can be useful in practice. For example, one can predict the uncertainty of the provided
reconstructions, as discussed in Section 5. Fig. 14 shows good correlation between the probing
RMS errors and the uncertainty of the reconstructions computed by VBPCAd. It is clear that the
predicted uncertainty is underestimated, which is largely because of the approximations used in
modeling the posterior distributions.

The estimated uncertainty can provide additional information when PCA is usedas a prepro-
cesing step for more sophisticated methods. For example, Bell and Koren (2007) used PCA results
for constructing a user-oriented neighborhood model for collaborative filtering. Because each col-
umn of matrixX computed by PCA can be considered as a collection of some features associated
with a particular user, the similarity betweenn users can be estimated based on the similarity be-
tween the columns ofX. The information about the uncertainty of the feature estimates could be
used to build a robust similarity measure: Users who have rated few movies (and whose features
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Figure 12: Learning curves for LS algorithms in the Netflix problem. The RMSerror (y-axis) is
plotted against the processor time in hours. The upper curves show the training error
while the lower curves show the test error (for the probing data providedby Netflix).
Note that the time scale is logarithmic. The probing error provided by the alternating
algorithm is not shown because it is too large compared to the other two curves. The
two gradient-based approaches were implemented using parallel computing (this imple-
mentation was about twice as fast as the implementation on a single CPU).
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Figure 13: Learning curves for regularized methods in the Netflix problem.The RMS error (y-axis)
is plotted against the processor time in hours. The upper curves show the training error
while the lower curves show the test error (for the probing data providedby Netflix).
Note that the time scale is logarithmic.
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Figure 14: Uncertainty predicted by VBPCAd for the Netflix probing data. The RMS error for the
probing data (y-axis) is plotted against the square root of the reconstruction variance
estimated by VBPCAd with 50 components (x-axis). To show the dependencymore
clearly, the estimates of the probing RMS errors are obtained by averagingover a batch
of ratings with similar predicted uncertainties.

are estimated with high uncertainty) should not affect the predictions of theirneighbors as much as
users who have rated many movies (and whose features are estimated more accurately).

Finally, we note that the accuracy achieved by the best teams in the Netflix competition is
significantly better than the numbers reported here. However, that does not mean that PCA (and its
implementations discussed in this paper) is of no use in collaborative filtering tasks. On the contrary,
PCA or its close relatives were used by the leading teams (e.g., Bell et al., 2007) as an important
element of the final blend of models. The key to success in that competition wasin combining a
vast collection of different models rather than in perfecting a single approach (e.g., The Ensemble,
2009).

8. Discussion

We have reviewed the problem of PCA learning in the presence of missing values and discussed
various approaches to it. We demonstrated that the simplicity of PCA is lost whenintroducing
missing values. Firstly, the estimation of the bias term and the covariance matrix ofthe data be-
comes difficult and thus the solution by eigen-decomposition cannot be useddirectly. Secondly, the
convergence to a unique solution cannot be guaranteed even for the simplest PCA models.

Missing values also make the problem of overfitting more relevant to PCA, so there is a need for
some form of regularization. In regularized solutions, reconstructions of data vectors are no longer
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conditions small-scale problems large-scale problems

few missing values imputation gradient-based LS
d≪ n PPCA PPCAd

many missing values ord≈ n VBPCA VBPCAd

Table 6: Recommendations on the use of different PCA algorithms.

the projections of the data to the principal subspace. Regularization can bedone elegantly using
probabilistic models.

Inference and learning in the relevant probabilistic models are generally more complex com-
pared to the complete data case. For example, the posterior covariance of principal componentsΣx j

is no longer same for each sample. Thus, a diagonal posterior covariance Σx j is no longer sufficient
for finding the optimal PCA solution. Regularized models typically have more local minima of the
optimized cost function. In particular, there can be local minima corresponding to zero values of
hyperparameters.

Another type of treatment for random variables is to use MCMC methods. Theirbenefits com-
pared to VBPCA includes not having to assume posterior independence likein (23) and being able
to vary the number of components (Hoff, 2008), but the downsides includeworse interpretability,
higher computational complexity, and the need to store samples in case the modelis to be applied
to new incoming data. Salakhutdinov and Mnih (2008a) used Gibbs sampling initialized with the
MAPPCA method for the Netflix problem. The resulting accuracy was similar to ours with simi-
lar number of components (0.8989 with 60 components against our 0.8990 for VBPCAd with 50
components).

Large-scale PCA problems require fast converging learning algorithms which allow for efficient
implementation. Additionally, sparse data sets require that the amount of computer memory would
scale linearly with the number of observed values regardless of the data matrix dimensionalities. In
this paper, efficient solutions are proposed based on fully factorial variational approximations and
approximate Newton’s iteration for the relevant optimization procedure. An alternative learning
algorithm based on natural gradient was discussed in our conferencepaper (Raiko et al., 2008).

The choice of the right PCA algorithm depends on a particular data analysisproblem. We gave
some recommendations in Sections 7.1–7.3 and we summarize our recommendationsin Table 6.
The LS approaches can be applied to data sets with relatively few missing data: The imputation
algorithm can be a good choice for smaller-scale problems and the gradient-based LS algorithms
would be good for large data sets. When the numbern of samples is relatively large and the data
matrix is relatively densely populated, PPCA is a proper choice (or PPCAd for large-scale prob-
lems). VB algorithms can be most efficient when there are very few samples (d ≈ n) or for very
sparse data sets. Again, VBPCAd would be a better alternative for large-scale problems.

A Matlab toolbox which contains implementations of all the considered PCA techniques is
available online athttp://www.cis.hut.fi/projects/bayes/ . Some of the implemented algo-
rithms scale well to large-scale sparse data sets, which is achieved by low level implementation of
core computations and by support of parallel computing. For example, the experiments with the
Netflix data reported in Fig. 13 were obtained using the provided Matlab code.

1991



ILIN AND RAIKO

Acknowledgments

The authors would like to thank Juha Karhunen, Erkki Oja, Alexey Kaplan, and Jaakko Luttinen
for useful discussions. This work was supported by the Academy of Finland (projects ‘Unsuper-
vised machine learning in latent variable models’, ‘Novel machine learning techniques for studying
climate variability and its impacts’, ‘Auditory approaches to automatic speech recognition’ and
‘Bayesian Machine Learning Algorithms for Discovering Relations with Latent Variable Models’),
and by the IST Program of the European Community, under the PASCAL2 Network of Excellence.
This publication only reflects the authors’ views. We would like to thank Netflix (2007) for provid-
ing the data.

Appendix A. Notes on the Imputation Algorithm

The imputation algorithm can be seen as the application of the EM algorithm (Dempster et al., 1977)
to the model

y j = Wx j +m+ ε j

with isotropic Gaussian noisep(ε j) =N (ε j ;0,vyI) and model parametersW, x j , m, vy. Note that
x j belong to the model parameters and missing values iny j are treated ashidden variables. This is
contrary to the probabilistic PCA model (see Section 3.1) wherex j are treated as hidden variables.
Note also that with this interpretation, there is no well defined inference procedure for a new data
case outside of the training set.

Following the view of the EM algorithm presented by Neal and Hinton (1999),we can write
down the cost function

Cimp(θ,vy,q(Ymis)) =
∫

q(Ymis) log
q(Ymis)

p(Y|θ,vy)
dYmis

=
∫

q(Ymis) log
q(Ymis)

p(Ymis|θ,vy)
dYmis− logp(Yobs|θ,vy) , (40)

which should be minimized w.r.t. model parametersθ = {W,m,x j ,∀ j}, vy and the pdf over the
missing dataq(Yimp). We denoted the missing data byYmis= {yi j , i j /∈O} and the observed data by
Yobs= {yi j , i j ∈O}.

Minimization of (40) w.r.t.q(Ymis) for fixed θ andvy yields thatq(Ymis) = p(Ymis|θ,vy) because
the first term in (40) is simply the Kullback-Leibler divergence between the two pdfs. It is straight-
forward that

p(Ymis|θ,vy) = ∏
i j∈O

N (yi j ; ŷi j (θ),vy) ,

where ŷi j (θ) are the reconstructed missing values using (5) with the current estimatesθ. Thus,
infilling missing data with the reconstructions ˆyi j (θ) is the step of the imputation algorithm which
corresponds to the E-step of the EM-algorithm.

1992



PRINCIPAL COMPONENTANALYSIS WITH M ISSING VALUES

Collecting the terms in (40) which depend only onθ andvy gives

−
∫

q(Ymis) logp(Yobs,Ymis|θ,vy)dYmis

=−dn
2

log2πvy−
1

2vy
∑

i j∈O

(
yi j − ŷi j (θ)

)2− 1
2vy

∑
i j /∈O

[(
yi j − ŷi j (θ)

)2
+vy

]

=−dn
2

log2πvy−
1

2vy
∑
i j

(
yi j − ŷi j (θ)

)2− dn−N
2

. (41)

It is easy to see that minimization of (41) w.r.t.θ is equivalent to minimizing the LS cost (2) for the
infilled data matrix. This is done in the imputation algorithm by SVD of the complete data matrix.
Thus, the M-step of the EM-algorithm corresponds to performing SVD in theimputation algorithm.
Minimization of (41) w.r.t.vy does not affect the steps of the imputation algorithm.

The imputation algorithm implicitly minimizes the cost function (4), thus it belongs to the class
of LS PCA algorithms. It can be shown (Neal and Hinton, 1999) that the minimum of (40) coincides
with the minimum of minus log-likelihood

− logp(Yobs|θ,vy) =
N
2

log2πvy+
1

2vy
∑

i j∈O

(
yi j − ŷi j (θ)

)2
. (42)

Replacingvy in (42) with its maximum likelihood estimate yields that the function being minimized
is

N
2

[
log

(
2π
N ∑

i j∈O

(
yi j − ŷi j (θ)

)2
)
+1

]
,

from which it follows that the imputation algorithm implicitly optimizes the sum-squared error.

Appendix B. Conditions Fulfilled at the Convergence of Probabilistic PCA

The variational view of the EM algorithm allows for an interpretation of the PPCA learning algo-
rithm in which the cost function

C=
∫

q(X) log
q(X)

p(X)
dX−

∫
q(X) logp(Y|W,X,m,vy)dX (43)

is minimized w.r.t. to the model parametersW, m, vy and the pdfq(X). The E-step fixes the model
parameters and minimizes the cost function w.r.t. the distributionq(X) while the M-step minimizes
C w.r.t. W, m andvy assuming thatq(X) is fixed.

Let us consider simple transformations of{W,m,q(X)} which do not change the second term
in (43). For example, subtraction of a constantb from the columns ofX can be compensated by
changing the bias termm correspondingly:

q(X)←
n

∏
j=1

N
(
x j ;x j −µ,Σx j

)
, (44)

m←m+Wµ. (45)

1993



ILIN AND RAIKO

becausey = Wx +m = W(x− µ) + (Wµ+m). Similarly, rotation of the columns ofX can be
compensated by changingW:

q(X)←
n

∏
j=1

N
(
x j ;Ax j ,AΣx j A

T) , (46)

W←WA−1 (47)

becausey = Wx +m = (WA−1)(Ax)+m.
These transformations generally affect the first term in (43) which is the Kullback-Leibler di-

vergence betweenq(X) andp(X):

D =
n

∑
j=1

∫
q(x j) log

q(x j)

p(x j)
dx j =

1
2

n

∑
j=1

[
tr(Σx j )+xT

j x j − logdetΣx j

]
. (48)

and at the convergence this term cannot be made smaller by transformationsof the form (44)–(45)
or (46)–(47).

Transformation (44)–(45) changes (48) to

D =
1
2

n

∑
j=1

[
tr(Σx j )+(x j −µ)T(x j −µ)− logdetΣx j

]
.

Now taking the derivative w.r.t.µ and equating it to zero gives the optimalµ= 1
n ∑n

j=1x j . At the
convergence, the optimalµ should be zero and therefore (34) should hold.

Similarly, transformation (46)–(47) gives

D =
1
2

n

∑
j=1

[
tr(AΣx j A

T)+xT
j A

TAx j − logdet(AΣx j A
T)
]

=
n
2

tr(AΣ∗AT)− 1
2

n

∑
j=1

logdet(AΣx j A
T) ,

whereΣ∗ = 1
n ∑n

j=1

[
x jxT

j +Σx j

]
. Taking the derivative w.r.t.A gives

AΣ∗− (AT)−1 = 0

and therefore the optimalA satisfiesAΣ∗AT = I . Transformation (46)–(47) yields thatΣ∗←AΣ∗AT

and therefore at the convergenceΣ∗ = I , which is condition (35).

Appendix C. Variational Bayesian PCA (VBPCA)

The following form of the posterior approximation is used:

q(W,X,m) =
d

∏
i=1

N (mi ;mi ,m̃i)
d

∏
i=1

N (wi ;wi ,Σwi )
n

∏
j=1

N
(
x j ;x j ,Σx j

)
.
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The update of the principal components:

Σx j = vy

(
vyI + ∑

i∈O j

[
wiwT

i +Σwi

])−1
,

x j =
1
vy

Σx j ∑
i∈O j

wi(yi j −mi) , j = 1, . . . ,n.

The update of the bias term and matrixW:

mi =
vm

|Oi |(vm+vy/|Oi |) ∑
j∈Oi

[yi j −wT
i x j ], (49)

m̃i =
vyvm

|Oi |(vm+vy/|Oi |)
, (50)

Σwi = vy

(
vydiag(v−1

w,k)+ ∑
j∈Oi

[
x jxT

j +Σx j

])−1
,

wi =
1
vy

Σwi ∑
j∈Oi

x j(yi j −mi) , i = 1, . . . ,d

and the variance parameters:

vy =
1
N ∑

i j∈O

[
(yi j −wT

i x j −mi)
2+ m̃i +wT

i Σx j wi +xT
j Σwi x j + tr(Σx j Σwi )

]
,

vw,k =
1
d

d

∑
i=1

(
w2

ik + w̃ik
)
, vm =

1
d

d

∑
i=1

(
m2

i + m̃i
)
, (51)

wherew̃ik is thek-th element on the diagonal ofΣwi .

Appendix D. VBPCA with Fully Factorial Approximation (VBPCAd )

VBPCAd uses the fully factorial posterior approximation

q(W,X,m) =
d

∏
i=1

N (mi ;mi ,m̃i)
d

∏
i=1

c

∏
k=1

N (wik;wik, w̃ik)
c

∏
k=1

n

∏
j=1

N
(
xk j;xk j, x̃k j

)
.

The VB cost function is then the sum of the following terms:

Cvb = ∑
i j∈O

Cyi j +
d

∑
i=1

Cmi+
d

∑
i=1

c

∑
k=1

Cwik+
c

∑
k=1

n

∑
j=1

Cxk j ,

where the individual terms are

Cyi j =
1

2vy

[
(yi j −wT

i x j −mi)
2+ m̃i +

c

∑
k=1

(
w̃ikx2

k j +w2
ikx̃k j + w̃ikx̃k j

)]
+

1
2

log2πvy ,

Cmi =

〈
log

q(mi)

p(mi)

〉
=

m2
i + m̃i

2vm
− 1

2
log

m̃i

vm
− 1

2
,

Cwik =

〈
log

q(wik)

p(wik)

〉
=

w2
ik + w̃ik

2vw,k
− 1

2
log

w̃ik

vw,k
− 1

2
,

Cxk j =

〈
log

q(xk j)

p(xk j)

〉
=

1
2
(x2

k j + x̃k j)−
1
2

logx̃k j−
1
2
.
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Variational parametersmi , m̃i , vw,k andvm are updated to minimize the cost function using the
update rules in (49)–(51). Parametersw̃, x̃ can be updated to minimize the cost function:

w̃ik = vy

[
vy

vw,k
+ ∑

j∈Oi

(
x2

k j + x̃k j
)]−1

, (52)

x̃k j = vy

[
vy+ ∑

i∈O j

(
w2

ik + w̃ik
)]−1

. (53)

The update rule forvy is

vy =
1
N ∑

i j∈O

[
(yi j −wT

i x j −mi)
2+ m̃i +

c

∑
k=1

(
w̃ikx2

k j +w2
ikx̃k j + w̃ikx̃k j

)]
.

Minimizing the cost function w.r.t. each parameterwi j keeping the others fixed would lead
to a slow algorithm (e.g., Honkela et al., 2003). Instead, derivatives required for gradient-based
optimization are:

∂Cvb

∂wik
=

wik

vw,k
+

1
vy

∑
j∈Oi

[
−
(
yi j −wT

i x j −mi
)
xk j +wikx̃k j

]
,

∂Cvb

∂xk j
= xk j +

1
vy

∑
i∈O j

[
−
(
yi j −wT

i x j −mi
)
wik + w̃ikxk j

]
.

The second-order derivatives which can be used to speed up learning, as explained in Sec-
tion 6.1, coincide with the inverse of the updated variances given in (52)–(53): ∂2Cvb/∂w2

ik = w̃−1
ik

and∂2Cvb/∂x2
k j = x̃−1

k j .

Appendix E. MAPPCA

The cost functionCMAP is given in (39). The alternating optimization procedure can be implemented
as follows:

x j =
(

vyI + ∑
i∈O j

wiwT
i

)−1

∑
i∈O j

wi(yi j −mi) , j = 1, . . . ,n,

mi =
vm

|Oi |(vm+vy/|Oi |) ∑
j∈Oi

[
yi j −wT

i x j
]
,

wi =
(

vydiag(v−1
w,k)+ ∑

j∈Oi

x jxT
j

)−1

∑
j∈Oi

x j(yi j −mi) , i = 1, . . . ,d ,

vy =
1
N ∑

i j∈O

(yi j −wT
i x j −mi)

2 ,

vw,k =
1
d

d

∑
i=1

w2
ik , vm =

1
d

d

∑
i=1

m2
i .
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Gradient-based learning discussed in Section 6.1 requires the following derivatives:

∂CMAP

∂wik
=

wik

vw,k
+

1
vy

∑
j∈Oi

[
−
(
yi j −wT

i x j −mi
)
xk j

]
,

∂CMAP

∂xk j
= xk j +

1
vy

∑
i∈O j

[
−
(
yi j −wT

i x j −mi
)
wik

]
,

∂2CMAP

∂w2
ik

=
1

vw,k
+

1
vy

∑
j∈Oi

x2
k j ,

∂2CMAP

∂x2
k j

= 1+
1
vy

∑
i∈O j

w2
ik .
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