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Abstract

Principal component analysis (PCA) is a classical datayaisiechnique that finds linear transfor-
mations of data that retain the maximal amount of variancesidy a case where some of the data
values are missing, and show that this problem has manyésathich are usually associated with
nonlinear models, such as overfitting and bad locally odtsoktions. A probabilistic formulation
of PCA provides a good foundation for handling missing vaJaad we provide formulas for doing
that. In case of high dimensional and very sparse data, tiirggfbecomes a severe problem and
traditional algorithms for PCA are very slow. We introduceavel fast algorithm and extend it to
variational Bayesian learning. Different versions of PG& aompared in artificial experiments,
demonstrating the effects of regularization and modelihgosterior variance. The scalability of
the proposed algorithm is demonstrated by applying it td\tbtlix problem.

Keywords: principal component analysis, missing values, overfittiegularization, variational
Bayes

1. Introduction

Principal component analysis (PCA) is a data analysis technique thaedeacked back to Pearson
(1901). It can be used to compress data sets of high dimensional vattoiswer dimensional
ones. This is useful, for instance, in visualization and feature extracB®@A has been exten-
sively covered in the literature (e.g., Jolliffe, 2002; Bishop, 2006; Diaaras and Kung, 1996;
Haykin, 1989; Cichocki and Amari, 2002). PCA can be derived fronumber of starting points
and optimization criteria. The most important of these are minimization of the mermesgrror
in data compression, finding mutually orthogonal directions in the data havirgmalavariances,
and decorrelation of the data using orthogonal transformations.

In the data compression formulation, PCA finds a smaller-dimensional lingaasentation of
data vectors such that the original data could be reconstructed fronothgressed representation
with the minimum square error. Assume that we hawtx 1 data vectoryi,yo,...,Yn that are
modeled as

yj ~Wx;+m, Q)

whereW is ad x ¢ matrix, X; arec x 1 vectors of principal components, andis ad x 1 bias
vector. We assume that< d < n. Principal subspace methods (e.g., Cichocki and Amari, 2002;
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Diamantaras and Kung, 1996) fid, x; andm such that the reconstruction error
c 2
C=> Ilyj—Wxj—m]| ()
j=1

is minimized. In matrix notation, the data vectors and principal components ceonfygiled into
dxnandcxnmatricesY = [y1 y2 ... yn] andX = [X1 X2 ... Xn], andy;j, wix andxy; denote
the elements of the matric&s W andX, respectively. The bias matrM containsn copies of the
bias vectom as its columns. Principal subspace methods YW@nd X such thaty ~ WX + M
and the minimized cost function is the sum of the squared elements (or Frslvemia) of matrix
Y —WX —M:

C=|[Y —WX-M]|Z. 3

Without any further constraints, there exist infinitely many ways to perfod@acomposition that
minimizes (2) or equivalently (3). This can be seen by noting that any rotatisnaling ofW can
be compensated by rotating or scaliagccordingly, leaving the produt¥X the same. However,
the subspace spanned by the column vectors of the matrixalled theprincipal subspaceis
unique.

PCA finds a specific representation of the principal subspace. It igidrzally defined using
the requirement that the column vectorsVidfare mutually orthogonal, have unit length and, fur-
thermore, for eack = 1,... ¢, the firstk vectors form th&k-dimensional principal subspace. This
makes the solution practically unique (except for changing the sign, and gpttial case of having
equal eigenvalues, e.g., Diamantaras and Kung, 1996; Jolliffe, 2G8&ih] 1989). In this article,
we use the term PCA for methods which seek representations (1) by minimiziegrdr (2). Thus
we assume that once the principal subspace is found, it can be traesfamto the PCA solution.
This is indeed true for the case of fully observed vecigisut can be more difficult in the case with
missing values, as we discuss in Section 4.

Let us now consider the same problem when the data métnixs missing entries. In this paper,
we make the typical assumption that valuesraresing at randoniMAR) (Little and Rubin, 1987),
that is, given the observed data, the missingness does not dependwmbserved data or latent
variables. An example where the assumption does not hold is when oc#lefraeasurements are
marked missing. In the following example, the data matrix contllins 9 observed values and 6
missing values (marked with a sigt):

Y11 Y12 Y13 Y4 X
Y= Y1 Y2 X X Y5
X X Y33 Y3z X

A natural extension of PCA for the case with missing values would be to fisgr@sentation such
thatY =~ WX + M for the observed values. The rest of the matiX + M can be taken as the
reconstruction of missing values.

Although the PCA problem in the presence of missing values seems to beyassedassical
PCA, there are some important distinctions: 1) There is no analytical solutilalale since even
the estimation of the data covariance matrix is nontrivial. Therefore, iterg@raing procedures
must be exploited. 2) The optimized cost function typically has multiple local minindattaus
finding the optimal solution is more difficult. 3) There is no analytical solutiomdwee the bias
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Figure 1: Two examples of PCA with missing values. In the left, the missing valebaném is
missing at random (MARWhile on the right, it ismissing not at random (MNARJhe
black dots represent fully observed samples, while the blue crosseseapobservations
where only the horizontal value has been observed. The red cirgessent the recon-
structions of the missing values produced by VBPCA. The dashed redesliippresent
the estimated data covariance. On the left, the estimated covariance is quitdiuse
data covariance (black ellipse).

termm in (1), which is not generally equal to the row-wise mean of the data matrii elss-
sical PCA. 4) Standard PCA approaches can easily lead to overfittirgyregularization is often
required. 5) The algorithms may require heavy computations, especialgrfm-scale problems.
6) The concept of the PCA basis in the principal subspace is not easigrajzed in the pres-
ence of missing values. 7) The choice of the dimensionality of the principspswce is generally
more difficult than in classical PCA. Thus, the PCA problem has many fesatuhich are usually
associated with nonlinear models. This paper discusses some of these imh@suas providing
illustrative examples and presenting ways to overcome possible difficulties.

All the methods studied in this work assume MAR, so they cannot be expecteatitan the
missing not at random (MNARRse. Fig. 1 gives a first example of PCA with missing values. The
data contain 200 samples generated from a Gaussian distribution reépcebgrihe black ellipse.
In the first case (left subfigure), the vertical value is missing when thieadrdal value is negative.
This setting is MAR since the missingness depends only on the observedrddia.second case
(right subfigure), the vertical value is missing when the vertical value itselegative. Now the
missingness depends on the missing data, and the missing value mechanismMNARSAs
expected, the variational Bayesian PCA (VBPCA, see Section 3.3) walk# the MAR case and
gives reasonable reconstructions for the missing values. Also, thealgrid of the bias terrm is
estimated to be 1.13 which is much closer to the true value 1.10 than the row-wisé rG8af the
observed values in the data.

PCA in the presence of missing values can be relevant for many data Sets agipear in
practical applications. Sometimes, data sets contain relatively few missingvatises and the
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problem is to adjust standard PCA algorithms to handle partially observeddestaThe choice
of the algorithm is not very crucial in such a simple case, as most of theapes would provide
similar solutions. However, in other applications, the available observat@nbe very sparse and
the modeling task is often to reconstruct the missing part from the obseataddly. Examples
include collaborative filtering problems which is the task of predicting pesfegs by using other
people’s preferences (e.g., Hofmann, 2004), and historical dadasgaction in climatic records
(e.g., Kaplan et al., 1997).

Historically, the missing value problem in PCA was first studied by Dear (1858 used only
one component and just one imputation iteration (see below). It was bagbd minimum mean-
square error formulation of PCA introduced by Young (1941). Chifiste$on (1970) also used a
one-component model for reconstructing missing values. Wiberg (¥8263uggested to directly
minimize the mean-square error of the observed part of the data. An atgdrittde Ligny et al.
(1981) already worked with up to half of the values missing. The missing ygdteblem using
a multivariate normal distribution has been studied even earlier than using fBCiastance, by
Anderson (1957). More historical references can be found in th& by Jolliffe (2002).

More recently, PCA with missing values was studied by Grung and Manrg8J19hey pro-
posed using either the imputation or the faster alternatiie algorithm (see below). They dis-
cussed the overfitting problem and suggested to delete troublesome raokioms from data.
Tipping and Bishop (1999) introduced the probabilistic formulation of PCRGR). Although
they mentioned shortly missing data, they did not provide the formulas to befarsedomplete
data. Bishop (1999) introduced variational Bayesian PCA (VBPCAXFmosing the number of
components in PCA. Raiko and Valpola (2001) reconstructed missing waltie¥ BPCA to com-
pare some nonlinear models to it. Oba et al. (2003) applied VBPCA for misalng estimation in
gene expression profile data, and mentioned that it performs much betiehéhexisting methods
for missing value estimation.

The present article reviews possible approaches to the problem with th@sisipn probabilis-
tic models and Bayesian methods. The rest of the article is organized assolloBection 2, we
present classical algorithms for PCA based on minimizing the reconstructarsanilar to (2) and
the method based on estimation of the covariance matrix (imputation algorithm). Vifes teow
the algorithms are normally used for fully observed data and explain hovwcHrelge adapted to the
case with missing values. We explain possible difficulties of the standard nsdtidddding bad lo-
cally optimal solutions, numerical problems and overfitting. Simple examplesvane t illustrate
these problems. In the same section, we discuss the properties of the impatgtiothm, such
as implicit remedies against overfitting and overlearning and its expectatigimimation (EM)
interpretation.

Section 3 presents probabilistic models for PCA which provide a good &iamdfor handling
missing values. First, we introduce formulas for the probabilistic PCA modeldrc#ise with
missing values. Then, we describe Bayesian regularization for handiitdems that arise when
data are sparse. We provide formulas for performing maximum a postestimation and for
variational Bayesian inference.

In Section 4, we propose an extension of the PCA-basis notion to the Cam®mplete data.
We also show how to find the PCA basis in a principal subspace estimatedféngedifmethods.
Section 5 provides formulas for computing missing value reconstructionshaneariance of the
predicted values. We briefly discuss possible ways to select the righterwhbrincipal compo-
nents to obtain reliable reconstructions.
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Section 6 discusses large-scale problems and computational complexigeloichigh dimen-
sional and very sparse data, overfitting becomes a severe probletraditabnal algorithms for
PCA are very slow. We introduce a novel fast optimization algorithm and $taw to use it in
Bayesian models.

In Section 7, different versions of PCA are compared in artificial eérpants, demonstrating
the effects of regularization and modeling of posterior variance. We deimade the importance of
tricks such as fixing hyperparameters for the early learning in variatBagdsian methods. The
scalability of the proposed algorithm is demonstrated by applying it to the Netfidgm. Finally,
we conclude in Section 8.

1.1 Notation

The following notation is used throughout the article. Bold capital letters tdematrices, bold
lower-case letters denote vectors, and normal lower-case letters ceaddes. The basic model
equation isy; =~ Wx; +m, where column vectorg; are the data case¥/ is the matrix that maps
the principal components to the data, anth is the bias vector. Indicas=1,...,dandj=1,...,n
go over the rows and columns ¥f respectively. The index of a principal component is denoted by
k=1,...,c. Notationij is used for the index ofjj, theij-th element of matrixy. O is the set of
indicesij corresponding tobservedvaluesy;j, O; is the set of indiceg (similarly O; is the set of
indicesi) for whichy;; is observed|Q;| is the number of elements @ andN = |O| is the number
of observed data elements. NotatipandA.; is used for the-th row andj-th column of a matrix
A, respectively. BottA;; andA.; are column vectors. Thieth row of W is denoted by = Wi,
and thej-th column ofX is x; = X:;. Table 1 lists the symbols used in the paper.

2. Least Squares Techniques

In this section, we present classical algorithms for PCA based on minimizingetoastruction
error similar to (2) and the method based on estimation of the covariance matrix.

2.1 The Cost Function

The minimum mean-square error compression of data is the formulation for(FP@fg, 1941)

that can be generalized to the case with missing values in a very straightdarveaner. The cost
function (2) is adapted such that the sum is taken over only those irndacely for which the data
entryy;; is observed (Wiberg, 1976):

C=Y %) (4)
ijeo
C
Vi = Wixj+m =5 Wi +m. ®)
=1

In this section, we consider algorithms optimizing cost function (4), whichallglee least squares
(LS) approach to PCA of incomplete data.

The cost function (2) in the fully observed case has practically unigo¢o(@n arbitrary rota-
tion in the principal subspace) global minimum w.r.t. model param&t&rX, m provided that all
eigenvalues of the sample covariance matrix are distinct. Srebro andolagk803) showed that
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dimensionality of the data vectors (indexedipy
number of data vectors (indexed by

number of principal components (indexedWy

d x n data matrix

d-dimensional data vectoj-¢h column ofY)
reconstruction of the data elemegt

d-dimensional bias vector

=[mm ... m], d x nbias matrix

posterior mean ainy (scalar)

posterior variance af (scalar)

d x ¢ matrix for the mapping from principal components to the data
k-th column of matriXW (d-dimensional vector)

i-th row of W (c-dimensional vector)

posterior mean ofv; (c-dimensional vector)

= [Wy Wa ... Wq]T, d x ¢ matrix of posterior means of;
posterior covariance of; (¢ x ¢ matrix)

posterior variance o (scalar)

¢ x n matrix of principal components

c-dimensional principal component vectgrth column ofX)
posterior mean of; (c-dimensional vector)

= [X1 X2 ... Xn], ¢ x n matrix of posterior means of;
posterior covariance of; (samec x ¢ matrix for eachj)
posterior covariance ofj (separat& x ¢ matrix for eachyj)
posterior variance ofy; (scalar)

cost function to be minimized

set of indices, j for whichy;; is observed

set of indices] for whichyj; is observed

set of indices for whichy;; is observed

learning rate (positive scalar)

d-dimensional noise vectojjh out ofn vectors)

noise variance (scalar)

Gaussian pdf over variablewith meanu and covarianc&
prior variance for the elements of (scalar)

prior variance for the elements W .« (scalar for eaclk)

= (W, Vwk, Vm) hyperparameters

parameters, typicall§ = (W, X, m)

Table 1. Symbols used in the paper. See also Section 1.1 about notation.
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an extension to the weighted case, where each observation has a veeyghg¥rom 0O to 1, is a dif-
ficult non-convex problem where the cost function can have multiple lngdama. We demonstrate
this phenomenon for a simple data set with missing values, that is with weights @i¢hessing
value) or 1 (observed value). In our example, model (1) with one prhcipmponent and fixed
m = 0 is fitted to the data

0.8 08 W1
Y = 1 X | = |W2 [X]_ Xz] .
X 1 W3

To discard the scaling ambiguity of the PCA solution, the column vedtoran be restricted to
have unit length. Thus, the minimized error can be represented as a funttiwo parameters
which define a unit length vector in the three-dimensional space. Thdwwdion in this simple
example has three local minima, as shown in Fig. 2: The global minikvsm+[0.49 062 062"
corresponds to zero cost while the other two minima (close[@1 (" and+[0 0 1T) provide a
non-zero error. Each of the two sub-optimal solutions reconstructsqgbigronly three out of four
observed values iN.

0.05

Y2 -1 -1 V1

Figure 2: Example of local minima for the cost function (4). Data are thmreeksional d = 3),
the model has one principal componeat 1) and therefore the PCA solution can be
defined by a unit length vectd/. Left: The cost function plotted on a surface of unit
length vectors. Right: The same plot using the Euler vector representatiermatrixw
is constructed fronm andp asW = €*[1 0 Q7 with A a 3x 3 matrix with four nonzero
elementsay; = —ap; = o anda;z3 = —ag1 = . Coordinates in brackets correspond to
coordinates in Euclidian space in the left hand side plot.

The cost function (4) can be minimized using any optimization procedure. pbgsible ap-
proaches are presented in the following.

2.2 Alternating W—X Algorithm

Complete datalt is possible to optimize the cost function (3), and therefore to find the ipahc
subspace, by updatingy andX alternately. When either of these matrices is fixed, the other one
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can be obtained from an ordinary least squares problem. We will furgier to this approach as
thealternating algorithm

The algorithm alternates between the updates

X=(Ww)wTy, (6)
W =YXT(xxT")1 (7)

This iteration can be efficient when only a few principal components adetk that i€ < d
(Roweis, 1998). The bias vectoris the row-wise mean of the data and the above equations assume
that it has been subtracted from the data as a preprocessing step.

Incomplete data.Grung and Manne (1998) studied the alternating algorithm in the case of
missing values. In order to get the accurate least squares solution, laggitice bias term into the
estimation procedure, yielding the update rules

xj= (3 wiwl) S wily—m), j=1...n, (8)

i€Qj i€0;

m [yij —wi'x;], 9)

_ 1

- ’Oi‘jei

Wi:<.%ij}r>_l‘%Xj(yij—m), i=1...,d, (10)
1€0i 1€0

wheremy is thei-th element ofmn.

2.3 Gradient Descent Algorithm

Complete data.The basis of neural network implementation of PCA learning rules is a gitadien
descent optimization procedure. Such algorithms work online, processingne input vectoy;
at once. The learning rules implemetbchastigradient descent and the algorithms will eventually
converge to a basis in the principal subspace. Each data vector majohaegrocessed several
times for convergence. The same can also be implemented in a batch peocedur

Using gradient descent for minimization of (4) w.¥\. yields the update rule

W W +y(Y —WX)XT, (11)

wherey > 0 is called the learning rate. Minimization w.r.t. matXxcan be performed using the
least squares solution in (6). Some neural algorithms use learning ruiels @ither explicitly or-
thogonalizeW or which yield an orthogonalv at the convergence. Then the update<ofan be
simplified toX = WTY, which together with (11) is the batch version of the Oja learning algo-
rithm (Oja, 1983; Diamantaras and Kung, 1996). The Ioiais again removed from the data as a
preprocessing step.

Incomplete dataln the presence of missing values, the gradient descent update rileigor

oc . oc .
WeW—ym, with I =-2 (Yij = ¥ij ) %j »
[

J€0;
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whereyj; is given in (5). MatrixX could be updated using (8) but a gradient-based update can also
be used:
oC oC
X X—-y—, with —=-2 i — Vi ) Wik -
Yo% o p j(y., ¥ij ) Wik
The bias termm can be updated using (9). As we discuss in Section 6.1, gradient-basethig
can be computationally more efficient than the alternating algorithm becauseish@o need to

-1 -1
compute matrice€zi€ojwiwiT> and(zjeoixjij) in (8) and (10).

2.4 Numerical Problems and Overfitting

Least squares PCA methods can work well for data sets with few missingsvhiu they may not
be applicable to sparse data sets because of severe problems with oveSittipgse that for some

j the numberO;| of observed measurementsis smaller than the number of principal components
c. Then, the corresponding least square problemis ill posed: the r@g@wiwiT is rank deficient
and Equation (8) cannot be used. Moreover, eve@ijf is greater tham, matrix Yico, wiw! may

be badly conditioned and the correspondijgcan become infinitely large. This means that the
parameters would be overfitted to explain well a few observed valuesédgetheralization ability
of the model would be poor (e.g., reconstruction of missing data would lyaneccurate). This is
exactly what happens in the vicinity of the two local minima in the example in Fig. 2.

The same problem can happen when the rowsVoére estimated using, for example, (10):
matrix y jco, xjij can be rank deficient or badly conditioned. This is more probable whee so
rows of Y contain very few measurements. However, these problems can generigrdor any
data set and for any algorithm optimizing the cost function (4).

Overfitting problems can be avoided by using proper regularization. A camwvag to prevent
unbounded growth of model parameters is to add terms which penalize Enayagter values into
the cost function. The amount of regularization can be determined, tanice, by cross-validation.
Another possibility is to use probabilistic methods (see Section 3) in which the pairalty terms
come naturally from a probabilistic model.

2.5 Method Using Singular Value Decomposition

Complete dataPerhaps the most popular approach to PCA is based on singular vatueymtesition
(SVD) of the data matrix or (equivalently) eigen-decomposition of the sangsariance matrix.
SVD of the data matrix is given by:

Y =UsVT,

whereU is ad x d orthogonal matrixV is ann x n orthogonal matrix an@ is ad x n pseudo-
diagonal matrix (diagonal il = n) with the singular values on the main diagonal (e.g., Haykin,
1989). The PCA solution is obtained by selecting ¢Hargest singular values froin, by forming
W from the corresponding columns ofU, andX from the corresponding rows of VT (Jolliffe,
2002). The biasn is again removed from the data as a preprocessing step.

PCA can equivalently be defined using the eigen-decomposition of xhe covariance matrix
C of the column vectors of the data mathix

1
C= HYYT =UuDUT.
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The diagonal matriXD contains the eigenvalues &f, and the columns of the matri¥ contain

the unit-length eigenvectors @f in the same order (Cichocki and Amari, 2002; Diamantaras and
Kung, 1996; Jolliffe, 2002; Haykin, 1989). Again, the columndlbtorresponding to the largest
eigenvalues are taken ¢, andX is computed a®VTY. This approach can be more efficient for
cases wherd < n, since it avoids the computation of the< n matrix V.

Incomplete dataThe same approach cannot be directly used in the presence of missiag.valu
Estimating the covariance matri2 becomes difficult. Let us consider a simple (but incorrect)
estimate where we just leave out terms with missing values from the averaggcfoelement of.

For the data matrix below, we get

-1 41 0 0 «x 1 05 1 O
Y=|-1 +1 x x 0|, C=2YY"=|1 0667 x
X x -1 41 x n 0 X 1

There are at least two problems. First, the estimated covariance 1 betveefirsttand second
components is larger than their estimated variancesafid 0667. This clearly leads to the sit-
uation where the covariance matrix is not positive (semi)definite and some eifj@avalues are
negative. Secondly, the covariance between the second and the tmipdicent could not be esti-
mated at all. For these reasons, this is a viable option only if the number of migdires is not
significant. There are many algorithms for finding a proper estimate of ttegiaoce matrix (e.g.,
Ghahramani and Jordan, 1994; Boscardin and Zhang, 2004) puitheomputationally intensive
iterative algorithms.

A simple alternative is an iterative procedure which performs PCA morethjirdtalternates
between imputing the missing valuesvirand applying standard PCA to the infilled (complete) data
matrix Y (e.qg., Jolliffe, 2002). Initially, the missing values can be replaced, fomgia, by the
row-wise means of. The covariance matrix of the complete datacan be estimated without the
problems mentioned above, aWl can be computed using its eigen-decomposition. The bias term
m can be updated as the row-wise mealY pf Next, the principal componen¥are calculated:

X=WT(Yc—M),
the reconstructions can be used as a better estimate for the missing values:

v._ 1Y for observed values
©7 1 WX+M for missing values

and PCA can be applied again to the updated data m¥tixThis process can be iterated until
convergence. We will further refer to this approach asitgutation algorithm In Appendix A,
we show that the imputation algorithm also minimizes the cost function (4) and ihgilgments
the EM steps for a simple probabilistic model. This approach requires thd theee aomplete data
matrix, and therefore it is computationally very expensive for large-sralglems.

Although the imputation algorithm belongs to the class of least-squares PCrittatg® (i.e., it
does not use explicit regularization), it still provides some remedy agawestitting. Performing
SVD of a complete data matrix is equivalent to minimizing a cost function which isma cu
two terms: the reconstruction error for the observed values (which is dleentinimized error)
and the reconstruction error for the infilled missing data (which is a penattyftarcing the new
reconstructions of missing data to be close to the infilled values). Initializatithre @&constructions
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with the row-wise means of the data matrix introduces a bias in favor of the roossérvative”
solutions. In practice, there can be infinitely many solutions that providestine seconstruction
error for the observed part but that have different reconstrusfimmthe missing part. In such cases,
the effect of the initialization can last even if the algorithm is iterated indefinitely.

Our experiments show that the imputation algorithm also has resistance amagrisirning.
By overlearning we mean situations when the training error decreastdselygneralization ability
of the model gets worse. Badly overfitted solutions correspond to regicahg iparameter space
where a small decrease of the training error can cause a large inof¢hsdest error. However, the
penalty term (which keeps the reconstructions of missing data close to thediuéillees) makes the
steps shorter and learning can practically stop once the algorithm ergemsgevhere the training
error changes very little. Thus, this regularization effect is due to emppig.

3. Probabilistic Models for PCA

In this section, we presents probabilistic models for PCA which provide a fmandation for
handling missing values.

3.1 Probabilistic PCA

The probabilistic formulation of PCA offers a number of benefits, includinti-feended regular-
ization, model comparison, interpretation of results, and extendal#libbabilistic PCA(Tipping
and Bishop, 1999) explicitly includes the noise term in a generative model

yj =WXj+m+eg;. (12)
Both the principal componenig and the noise; are assumed normally distributed:

p(Xj) = AL(xj;0,1), (13)
p(gj) = AC(€;0,wl) , (14)

whereA (x; 1, Z) denotes the normal probability density function (pdf) over variahgth meanu
and covarianc&. The parameters of the model includg m andvy. The model can be identified
by finding the maximum likelihood (ML) estimate for the model parameters usinghalgorithm
(Dempster et al., 1977).

Complete data. The E-step estimates the conditional distribution of the hidden variables
given the data and the current values of the model parameters:

n
p(X|Y’W7Vy) = I_llN (Xj 1XJ ) ZX,‘) )
J:
where the covariance matrk;; is same for alk;:
w) t
Zm:ZX:WcM+NVMO S j=1,...n,
and the means; can be summarized in the columns of matrix

- 1
X==-5WTY. (15)
Vy
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The M-step re-estimates the model parameters as

W =YX (XX +n5) 2, (16)
1 d n 9 1
vy = n—d'i Z (yij —WiTXj) —l—atl’(WZXWT).

Note thatvy is updated as the mean-square error plus the extra term which accauthis émcer-
tainty in X.

Tipping and Bishop (1999) showed that converges to the principal subspace. In the zero-
noise limit, that is fory, — 0, the iterations (15)—(16) reduce to the least squares projections in
(6)—(7) (Roweis, 1998). Note also that the ML estimatomfois given by the row-wise mean of the
data (Tipping and Bishop, 1999). Therefore, it can be computed grteeaoved from the data in
the preprocessing step.

Incomplete dataThe generalization to the case with missing values happens as follows. First
we write an element-wise version of the probabilistic model in (12)—(14):

yij:WiTXj+m+sij, Vij € O,
p(XJ) = N(vaoal)a
p(eij) = AL (&j; 0, ) -
We treatw;, m;, andvy as model parameters awgl as latent variables and apply the standard EM
algorithm to arrive at the following update rules:

-1

Zx,»:vy<vyl+_E WiWiT) , a7
1€0j
l .
Xj= 2 Y wilyij—m), j=1..,n,
Yy ifo,
R I VI,
m_|Oi|je i[y” i %)
-1
wi:(%[x,-xﬁzxj]) > XiOu=m). =L (18)
J€0; J€0;
1
W= [(Yii—WiTYj—m)erwiTZiji].
Ni]G

There are several distinctions compared to the fully observed data:elpdtimalm depends
on other parameters and therefore it has to be updated in the iterativglprec2) The covariance
%y, is different for eachx;. 3) Each row ofW is recomputed based only on those column¥of
which contribute to the reconstruction of thbservedvalues in the corresponding row of the data
matrix. The same applies to the computation of the columné dthus, the computations required
for incomplete data are generally heavier.

3.2 Examples of Overfitting with Probabilistic PCA

PPCA provides some remedy against overfitting, in contrast to the leaatesqapproach. First,
a nonzero noise level, regularizes badly conditioned matricgseoj w;iw! in (17). Second, even
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if the noise level is small, badly conditioned matricgso, w;iw/ result in large values both in the
meansK; and in the covariance matric&s,. This diminishes the effect of large valuesipwhen
W is re-estimated using (18).

However, PPCA can overfit, for example, if the estimated number of prihncgraponents is
unreasonably large. In the example in Fig. 3, PPCA with ore 1) principal component is applied
to two-dimensionald = 2) data and each data vector is only partly observed (i.e., eythesr
yoj is known for all js). The observations are represented by triangles placed on the ta/anaxe
Fig. 3. The data points reconstructed with a trained PPCA model lie on a lirgththmodel invents
correlations that are not observed in the data. In fact, there are infiniaty PPCA models which
are equally good and the final solution (and hence the reconstructiepehds on initialization.
The situation would not change significantly if there were a few fully okedata vectors. Then,
the trained model would be defined by those few samples and it would netajize well for new
data.

A similar overfitting example is presented in Fig. 4. There, three-dimensiatabde described
well by a model withc = 1 principal component. The first two rows Wfare fully observed while
there are only two measurements in the third row (Fig. 4a). The reconstrsictighe third row of
Y are very inaccurate because the model relies only on the two availableatises.

3.3 Variational Bayesian PCA (VBPCA)

A common way to cope with the overfitting problem is to penalize parameter valaie$ wor-
respond to more complex explanations of the data. A natural regularizatie@Anis using pe-
nalization of large values in matric&¥ andX. In the Bayesian formulation, this is equivalent to
introducing a prior over the model parameters. For example, the PPCA mode)—(14) can be
complemented with Gaussian priors over the elements of vettamd matrixW:

p(m) = AL(M; 0, Vml ) , (19)
p(W) = rl AN (Wi; 0, vl ) (20)
k=1

Here, we use a zero mean prior farfor the sake of simplicity. Including a mean hyperparameter
W, that isp(m) = [ AL(Mi; 1, Vim), can be useful in practice.

The model (20) uses a shared prior for all elements in the same coluiW) parameterized
with vy. This is done to allow automatic selection of the right number of componentsdéded
PCA. The hyperparametevs, vk can also be updated during learning (e.g., using the evidence
framework or variational approximations). If the evidence of the relesafthek-th principal com-
ponent for reliable data modeling is weak, the correspondirgshould tend to zero. This is called
automatic relevance determinatiga.g., Bishop, 2006). The prior in (19)—(20) also introduces a
bias towards the PCA basis within the principal subspace (Luttinen and 0ir§))2

Let us assume that we perform ML estimation of the hyperparam&éterévy, Viyk, Vm) in the
probabilistic model defined in (12)—(14) and (19)—(20). This can bedsing the EM-algorithm
if one treats the model paramet&s- (W, X, m) as hidden random variables. Implementation of
the EM algorithm would require the computation of the posterior of the hiddeablasp(6|Y &)
on the E-step. Unfortunately, the true postero8|Y,&) does not have an analytic form and one
possible solution is to approximate it with a simpler pd®). This is justified by the variational
view of the EM algorithm (Neal and Hinton, 1999).
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Figure 3: A simple example of overfitting with PPCA: data are two-dimensiorchkeach sample
contains only one observed value. The measurements are marked witimtlezldrian-
gles at the two axes. The reconstructions provided by a trained PPCA aredshown
with crosses.

S

0 20 40 60 80 100 -2 -1 0 1 2
samples ys

Figure 4: Example of inaccurate reconstruction with PPCA. Left: The "tmadues in the three

rows of Y are shown with blue lines. The first two rows are fully observed, the only

two observations in the third row are marked with circles. The PPCA recmtistn is

shown with red dots. Right: The blue dots is the scatter plot of the third rotv(mfaxis)

against the principal component estimated by PPCA (y-axis). The datssponding to
the two observations are marked with circles. The red crosses is thesteadion of
the third row (x-axis) against the estimated principal component (y-axig.ebtimated
correlation are due to the two fully observed data vectors.
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Using the variational approach (Wallace, 1990; Hinton and van CamB)18% E-step is

modified to update the approximatig(®) so as to minimize the cost function
q(e) q(8)
C e,zz/ 0)lo 7d9:/ 8)log— )48 logp(Y|E). 21
(a(6).8) = [ a®)log 75 5 a@)led Say 7 gp(Y[e) (21)

On the M-step, the approximatia{f) is used as it was the actual posterf|Y,&) in order to
increase likelihooda(Y|§). This can be seen as minimization of (21) w&.t{Neal and Hinton,
1999).

The first term in (21) is the Kullback-Leibler divergence between the posterior and its
approximation. Since it is always non-negative, the cost function pesvédlower bound of the
log-likelihood:

logp(Y[§) = —C(q(8).¢). (22)

This property can be used to compare solutions corresponding to diffeal minima of (21).
More details on variational methods can be found, for example, in the boBikshop (2006).

The variational Bayesian (VB) approach to PCA can be implemented by mininmizaiti21)
w.r.t. the approximating pdf(8) and&.! The complexity of the cost function (21) depends on the
form of the approximating pdj(6). A computationally convenient form for the PCA model is

q(8) = _|2|Q(m) _ﬁQ(Wi) ﬁq(xj)- (23)
1= 1= =

Then, the cost function can be minimized alternately w.r.t. one fag¢éyy in (23) while keeping the
other ones fixed. Because we use conjugate priors in (19)—(20),as8kpe to findoptimal pdfs
q(6;) on each step: The optima{m), g(w;) andq(x;) are Gaussian and their update boils down to
re-estimation of the corresponding means and covariance matrices.

In Appendix C, we present the update rules for the resulting algorithm hwiéccall VBPCA.
There, we assume incomplete data sets, the update rules for the fullyethdgata can be found in
the paper by Bishop (1999). Note the resemblance of the learning rulesEblalgorithm applied
to PPCA. The mean parametahs, X, m of the approximating pdfs can be used as estimates of
the corresponding model parameters. The covariance makijceEy; and variancesy reflect the
uncertainty about the corresponding quantities.

The advantages of the VB approach can be summarized in the following.

e VB learning is sensitive to posterior probability mass rather than postedbapility density,
which makes it more resistant against overfitting compared to point estimatipnKECA or
MAPPCA presented in Section 6.4). Typically, overfitted solutions coomdpo high peaks
in the posterior density while robust solutions contain much of the postenbapility mass
in their neighborhood.

e The method provides information about uncertainty for the unknown quan(itiehe esti-
mated posterior covariance matrices). This can be useful to detect bleeksults similar
to the one presented in Fig. 4. For example, the uncertainty of the reattiwtauof missing
values can be estimated as we show in Section 5.

1. In the fully Bayesian treatment, the hyperparamefen® also assigned priors and they are treated equally to the rest
of the parameter8. We omit the effect of the prior for the hyperparameters to simplify theaggns.
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e The VB cost function can be used for comparison between differduticas based on (22):
A smaller cost yields a greater lower bound of the solution evidence. Thigsefal feature
for PCA of incomplete data as, in this problem, even simpler models can providéurc-
tions with multiple local minima. A greater lower bound does not guarantee a beltgion,
but still it seems to be a reliable measure in practice, see Figure 11 for enplexa

4. Rotation in the Principal Subspace to the PCA Basis

A useful property of classical PCA is that the principal components atered by the amount of
data variance they explain, which allows an intuitive interpretation of thdtsessuch a represen-
tation is quite trivial for complete data sets but the extensions to the case aifpiete data is not
straightforward. In this section, we show how to find such a basis in theipaihsubspace esti-
mated by different algorithms for incomplete data. We refer to this basis asdAebBsis in the
principal subspace.

One can define the PCA basis faymplete datas the solution which minimizes (2) and which
satisfies the following conditions: 1) the principal components (in the rows) &re zero mean,
mutually uncorrelated and scaled to unit variance:

1 n
= Xj =0, (24)
22,

1 1

ﬁZx,-xJTzﬁxxTzl (25)

and 2) matriXW has mutually orthogonal columns which are ordered according to their norms

WTW = diag(s), (26)
=S, k<, (27)

where diags) denotes a diagonal matrix with diagonal elemests- [|W.||°>. Note that the nor-
malized columns ofV and their squared nornss are the eigenvectors and eigenvalues of the data
covariance matrix.

We propose to use the same conditions (24)—(27) to define the PCA basgsprirthipal sub-
space estimated fancomplete dataNote the important difference to the complete data case: The
PCA basis for complete data is unique (assuming distinct eigenvalues ot#heodariance matrix)
and it does not depend on the dimensionality for the assumed principglasgsThis cannot be
guaranteed for incomplete data case: The principal subspace estimatégesgtime algorithm us-
ing fewer components may differ from the leading directions of the PCA basngl in the subspace
with more components.

In the following, we show how to transform a solution found with differelgbathms to the
PCA basis such that conditions (24)—(27) are satisfied.
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4.1 Least Squares Approaches

The first step to transform a solutighV,m, X} found by a least squares algorithm (as presented in
Sections 2.2-2.3) is to center the rows{no zero mean:

Xj & Xj —H, (28)
Mpca= M+ W, (29)

with p= %ZT:lXj- This ensures (24). The next step is to transform line&flgndX:

Wpca= WUDX'?V, (30)

Xpca=VTDc2UTX, (31)

where matrices), Dy are computed by eigen-decomposition
1,7 T
CXXT=UDU (32)

andV is calculated by eigen-decomposition

Y2UTWTWUDY 2 = VD,V . (33)

It is easy to show that the transformed solution satisfies (25)—(26):

1 1 D Y/2

1/2
chax pca— /

UTXXTUDx

~1/2 ~1/2 —1/2 ~1/2

V=VT D,Dx
VvV =V'VvD,V'V =D,,.

UTUD,UTUDy
1/2

VTD
W] eaWpea= VTDX 2UTWTWUDJ

V=VTV=1I,

4.2 Probabilistic PCA
We show in Appendix B that the following conditions hold at the convergef@&PCA.:

1 n
ﬁglx,- =0, (34)
1
=23y [XiX] + 2] =1, (35)

which can be seen as the analogue of (24)—(25). Not&thagcomes the sample covariance matrix
of the principal components in the noiseless limit, whgr+ 0. The extra requirements (26)—(27)
can be used to define the (practically) uniqgue PCA basis for a PPCA solulioey resolve the
rotational ambiguity caused by the fact that any orthogonal transformaititve principal subspace
does not changk, in (35).

One can easily perform a transformation of a PPCA solution such that(@))and (26)—(27)
hold. This is done by first normalizirg to zero mean and updating the bias term similarly to (28)—
(29). Then, a rotation of the subspace is performed similarly to (30)+(8B)the exception that
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%XXT is replaced wittE,. Finally, one can rotate the posterior covariance matrices of the estimated
principal components:

Sy, poa= VTDx 2UTs, UDX 2V, (36)
which follows from (31).

Although the optimal PPCA solution satisfy at least conditions (34)—(35)vergence of the
learning algorithm to the optimal solution can be very slow. Thereforeppeihg the described
transformations during learning can speed up learning. In the experimeantsse the transforma-
tions after each iteration.

4.3 VBPCA

It can be shown (Luttinen and lIlin, 2010) that VBPCA described in Se@i8nconverges to the
solution which satisfies (34)—(35) and the condition analogous to (26):

i[wiwﬁ +3y,] = diag(s), (37)

wherew;, %, are the posterior means and covariance matrices for the rows of atfsee Ap-
pendix C for notation details). Thus, one can simply use the ordering ezqgeirt (27) to define a
meaningful basis for a VBPCA solution. Performing a transformation theuirets (34)—(35) and
(37) during learning can speed up convergence (Luttinen and llirQ)200he transformation can
be performed similarly to (30)—(33) with the exception thkX" is replaced Witfﬁ‘:1 [X,-XJT + ZXJ.]

in (32) andWTW is replaced witty & ; [Wiw; " + %, ] in (33). Finally, one can rotate the posterior
covariance matrices using (36) and

Swipca=VTDy2UTz,, UDY?V .

In the experiments, we use the transformations after each iteration.

5. Reconstruction of Missing Values and Selection of Model Rdn

PCA is a popular approach to the problem of missing value reconstructi@negtimated principal
components capture the correlations between different variables, alloels for reconstruction of
missing values from the observed ones. The models discussed in this astigheite reconstruc-
tions using (5), in whichw;, m;, x; are replaced with the respective posterior megnsy, X; when
applicable. Additionally, one can estimate the uncertainty of the predictiof®d¥6A and VBPCA
by computing its variance

Vi = M+ W Wi +X] Ly, Xj + (T )

wherem, 2y, Zy, represent the posterior uncertainties of the respective parameteis,arsl
zero for PPCA. This is a useful feature of the probabilistic methods cadparthe least-squares
approach.

The quality of reconstruction depends on the number of estimated princpgianents and
therefore selection of the model rank is an important problem. In this seet®iriefly outline
possible solutions to this problem leaving out the detailed discussion.
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The most straightforward way to define the rank of the model is to use-gadisgtion. The
data set is divided into training and validation parts, models with differeritsrane fitted to the
training set and the the rank is selected based on the performance ofottoeihealidation set.

Another way is to use probabilistic methods for model selection. For examjidaM2001)
developed a means to detect the dimensionality of the principal subspamenipietedata using
Laplace’s method and Bayesian information criterion (BIC) applied to theAPRGdel. He also
discussed other alternatives but his approach showed the bestpenfee. However, the extension
of Laplace’s method to the caseiotompletedata is not straightforward. An additional difficulty
is the possibility that the posterior distribution over the model parameters has|muiiiples cor-
responding to different principal subspaces. VBPCA can selectgtimal number of components
automatically by setting some columns\ to zero. However, the VB cost function may have
many local minima which correspond to different model ranks and exploiifeyeht local solu-
tions can be a tedious procedure. Hoff (2008) estimated the dimensiondtiey pfincipal subspace
in the complete data using a sampling procedure.

6. Speeding Up Learning For Sparse High-Dimensional Data Set

Obtaining a reasonably good solution in appropriate time is a very importang ifsu
high-dimensional problems in which learning may take several days, as iextdmple consid-
ered in Section 7.4. The algorithms presented in the previous sections sieakntly to problems
with large dimensions and large degree of sparsity of observed values.

The computational complexities of different algorithms are summarized in Talded 3. For
example, the alternating optimization algorithm for PPCA requires computatioimaeuxsion of

matricesy jco, [xijT +3y] and (vyl + Yico; WiwiT> , which are generally unique for each ron\f

and each column oX, respectively. The corresponding computational complexi@(i¥c® + nc®)
per iteratior? which is quite a bit heavier tha®(ndc) per iteration (Roweis, 1998) required for
complete data.

The computational complexit®(Nc+ nc) of the gradient method is small compared to previ-
ously reported results. For instance, Srebro and Jaakkola (2088}ed the complexitd(ndc)
for a more general model which was a huge improvement over the comp@tig®) of the al-
gorithms proposed even earlier. Using the numbers from the Netflix probdersidered in Sec-
tion 7.4 N ~ 10°, n~ 480189,d = 17770,c = 30), we get rough estimates of the differences in
practice: Imputation algorithmd? ~ 104, (Srebro and Jaakkola, 2008)i& ~ 102, alternating
W-X N+ nc3 ~ 10, and gradienNc+ nc~ 10°°.

Once the model has been learned and fixed, doing inference on a mplesa fast. Using the
alternating algorithm, it requires only one E-step WittNoc? + ¢3), whereNg < d is the number of
observed values in the new sample, while imputation and gradient algorithoiseragnumber of
iterations withO(dc) andO(Npc) each.

Efficient memory usage is an important issue for sparse data sets. ltesgie that the amount
of used memory scales linearly with the number of observed values regmuafl¢the data matrix
dimensionalities. In Table 2, we provide the number of parameters estimatéfidogrd models,
which gives the lower bound for the amount of the required memory. Onlyrtpetation algorithm

2. The computational complexity of the alternatig-X scheme can be reduced if the matrices requiring inversion are
computed once for all rows (columns)fthat have observed values at exactly the same columns (rows respgcti
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Number of Imputation  Alternating Gradient
Section parameters | with SVD W-X descent

LS 2 (d+n)c v v v

MAPPCA | 6.4 (d+njc v v
PPCA 31 | (d+n)c+nc v
VBPCA 33 | (d+n)(c+c?) v

PPCAd 6.3 (d+2n)c v

VBPCAd 6.3 (2d+2n)c v

Table 2: Memory requirements and applicability of optimization methods to diffenedels. We
mark only the optimization schemes which can easily be implemented using the formulas
provided in this paper. Some of the methods mentioned here will be presentied in
upcoming sections.

Imputation Alternating Gradient
with SVD W-X descent
o(nd®>) O(NE+nc®) O(Nc+ne)

Table 3: Summary of computational complexities (per iteration) of differetitnigation methods,
assuming ni@&e computation of products and inverses of matrices and ignoring the com-
putation of SVD in the imputation algorithm.

requires memory for the complete data matrix, and even that requiremerd damibished at a cost
of greater time complexity.

6.1 Gradient-Based Learning

The gradient-based optimization scheme, extending the Oja learning algoritegutarized PCA
models, can be very efficient for large-scale problems and sparsesetata The computational
complexity of one iteration scales very well with dimensionalities, which can letas$ter learning
in practice. The gradient-based approach can also be advantageopared to the alternating
optimization scheme as the latter discards the joint effect of param&tensd X on the changes
in the cost function. This results in slow convergence without propezdspe procedures (e.g.,
Honkela et al., 2003).

We also propose to use a speed-up to the gradient descent algorithrewtarié method for
optimization, the gradient is multiplied by the inverse of the Hessian matrix. Nesvtoathod is
known to be fast-converging, but using the full Hessian is computationatigtlyc in
high-dimensional problemsl (> 1). We propose a simplified approach which uses only the diago-
nal part of the Hessian matrix and includes a control parancetieat allows the learning algorithm
to vary from the standard gradient descant 0) to the diagonal Newton’s method & 1). The
final learning rules then take the form

620> “9ac
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For example, the cost function (4) has the second-order derivatives

9%C , 9%C
3 0 Xk' ) 30 \N%(a
aWﬁ( IIEe] . axi%j i;j !

which can be computed efficiently for sparse data. We showed the effjctdrthe proposed op-
timization scheme in the application to large-scale PCA problems in our conéepapers (Raiko
etal., 2008, 2007a).

6.2 Online Learning

In cases where the number of data samples is very large d, it is wasteful to go through the
whole data set before updativg (andm). Using online learning (Oja, 1983), one samplés
processed at a time as follows: The principal componengse inferred using (8) (or the E-step in
general), andV is updated using the gradient approach. When sweeping through thepdstes
concerning the latter samples benefit from using\Whehat has already been updated using the
earlier ones. This reduces the required number of iterations. Dowrslidies approach include
that determining the step size, or using speed-ups such as the one in $ettmwrthe conjugate
gradient, becomes difficult. Also, for enabling parallel implementation, ooeldiprocess at least
a small batch of samples at a time before updatvde.g., Salakhutdinov et al., 2007). Online
learning was not considered in this paper.

6.3 Factorial Variational Approximations

The overfitting problem can be more severe for high-dimensional spataesets. The situations
discussed in Sections 2.4 and 3.2 are more probable when data pointarasdysgistributed in high
dimensions. Thus, methods penalizing large values of model parametetakanglinto account
their posterior uncertainty are especially relevant here.

The PPCA and VBPCA approaches, which take into account the postexdertainty at least
in X, are hardly applicable to large-scale problems. First, the computatiorg®rbof one iteration
of the alternatingh/—X scheme is very large (see Table 3) and application of the gradient-based
optimization is cumbersome because of the need to congputecovariance matrices. Second, the
required memory is at least? elements for storing posterior correlations onlydnThis becomes
infeasible for many large-scale problems even for a decent numbenoifigal components.

A possible solution is to take into account only some posterior correlation®arse variational
techniques for learning. For example, the posterior approximatiéhin VBPCA can be made
fully factorial leading to

instead of (23). Such posterior approximation was used, for examplRalixp et al. (2007b) for
PCA in the presence of missing values. The implementation proposed thereaged on the
imputation algorithm and thus not easily scalable to high-dimensional spatsiems.

The fully factorial approximation (38) reduces significantly the numberapiational parame-
ters. They now include the mean parameterswic andXy; and the variance parameters Wi,
Xj in addition to hyperparametews, vk, Vm, Which can be point-estimated. The corresponding
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cost function is given in Appendix D. It can be minimized in different wdgs example, by using
the gradient-based optimization scheme explained in Section 6.1. The compteithaigvorks by
alternating four update stepéwi, Vi, Kk}, {Xij, VK, j }, {Wik, %j, Vi, K, j }, and{vy, ik, Vm, VK}. The
required derivatives are reported in Appendix D. We will furtherrédehis algorithm a¥ BPCAd

The idea of fully factorial approximation can also be used for reducingaheplexity of PPCA.
The posterior of the hidden statesX|Y,W,m,vy) can be approximated to be fully factorial on
the E-step. The approximating pdf (38) can be fitted to the true posterior byniming the cost
function

Cppca= /Q(X) log p(Y,)?|(\/)\j?m,vy) dXx,
which is motivated by the variational view of the EM algorithm. The resulting teoddes resemble
the ones of VBPCAd with the exceptions outlined in Fig. 5. We refer to thiscgmprads®PCAd

Note that the approximation used in PPCAd does not restrict the generatlitg BPCA model
when it is applied taompletedata. The variational approximation introduces a bias in favor of so-
lutions for which the form of the posterior approximation agrees with the fafrthe true posterior
(e.g., llin and Valpola, 2005). The posterior covariance maiix which is the same for eaghin
the fully observed case, is diagonal if and only if the column@/adre mutually orthogonal. There-
fore, restricting the posterior covariance to be diagonal guarantee@6@)eholds at convergence.
Requirements (24)—(25) are fulfilled because of the assumed prior fowdél Thus, PPCAd for
complete data should converge to the PCA basis. PPCAd applieddmpletedata is biased in
favor of solutions in which the true posterior covariance matrices arerdlobeing diagonal. Note
also that the idea of speeding up learning by using transformations atbeesin Section 4.3 for
VBPCA, cannot be used for VBPCAd, because the transformationkivosak up the diagonality
of the posterior covariance matrices.

There is an interesting connection between the speed-up proposedion$et and the fully
diagonal posterior approximation. The second order derivativededeter the speed-up coincide
with the inverse of the posterior variance of each parameter, and thusdhgdutation is practically
free.

6.4 Ignoring Posterior Uncertainty (MAPPCA)

A further simplification is to use maximum a posteriori (MAP) estimation for the mpdeimeters.
The minimized cost function is then minus log-posterior of the parametersnmsguwniform prior
for hyperparameteng, iy, Vm, it is proportional to

1 1 d
CMAP:\7 (yij_WiTXj—m)2—|—N|092TNy+\Tzlm2+d|092an
Yije mi=
[« 1 d n
+5 | — S W& +dlog2mvuk+ $ X2 +nlog2m| . (39)
kZl Vw,ki; I " ;1 J

and it should be minimized w.r.t. the unknown quantiésX, vy, vk, Vm. We refer to this approach
as MAPPCA.

Minimization of (39) can be done by any suitable optimization procedurevateres required
for gradient-based optimization are given in Appendix E. However, saffieutties should be
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avoided. First, using an improper prior for hyperparameters leads to sicituwenere the posterior
pdf is infinitely large whervyx — O, zid:lwﬁ( — 0. This can be overcome by penalizing too small
values of the variance hyperparameters. For example, a hyperparametdich is a variance
parameter of the prior for a set of zero-mean variallgs = 1,...,M}, can be updated ag =

M (7 : :
w, where () denotes the expectation af over the posterior, and and 3 are some

small values (we used = 102 and = 10°3). This update rule corresponds to broad priors
restrictingv, to be positive and it guarantees that> %M/z The maximum likelihood (ML)
estimater, = & yM, () is achieved whea — 0, — 03

Another issue is the non-identifiability of scaling betw&§nandX. A practical way to avoid
this problem is to fix the scale by normalizing the rowsXofo zero mean and unit variance (after
each update) and compensating by scaling the columM afccordingly. This guarantees the
fulfilment of (24)—(25), which are the conditions justified by the prior model.

6.5 Summary of the PCA Variants

The differences between the six described variants of the PCA modedsimmarized in Table 4
and Fig. 5. The approaches differ on the posterior models and on tled pger for W andm. Al
the variants can be derived as special cases of VBPCA by making simglégsumptions, which
is shown in Fig. 5.

7. Experiments

We study the properties of the discussed algorithms first using artificialag@tahen presenting
a case study using the Netflix competition data (Netflix, 2007). In the expetsmeéth artificial
data, we generated data matriéésccording to model (12)—(14) with fixed dimensionalittesc
andn. The mixing matrix\W was generated by taking a random orthogonal matrix and scaling its
columns by 12,...,c. The bias ternm was selected randomly from a Gaussian distribution with
variance 10. For one of the data sets (10-5-mlp), we nonlinearly tnanstbthe resulting data. The
observed values were selected randomly iand the rest of the data matrix was used to compute
the test reconstruction error.

We used four types of data sets in the experiments:

e Data Set 10-5-gThe data set is for the case wheteg n and Gaussian components. We
generateah = 1000 samples from a 10-dimensional Gaussian distributionenit principal
directions. The standard deviation of the noise in (14) y&= 0.5.

e Data Set 10-5-mlp The data lie within a nonlinear manifold ambl< n. The data were
generated by a random nonlinear transformation of five-dimensionaddizaudata to the
10-dimensional space and adding relatively small Gaussian noise. Tiséotraation was
performed by randomly initialized multi-layer perceptron networks. The numbgamples
wasn = 1000.

e Data Set 10-4-magThe data set is a linear combination (12) of non-Gaussjandd < n.
We usedc = 4 independently distributed non-Gaussian components (elemeRri$. ol he

3. In the formulas reported in the article, we always present the MLtepdédes, although more robust update rules
were used in practice.
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prior for W, m posterior folW, m posterior forX
LS uniform point point
PPCA uniform point full
PPCAd uniform point diagonal
VBPCA yes full full
VBPCAd yes diagonal diagonal
MAPPCA yes point point

Table 4: Variants of probabilistic approaches to PCA.

diagonal posterior

VBPCA e
r Zy; = diag(Xj) W

uniform prior
. ) Vk; Vm — © VBPCAd
zpomNt pgsten%r point posterior
wi, My 2 = Tw;, M —0 uniform prior
Vw,k7Vm —
PPCA diagongl p(isterior point posterior
Zy, = diag(%j) ﬂ Wi, M — 0
MAPPCA point posterior PPCAd
Zy, —0
uniform prior point posterior
Vi Vim — 00 s X<j— 0

Figure 5: Relationships between the PCA variants are easily describestitjng each of them as
a special case of VBPCA. The corresponding update rules can alderived from the
VBPCA update rules using the given restrictions.

0.4 0.4 0.4 0.4
P(X) o, /\ 0.2 0.2 0.2
0 0 0 0
-5 0 5 -5 0 5 -5 0 5 -5 0 5
X1 X2 X3 X4

Figure 6: The distributions of the four components used to generate theridly data set.

Data Set \ d n ¢ Gaussianity Square root of variances

10-5-g 10 1000 5 yes [5432105...0.5
10-5-mlp | 10 1000 5 no varying by nonlinear transformation
10-4-mog| 10 1000 4 no [432105...0.5

100-10-g| 100 100 10 yes [109..10.1..0.1]

Table 5: Characteristics of four types of data sets used in artificial iexpets.
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distributions of the four components are presented in Fig. 6. The stadduaiation of the
noise in (14) wag/Vy = 0.5. The number of samples was= 1000.

e Data Set 100-10-gThe data set is for the case where: n and small noise. The data were
generated from a 100-dimensional Gaussian distributionawtt 0 principal directions. The
standard deviation of the noise in (14) was, = 0.5. The number of samples was= 100.

The ratio of missing values was varied for all data sets. We used data setelatitiely small
dimensionalities in order to test the performance of many alternative algorithmsdasonable
time. The summary of the data sets is shown in Table 5.

Different PCA algorithms considered in this article were used to estimate the raammimerc
of principal components that was used for generating the data (see5)aldlee algorithms were
initialized randomly except for the imputation algorithm which has a standamgduwe of infilling
missing values with the row-wise means\of

The performance of the algorithms was assessed by the speed of thargemte and the
accuracy in the task of missing value reconstruction. We computed threditipsa the average

training root mean square (RMS) reconstruction evﬁ% Yijeo(Yij —¥ij)% the average test RMS
reconstruction error and the average time to convergence. Averagisiglone across 30 different
data sets of the same type and the same ratio of missing values. The algorittensinventil the
deviation of the training error was less than 0.0001 during 100 iterationis. stdpping criterion
was used to estimate the time to convergence.

7.1 Performance of Least Squares Approaches and MAPPCA Wheth < n

In this section, we present the performance of three techniques:

e LS: the least squares approach which optimizes the cost function (4) theigradient-based
procedure with the speed-up explained in Section 6.1

e LS (es): the same algorithm which also used early stopping: 20% of dateesaved as
validation set and learning was stopped when the reconstruction errtthrefalidation set
started to increase

e LS (imp): the imputation algorithm presented in Section 2.5

e MAPPCA: method presented in Section 6.4. We used the gradient-based atittmgzroce-
dure with the speed-up explained in Section 6.1.

The estimated performance of the four algorithms is presented in Fig. 7e,Theralso show
the results of VBPCA which turned out to be the most accurate method. We gsiratie observed
results in the following.

The gradient-based LS approachn be used for data sets with a relatively small amount of
missing data. For such data sets, it provides reasonable accuraggrgamfast and scales well to
high-dimensional data. However, its performance deteriorates fast witinchease of the ratio of
missing values. The algorithm can get stuck at regions where learnicggas very slowly and
overfitting problems become very frequent. When overfitting happense garameter values can
grow very large to explain perfectly only part of data. This results in &y generalization and
large test reconstruction errors (see discussion in Section 2.1). fAimusethod can badly overfit
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Figure 7: Left: Average test RMS errors (colored bars) and trainib$Rrrors (white bars) ob-
tained from 30 realizations of data sets of three types. Right: Average tinent@e
gence, in seconds, estimated in the same way. Note the different scalerdnghplots
for VBPCA.
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even in relatively simple problems. We observed similar performance folltéraating optimiza-
tion (see Section 2.2) of the sum-squared cost function: The alternattimgization procedure
provided similar reconstruction errors but it seemed to get stuck in regitthslow convergence
more often.

The simplest strategy darly stoppingdid not seem to improve the performance of the LS
algorithms. On the contrary, the obtained accuracy was the worst amoogritidered approaches.

The imputation algorithngan also be a good choice for data sets with a relatively small amount
of missing data. The algorithm converges fast, provides good accanady has less problems with
overfitting compared to explicit optimization of the sum-squared error. Herwydve complexity of
the required computations grows fast with the increase of the dimensionaitiegherefore the
algorithm is hardly applicable to large-scale data sets.

MAPPCAIs a fast algorithm which provides reasonable accuracy for data seta wathtively
small amount of missing data. In many cases, it slightly outperforms the L®agpes in terms
of the reconstruction accuracy. It is also less prone to serious overfitoigems compared to
explicit optimization of (4). Again, similar performance was observed formR&A optimized
with the alternating optimization procedure explained in Section 2.2.

7.2 Performance of More Advanced Probabilistic Approaches Whenl <« n

In this section, we present the performance of the more advanceddrsti@approaches:
e PPCA presented in Section 3.1
e PPCAd which is PPCA with fully factorial variational approximation explaine8éction 6.3
e VBPCA presented in Section 3.3

e VBPCAd which is VBPCA with fully factorial variational approximation explaihi& Sec-
tion 6.3.

We used the gradient-based optimization procedure with the speed-umesrlaSection 6.1 for
training PPCAd and VBPCAd.

Fig. 8 presents the estimated performance of the algorithms for three datdtheds< n. We
also show the results of MAPPCA for comparison. We summarize the resules falkbwing.

Approaches using variational approximations, especially VBPCA andGA&R may suffer
from the underfitting problem. The algorithms may converge to a sub-optinhaico (corre-
sponding to a local minimum of the VB cost function) in which some potentiallyulgafncipal
components are not used. The algorithms seem to find such sub-optintarsolmore often for
sparse data. Special care has to be taken to avoid such local minima.aRgulexin the presented
experiments we fixed priors faV to be very broad at the beginning of learning and this helped
improve the performance of VBPCA and VBPCAd significantly. See alsoxperanent showing
the effect of the broad priors in Section 7.3.

PPCAdis a very efficient algorithm for data sets with< n. Its reconstruction accuracy is
comparable to the best results (obtained with VBPCA) but the algorithm opewéast and scales
well to high-dimensional problems. The difference of the accuracy @/A/RRFcompared to the best
results of VBPCA becomes more noticeable when the ratio of missing valueg owuthber of
estimated principle components increase.
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Figure 8: Left: Average test RMS errors (colored bars) and trainibt$Rrrors (white bars) ob-

tained from 30 realizations of data sets of three types. Right: Average tinent@e
gence, in seconds, estimated in the same way. Note the different scalerdnghplots
for VBPCA.
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VBPCAdprovides similar performance to PPCAd for data sets @itk n but it is more prone
to the underfitting problem mentioned earlier.

VBPCAandPPCAare the most accurate algorithms in these experiments. However, they are
also very slow because of the required computations of the posterionamos@ matrices. Thus,
the methods are computationally very expensive to use in high-dimensiaidéprs but if they
are feasible, they are worth trying. The difference in the accuracyBRPGA and PPCA is not
noticeable in these experiments. This is likely due to the fact that the nundfsamples was very
large and the effect of priors was very small. VBPCA is also more pronetorttderfitting problem
compared to PPCA.

7.3 Performance in Difficult Sparse Problems

In this section, we test the performance of the considered algorithms oneadanmaltenging data
set 100-10-g. The data set is quite sparse (up to 75% of values areghiasththe numben of

samples is very small compared to the data dimensiordili8parse data sets with~ n can appear
in some practical applications. For example, in collaborative filtering the nuofhgsers can be
comparable to the number of ranked items and the number of missing values leager Here we
used Gaussian data with= d = 100,c = 10 principal directions and with relatively small noise.

Fig. 9 presents the performance of the considered algorithms for thieselTti@ LS algorithms
and MAPPCA do not provide good performance because of overfittivigigms. The probabilistic
approaches perform much better and the best results are obtained WwtBA/Brhe advantage
of VBPCA becomes more significant for data sets with many missing values.eXperiments
also show a larger effect of using priors in VBPCA and VBPCA (in corspa with PPCA and
PPCAd) for data sets with a relatively small number of samples.

One of the reasons for the superior performance of the VB approaith ability to select
automatically the optimal rank of the model by cutting off useless principal casme. Model
selection is useful even in such artificial tests (when the number of princgmaponents used
for data generation is known) because the number of components wiiaseful for reliable
reconstruction of missing data can turn out to be smaller than the model radKarsgenerating
the data. Thus, the reported accuracy of the algorithms alternative to XBRE VBPCAd might
be improved if model selection was explicitly performed for them (e.g., bysevatidation).

In Section 7.2, we pointed out that the downside of the VB model selection isxiegence
of multiple sub-optimal solutions corresponding to different local minima of tBecwst function.
Solutions in which the effect of some components is set to zero are potentiadlgtize for the
method. In order to avoid sub-optimal solutions, we fixed the prior$\fdo be very broad at the
beginning of learning for VBPCA and VBPCAd in our experiments. We sltiosveffect of the
number of iterations with fixed broad priors on the resulting accuracy inlbig.

A useful feature of the VB approach is that the value of the VB costtfonat a local minimum
can be used to estimate the accuracy of the corresponding model. Thissféitowthe fact that the
VB cost gives the lower bound of the likelihood, as shown in (22). In Fig.we demonstrate the
correlations between the accuracy of a trained VBPCA model and thespamding value of the
cost function. In that experiment, we initialized VBPCA in two different wapsl applied it to 30
realizations of the 100-10-g data set with 80% of missing data. The negedirk was that different
initializations led to different VBPCA solutions for most of the 30 realizationse positive result
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Figure 9: Left: Average test rms errors (colored bars) and trainingernass (white bars) obtained
from 30 realizations of data set 100-10-g. Right: Average time to coamnery in sec-
onds, estimated in the same way.

was that the solutions with the smaller cost function values generally probitéet reconstruction
accuracy. Similar results were obtained for VBPCAd (not shown here).

Thus, in order to find alobally good VB solution, one could, in practice, run the learning
algorithm many times. The algorithm should be run ufull convergence otherwise the cost
function values cannot be used for model comparison. Running VBR®&e computationally
heavy because it is the slowest algorithm among the considered onegforaeVBPCAd is an
attractive alternative for large-scale data sets.

7.4 Experiments with the Netflix Data

We have tested different PCA approaches in the task of collaborativenfiiteThe Netflix (2007)
problem is a collaborative filtering task that has received a lot of attengioently. It consists of
movie ratings given byr = 480189 customers td = 17770 movies. There af¢ = 100480507
ratings from 1 to 5 given, and the task is to predict 2817131 other ratmga@the same group of
customers and movies. 1408395 of the ratings are reserved for validatipnobing). Note that
98.8% of the values are thus missing.
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The PCA approach is one of the most popular technigues considered bietflix contestants
(e.g., Funk, 2006; Bell et al., 2007; Salakhutdinov et al., 2007; Pat2é€k’; Lim and Teh, 2007).
In our recent conference papers (Raiko et al., 2007a, 2008),iekttr estimate = 15 principal
components from the data using unregularized (LS) PCA, MAPPCA, @#CAd approaches.
We reproduce the results for the LS approaches in Fig. 12. The relaty/cshow that overfitting
is a serious problem for this sparse data set and the LS approach fagsaldo evident that the
alternating optimization algorithm is very slow and it can hardly be used fdr Bigh-dimensional
data. The imputation algorithm is also infeasible in this problem (Raiko et al.,)2068 proposed
remedy is to use probabilistic approaches.

Fig. 13 presents the results obtained with MAPPCA and VBPCAd using anganpymber of
principal components. MAPPCA starts to overfit after about five hoficemputation, that is, the
RMS error on the test data (lower curves) starts to degrade even if tt& ékMr on the training
data is still diminishing. This does not happen with VBPCAd as the validatiorr sgems to
decrease monotonically. The experiments also confirm that VBPCAd is datignally scalable to
very large problems. We also tried to run VBPCA, but the straightforwaatld¥d implementation
turned out to be too slow to produce meaningful results. The experimengsrure on a dual cpu
AMD Opteron SE 2220 using Matlab and the implementations did not use pa@ihgting.

Our best RMS error for the probing Netflix data was 0.9055 and it waigesth with VBPCAd
with 50 components. The same model re-trained using both training and gditia provided an
RMS error 0.8990 on the quiz set. The only pre/post-processing thaseg was bounding the
reconstructiong;j such that 1< y;; <5. This is a good result compared to conceptually similar
models developed by other contestants. For example, Bell et al. (2083ied an RMS error
of 0.9135 with basic factor analysis with 40 components. Lim and Teh (28idjed a model
which basically implements VBPCA and they reported an RMS error of 0.9444 model with
30 components. Salakhutdinov and Mnih (2008b) reported the probing &br 0.9280 for an
SVD method which essentially implements the LS approach. Their constraioleallistic matrix
factorization model provided a probing RMS error 0.9016 but it usecdéxtormations and more
sophisticated priors. The accuracy of our VBPCAd model is comparaliectaccuracy of an
MCMC approach applied to a similar generative model (Salakhutdinov anti, A08a). The
RMS error achieved with a model with 60 components trained by MCMC wa$89.89 the quiz
set.

Besides reconstruction of missing values, probabilistic PCA methods prexideinformation
which can be useful in practice. For example, one can predict the tamtgrof the provided
reconstructions, as discussed in Section 5. Fig. 14 shows good tomdiatween the probing
RMS errors and the uncertainty of the reconstructions computed by VBP@As clear that the
predicted uncertainty is underestimated, which is largely because of thexapptions used in
modeling the posterior distributions.

The estimated uncertainty can provide additional information when PCA isasadprepro-
cesing step for more sophisticated methods. For example, Bell and K&¥@n)(@sed PCA results
for constructing a user-oriented neighborhood model for collaberéitiering. Because each col-
umn of matrixX computed by PCA can be considered as a collection of some featuregasssoc
with a particular user, the similarity betweerusers can be estimated based on the similarity be-
tween the columns oX. The information about the uncertainty of the feature estimates could be
used to build a robust similarity measure: Users who have rated few mowviesvzose features
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are estimated with high uncertainty) should not affect the predictions ofrtegihbors as much as
users who have rated many movies (and whose features are estimatedounatedy).

Finally, we note that the accuracy achieved by the best teams in the Netflixetiiompis
significantly better than the numbers reported here. However, that dbesean that PCA (and its
implementations discussed in this paper) is of no use in collaborative filterikgy s the contrary,
PCA or its close relatives were used by the leading teams (e.g., Bell et ar) @9@n important
element of the final blend of models. The key to success in that competitioinvwasnbining a
vast collection of different models rather than in perfecting a single agpr¢e.g., The Ensembile,
2009).

8. Discussion

We have reviewed the problem of PCA learning in the presence of missingsvand discussed
various approaches to it. We demonstrated that the simplicity of PCA is lost imtrexlucing
missing values. Firstly, the estimation of the bias term and the covariance mathg data be-
comes difficult and thus the solution by eigen-decomposition cannot balireetly. Secondly, the
convergence to a unique solution cannot be guaranteed even for tHesiPGA models.

Missing values also make the problem of overfitting more relevant to PCAgse itha need for
some form of regularization. In regularized solutions, reconstructibdata vectors are no longer
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conditions | small-scale problems | large-scale problems
few missing values imputation gradient-based LS
d<n PPCA PPCAd
many missing values @t~ n VBPCA VBPCAd

Table 6: Recommendations on the use of different PCA algorithms.

the projections of the data to the principal subspace. Regularization cadoneeelegantly using
probabilistic models.

Inference and learning in the relevant probabilistic models are generaty cemplex com-
pared to the complete data case. For example, the posterior covarianoegfgd componenty,
is no longer same for each sample. Thus, a diagonal posterior covakigris no longer sufficient
for finding the optimal PCA solution. Regularized models typically have mord forama of the
optimized cost function. In particular, there can be local minima correspgnd zero values of
hyperparameters.

Another type of treatment for random variables is to use MCMC methods. beeéafits com-
pared to VBPCA includes not having to assume posterior independende (i&8) and being able
to vary the number of components (Hoff, 2008), but the downsides incladse interpretability,
higher computational complexity, and the need to store samples in case theisniode¢ applied
to new incoming data. Salakhutdinov and Mnih (2008a) used Gibbs samplindizeitiavith the
MAPPCA method for the Netflix problem. The resulting accuracy was similar te with simi-
lar number of components (0.8989 with 60 components against our 0.88%BRCAd with 50
components).

Large-scale PCA problems require fast converging learning algorithrichwallow for efficient
implementation. Additionally, sparse data sets require that the amount of comparteory would
scale linearly with the number of observed values regardless of the data distensionalities. In
this paper, efficient solutions are proposed based on fully factonigtianal approximations and
approximate Newton’s iteration for the relevant optimization procedure. |#ennative learning
algorithm based on natural gradient was discussed in our confepapee (Raiko et al., 2008).

The choice of the right PCA algorithm depends on a particular data anplypdieem. We gave
some recommendations in Sections 7.1-7.3 and we summarize our recommeridatiaiie 6.
The LS approaches can be applied to data sets with relatively few missingTdeamputation
algorithm can be a good choice for smaller-scale problems and the gradised-LS algorithms
would be good for large data sets. When the nunmbef samples is relatively large and the data
matrix is relatively densely populated, PPCA is a proper choice (or PPGAlhfge-scale prob-
lems). VB algorithms can be most efficient when there are very few sangbles or for very
sparse data sets. Again, VBPCAd would be a better alternative for $aaje-problems.

A Matlab toolbox which contains implementations of all the considered PCA tegbsits
available online ahttp://www.cis.hut.fi/projects/bayes/ . Some of the implemented algo-
rithms scale well to large-scale sparse data sets, which is achieved by Evinlementation of
core computations and by support of parallel computing. For example xffeziments with the
Netflix data reported in Fig. 13 were obtained using the provided Matlab code
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Appendix A. Notes on the Imputation Algorithm

The imputation algorithm can be seen as the application of the EM algorithm (Demepal., 1977)
to the model

yj = WXj+m+Egj

with isotropic Gaussian noigg(ej) = AL(¢€j;0,wl) and model parameteW, x;, m, vy. Note that
X;j belong to the model parameters and missing valugs are treated aBidden variablesThis is
contrary to the probabilistic PCA model (see Section 3.1) wheare treated as hidden variables.
Note also that with this interpretation, there is no well defined inferenceedtoe for a new data
case outside of the training set.

Following the view of the EM algorithm presented by Neal and Hinton (1988)can write
down the cost function

Clmp(e,Vy7Q(Ym|s)) = /Q(Yrms) log p(Y\G,vy) dYmis
_ Siog A0mis)
= / d(Ymis) log VonslB.%) dYmis — 109 P(Yobs/6, Vy ) , (40)

which should be minimized w.r.t. model parametérs: {W,m,x;,Vj}, v and the pdf over the
missing datay(Yimp). We denoted the missing data ¥yis = {yij , ij ¢ O} and the observed data by
Yobs = {Yij Jj e O}-

Minimization of (40) w.r.t.q(Ymis) for fixed 8 andvy yields thatg(Ymis) = p(Ymis|6,Vy) because
the first term in (40) is simply the Kullback-Leibler divergence between tloepmifs. It is straight-
forward that

P(Ymis|6, vy) = N (Yij: i (8),w)

ije
wherey;j (0) are the reconstructed missing values using (5) with the current estifat€bus,

infilling missing data with the reconstructiogg(8) is the step of the imputation algorithm which
corresponds to the E-step of the EM-algorithm.
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Collecting the terms in (40) which depend only ®@andvy gives

—/Q(Ymis)bg p(Yobs;Ymis’evvy)deis

_ _dn 1 o 02 L S (9 0 (0)2
__7logzmy_7Wigo(ylj ~5i(®) 2Vyij§o[(y” 5i(9)) +Vy]
dn 1 . 2 dn—N
:—?Iogmy—z—vyg(yij—yij(e)) T (41)

It is easy to see that minimization of (41) w.6tis equivalent to minimizing the LS cost (2) for the
infilled data matrix. This is done in the imputation algorithm by SVD of the complete datiaxma
Thus, the M-step of the EM-algorithm corresponds to performing SVD imtipaitation algorithm.
Minimization of (41) w.r.t.vy does not affect the steps of the imputation algorithm.

The imputation algorithm implicitly minimizes the cost function (4), thus it belongs toltEsc
of LS PCA algorithms. It can be shown (Neal and Hinton, 1999) that the mimiof(40) coincides
with the minimum of minus log-likelihood

N 1 R 2
—log p(Yobs|8,Vy) = — log 2rvy + —— yij —¥ij(8))". (42)
obs y 2 y 2VYiJgO( 1) 1] )

Replacingvy in (42) with its maximum likelihood estimate yields that the function being minimized
is

N 21 . 2

Nfen( 051007 1]

from which it follows that the imputation algorithm implicitly optimizes the sum-squareat.e

Appendix B. Conditions Fulfilled at the Convergence of Probabistic PCA

The variational view of the EM algorithm allows for an interpretation of the RR€rning algo-
rithm in which the cost function
c— AX) g
_/q(X)Iog p(X)dX /q(X)Iogp(Y]W,X,m,vy)dX (43)

is minimized w.r.t. to the model paramet&s m, vy and the pdiy(X). The E-step fixes the model
parameters and minimizes the cost function w.r.t. the distribuf{) while the M-step minimizes
C w.r.t. W, m andvy assuming thad)(X) is fixed.

Let us consider simple transformations{®, m,q(X)} which do not change the second term
in (43). For example, subtraction of a constarftom the columns oX can be compensated by
changing the bias termm correspondingly:

GX) [ AC (X% — 1 2x ) (4)
Jll (Xj5X; )

m < m+Wu. (45)
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becausey = Wx + m = W(x — u) + (Wp+m). Similarly, rotation of the columns oX can be
compensated by changiny:

n

X) < AL (xj; AXj, AZ AT) (46)
=1

W WAL (47)

becausg = Wx +m = (WA ~1)(Ax) +m.
These transformations generally affect the first term in (43) which is thilb&ck-Leibler di-
vergence betweeq(X) andp(X):

D:Ji/q(x,)o

and at the convergence this term cannot be made smaller by transfornwdttbesorm (44)—(45)
or (46)—(47).
Transformation (44)—(45) changes (48) to

n
dxJ Z [tr Zx;) +x! jXj —logdetsy, | . (48)

N \

n
Z [tr (Zx) + WX - — logdetsy; | .

Now taking the derivative w.r.{1 and equating it to zero gives the optimai= %g’j‘zlij. At the
convergence, the optimplshould be zero and therefore (34) should hold.
Similarly, transformation (46)—(47) gives

1 n
tr(AZAT) +X]ATA; — logdetAZ, AT) |
j:l
n

étr (A, AT) — Z logde(AZ, AT),

wherez, = 257, [XX] + Z,]. Taking the derivative w.r.tA gives
Az, —(AH) =0

and therefore the optimal satisfiesAZ, AT = |. Transformation (46)—(47) yields that < A, AT
and therefore at the convergerite= |, which is condition (35).

Appendix C. Variational Bayesian PCA (VBPCA)

The following form of the posterior approximation is used:

d

d n
qW,X,m) = _ﬂN(m;m,ﬁ\)_ﬂN(Wi;Wi,Zwi) rllﬁ\é(xj;ij,zx,-) :
1= 1= =
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The update of the principal components:
i€0;j
-1 _ _ .
Xj:*ZXj Wl(ylj_m)a J=1...,n.
W i

The update of the bias term and matvik

O+ w/10) 21~ ™%
. VyVim
m= ! 50
|Gi[ (v + W/ |Gi) (50)
-1
Zw = W (wdiagvh) + ¥ [Xix] +3])
€0
1
RS Wj;i iWij
and the variance parameters:
l W' X m A vy N v - —
W=y > [(Vij — WIXj — M) + Ty + W S Wi + X[ S X + (S Zuy) |
ijeO
13 (2 ) d -
Vo = 2, (Wi - Whe) +m) (51)
W, di; i i Zl

wherewj is thek-th element on the diagonal &, .

Appendix D. VBPCA with Fully Factorial Approximation (VBPCAd )

VBPCAd uses the fully factorial posterior approximation

d

d cn
q(W,X,m)z_UN(m;m,rﬁ) |'|9\C(W.k Wik, Wik) |j||'|1 (%) X, %)

k=1
The VB cost function is then the sum of the following terms:
d d c c n
Co= > Gyij+ ZlCmH‘ chvvik+ > > Cui:
ije0 i= i=1k=1 k=1j=1

where the individual terms are

1 c 1
Gyij = 2V |:(y|j_W;rXJ M) +m+ Zl W|kaJ+W2kaJ+W|kaJ)] +§|Og2TlVy,

3 qm)\  m+m 1 m 1
Cmi = <|°g p(m)> =T 299y "%
ka—<|ogq(wik)>—wﬁ‘+w'k—1l Wi 1
' P(Wik) Nk 2 TVak 27
d(Xkj) 15
G = <Iog p(xkj)> = 5 (%) %) — 5 10g% — 5
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Variational parametersy, m;, vk andvy, are updated to minimize the cost function using the
update rules in (49)—(51). ParameterX can be updated to minimize the cost function:

-1

_ Vi 2 o

Wik:Vy[er (XﬁjJerj)] ; (52)

wk €D
-1
w3 ()| (59
i€Q;
The update rule foyy is
1 CTo 2L e e (o 2 WSt 4
Vy =5 > | O = WG =S W S (Wi + Wik + Wi ) | -
ije k=1

Minimizing the cost function w.r.t. each paramet@; keeping the others fixed would lead
to a slow algorithm (e.g., Honkela et al., 2003). Instead, derivativasirastjfor gradient-based
optimization are:

Cp Wk 1 g
oWy m \Tyje i[—(ylj — W, X; m)Xk1+w.kka},
Cp 1 g

a?kj =X+ vy ie%j [_ (y'J Wi Xj m)Wlk—l-Wn(XkJ} .

The second-order derivatives which can be used to speed up lgaasrexplained in Sec-
tion 6.1, coincide with the inverse of the updated variances given in (52)):—&chb/0v*vﬁ( = v”\@1
ando?Cyp/0%Z; = X
Appendix E. MAPPCA

The cost functiolCyap is given in (39). The alternating optimization procedure can be implemented
as follows:

1
xj:<vyl+ WiWiT> Wi (Yij —m;), i=1,....n,

i€0; i€0;
Vm T
my = =W X |,
O n+%/10) 125, [vij —wix]
. 1 T -1 .
Wi:<Vyd'ag(Vw,k)+_ Xixj> 'Z)Xj(yij_m)’ i=1,...d,
J€0; IIEe]
1
W Nigo(yii —wixj —m)?,
1 d 1 d
“lsw 1
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Gradient-based learning discussed in Section 6.1 requires the followingties:

0Cvap Wik 1

Wik 2 ; [_(yij —wX;] —mi)xkj} ,

aWik Vwk —Vy i

9Cmap — X % [—(yij — WX —m)""“‘}’
€0

OXj i
PCwe 1 1o
owg Viwk Vyje% <
OZCMAP 1
axs. Vo . Wﬁ‘
i Yie0;
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