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ABSTRACT: Free-energy calculations in the framework of classical
molecular dynamics simulations are nowadays used in a wide range of
research areas including solvation thermodynamics, molecular recog-
nition, and protein folding. The basic components of a free-energy
calculation, that is, a suitable model Hamiltonian, a sampling protocol,
and an estimator for the free energy, are independent of the specific
application. However, the attention that one has to pay to these
components depends considerably on the specific application. Here, we
review six different areas of application and discuss the relative
importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the
many pitfalls present in free energy calculations.

1. INTRODUCTION

A wide range of fundamental chemical quantities such as
binding or equilibrium constants, solubilities, partition
coefficients, and adsorption coefficients are related to the
difference in free energy between particular (non)physical
states of a system.1 By means of statistical mechanics, free-
energy differences may be expressed in terms of averages over
ensembles of atomic configurations for the molecular system of
interest. Such an ensemble can be generated by Monte Carlo
(MC) or molecular-dynamics (MD) techniques. Much of the
statistical-mechanical framework for calculating free energy
differences has been developed some time ago.2−6 The free
energy F of a system in the canonical ensemble (i.e., at constant
number of particles, volume, and temperature) is given as
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where kB is Boltzmann’s constant, T the temperature, h Planck’s
constant, N the number of particles or atoms in the classically
treated molecular system, and r ⃗N = (r1⃗,r2⃗,...rN⃗) and p ⃗N =
(p ⃗1,p⃗2,...p ⃗N) the Cartesian coordinates and conjugate momenta
of all N atoms, respectively. The factor N! is only present for
indistinguishable particles. The Hamiltonian H(p ⃗N, r ⃗N) consists
of the kinetic energy K(p ⃗N) and the potential energy V(r ⃗N) of
the system. The latter describes the interactions between the
various atoms and is also called a molecular force field.7 Since
the integral in eq 1 is 6N-dimensional and the integrand is
positive definite, the absolute free energy can only be calculated
in particular cases, that is, for very simple model systems for
which an analytical expression for the partition function can be
obtained. In an isothermal−isobaric ensemble, the correspond-
ing free enthalpy8 or Gibbs energy9 is given by
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In condensed phase systems such as biomolecules in aqueous
solutions the pressure−volume work term pV is usually
negligible such that we use the term f ree energy throughout
this review.
For practical applications, it generally suffices to calculate

relative free energies,

Δ = −F F FBA B A (3)

where A and B denote two different systems, HA(p ⃗
N, r ⃗N) and

HB(p⃗
N, r ⃗N), or two different states that are connected by a

coupling parameter λ, H(p ⃗N, r ⃗N; λ) leading to
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or two different states along a phase space (reaction)
coordinate R(r ⃗N), leading to
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How to apply this framework in computer simulations in an
effective fashion remains, however, a very active area of
research, giving rise to over 3500 papers using the most popular
free energy methods that were published in the first decade of
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this century with the publication rate increasing ∼17% per
year.10 This rapid development comes at the price that it is
increasingly difficult for researchers to find their way through
the maze of available computational techniques. For reviews on
the methodology to calculate free energy via molecular
simulation, we refer to the literature.11−20 Reviews that are
more application oriented can be found in refs 21−23. No
single method for free-energy calculation can be considered as
clearly superior to the others, and the proper choice depends
very much on the system under consideration. Christ et al.18

identified three main challenges that have to be met in free
energy estimation from molecular simulation, which are (i) the
choice of a suitable model Hamiltonian, (ii) the choice of a
sampling protocol that allows generating a representative
ensemble of configurations, and (iii) the choice of an estimator
for the free energy difference. The aim of the latter review was
to enable the reader to classify the vast array of methods by
identifying which choices have to be made for these three basic
components. Here, we attempt to enable the reader to be aware
of the various peculiarities and pitfalls that are characteristic for
the various (bio)molecular systems for which free-energy
calculations are performed. We do this by discussing
equilibrium free-energy computation from the systems point
of view.
In classical molecular simulation three categories of free-

energy differences can be distinguished, which are conforma-
tional, alchemical, and thermodynamic free energy differences.
Conformational free-energy differences refer to differences
between two distinct conformational states (e.g., a left and a
right-handed helix) of the same system. Alchemical free-energy
differences refer to differences between two states differing in
their Hamiltonian. Thermodynamic free-energy differences
refer to differences between two thermodynamic state points
(e.g., two different temperatures). In this review, we focus on
the first two types of calculations, their differences can be stated
as follows. The free-energy difference between two conforma-
tional states is a logarithmic measure of the relative partition
functions corresponding to a common Hamiltonian but
integrated over different regions of configurational space of
the system. The free-energy difference between two alchemical
states is a logarithmic measure of the relative partition functions
corresponding to the entire space in terms of the degrees of
freedom of the system, but performed considering two different
Hamiltonians (that are both functions of the same number of
degrees of freedom).
Due to the explosion in the number of publications since the

early 1990s no review of the state of the art can hope to be
comprehensive. However, there is broad consensus about the
necessity of further methodological developments and the
definition of best practices in all areas of applications in
(bio)molecular modeling, of which the main ones are (i)
solvation of small neutral molecules, (ii) solvation of larger
(drug-like) heteromolecules, (iii) solvation of (single)
monatomic ions, (iv) solvation of polyatomic ions, (v)
noncovalent binding, and (vi) conformational changes. In the
following these application areas are reviewed separately with
an eye to identify current obstacles and challenges.

2. SOLVATION OF SMALL NEUTRAL MOLECULES

The free energy of solvation corresponds to the free energy of
transferring a compound from a well-defined state (gas) to
another (solution), allowing a direct comparison with experi-
ment. The calculation of the free energy of solvation usually

involves an alchemical transformation and was one of the first
practical applications of the free energy perturbation and
integration methodology.21,22,24 Today, solvation free energies
remain of primary importance for developing and testing force
fields, for testing new methodology, for gaining fundamental
insights into the solvation process, and for specific applications
such as predicting how molecular compounds will partition
between different environments.
Condensed-phase or biomolecular force fields (e.g.,

CHARMM,25−29 AMBER,30−33 OPLS,34−38 and GRO-
MOS39−49) mainly aim at the description of (bio)molecules
in solution. They focus on the description of torsional-angle
properties, nonbonded interactions, and solvation effects.
However, the parameter sets used to describe most compounds
have historically been based primarily on structural properties
and fitting to results from quantum-mechanical calcula-
tions.50,51 This is despite the fact that many properties of
interest, especially in biomolecular systems, such as protein or
peptide folding, depend on how compounds or their
constituent moieties partition between different environments.
The primary reason why thermodynamic properties have until
recently not been more generally incorporated into force-field
parametrization was cost, and the difficulty in obtaining
converged results.
However, solvation free energies have been used extensively

for the verification of the OPLS force field,52−54 especially to
rationalize the choice of partial atomic charges,55−57 which are
empirical parameters. For the most recent versions of the OPLS
all-atom (AA) force field the partial charge assignment was
based on hydration free energies calculated in explicit solvent
for a set of 239 small molecules spanning diverse chemical
functional groups commonly found in drugs and drug-like
molecules.58,59

When reparametrizing the GROMOS force field for the
aliphatic CHn united atoms in 1998, Daura et al.40 fitted the
repulsive van der Waals parameter of the water oxygen for
interactions with nonpolar atoms to reproduce the exper-
imental free energies of hydration of five of the alkanes studied:
methane, ethane, propane, butane, and isobutane. Subsequent
versions of the GROMOS force field have specifically been
developed to reproduce the free enthalpy of hydration and
apolar solvation in explicit solvent. The 53A5 force field44 was
developed for an accurate description of the thermodynamic
properties of pure liquids. Since it did not seem possible at that
time to reconcile both pure liquid and hydration properties
with a sufficient accuracy, the 53A6 force field44 aimed
primarily at reproducing solvation properties of (neutral)
amino acid side chain analogues in aqueous and nonaqueous
solvents. The 53A6OXY parameter set60 strikes a balance
between 53A5 and 53A6 versions, by providing a single set
to reproduce both pure-liquid properties and solvation free
energies of small oxygen-containing molecules. The 54A7 force
field48 is based on 53A6 with a number of force field
adjustments, among which the Lennard-Jones interaction
parameters of the sodium and chloride ions were changed
based on calculated absolute single ion solvation free energies
(see also below).61 In subsequent work, also, other functional
groups such as occurring in sulfones62 or in amines, amides,
thiols, sulfides, and aromatics were (or are currently)
(re)parametrized aiming at simultaneously improving pure-
liquid and solvation properties. Recently, force-field parameters
describing 110 post-translationally modified (PTM) amino
acids and protein termini, compatible with the GROMOS force
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fields 45A3 and 54A7, were derived. Validation against the
hydration free energy of side-chain analogues showed that the
newly generated parameters compatible with the GROMOS
54A7 parameter set reproduce experimental data almost equally
well as the original parameters reproduce hydration free
energies for side-chain analogues of naturally occurring amino
acids.63 A web server for automated introduction of PTMs to
protein 3D structures is available.64 Parameters for post-
translationally modified amino acids have also been reported
for the AMBER ff03 force field. However, the assessment was
based on structural properties of proteins rather than on
hydration free energies of side-chain analogues.65

Recently, Mobley et al.66,67 have reported hydration free
energies for 504 small molecules parametrized using the
AMBER Antechamber program68 to assign parameters for a
general AMBER force field (GAFF),69 which is compatible with
the all-atom AMBER biomolecular force field. They identified
systematic errors in force-field parameters for particular
functional groups such as alkynes, which could be fixed by
using OPLS Lennard-Jones parameters for triple bonded
carbons. Subsequent work focused on ethane, biphenyl, and
dioxin and their chlorinated derivatives.70 Except for the ethane
derivatives, the agreement with experimental data was less good
compared to their earlier set of small molecules. The
introduction of virtual charge sites led to some improvement
but the remaining error might not be reducable using fixed
charge models. Hydration free energies were calculated with
both implicit66 and explicit67 solvent. It was concluded that the
explicit solvent simulations reliably outperform today’s implicit
solvent models. Based on their extensive set of data, Mobley et
al.67 also proposed several remedies to improve implicit solvent
models. The better performance of explicit solvent simulations
over implicit ones was also noted by Shivakumar et al.71 using
the GAFF69 force field and the all-atom CHARMm-MSI72 one.
More recently, Knight et al.73 calculated the hydration free

energies of a set of 457 small neutral molecules using the
CHARMM general force field CGenFF,74,75 which is
compatible with the all-atom CHARMM biomolecular force
field,76 using three different implicit solvent models. The set of
molecules was based on the one used by Mobley et al.67 and
parametrized automatically using the CHARMM-compatible
ligand parametrization tools MATCH,77 ParamChem,74,75 and
SwissParam,78 as well as by converting the GAFF parameters
from Mobley et al.67 to CHARMM format. GAFF uses the
restrained electrostatic potential (RESP) fitting approach79 to
generate charges for the entire molecule concurrently while the
MATCH, ParamChem, and SwissParam tools use a fragment-
based approach, where charge distributions of a molecule are
built-up from charges assigned to the component fragments of
the molecule. Of the 12 combinations of solvent model and
parametrization scheme the Antechamber parameters (GAFF
with semiempirical Merck-Frosst AM1-BCC partial atomic
charges80,81) yielded the most accurate estimates.
The latter study and others82−84 show that existing methods

based on implicit solvation models are often reasonably
accurate in calculating solvation free energies of a large number
of compounds. However, explicit solvent simulations should
still be regarded as the “gold standard” due to the aim of using
these force fields for heterogeneous systems in solution.67

Recently, an extension of the automatic parametrization
schemes for GAFF and CGenFF has been reported that uses
QM results as primary data.85 This general automated atomic
model parametrization (GAAMP) approach includes also the

optimization of dihedral parameters, that often have limited
transferability, in addition to electrostatic parameters. The
parametrization can start from GAFF or CGenFF as the initial
models.
It should be kept in mind that force-field parametrizations

are usually carried out for one particular water model. While
Shivakumar et al.58 showed that there is little difference in
overall performance of hydration free-energy predictions
between the SPC, TIP3P, and TIP4P water models for a
subset of 13 molecules out of the 239 molecules used in their
study, Shirts and Pande showed that a modified version of the
TIP3P model better reproduces hydration free energies of 15
amino acid side-chain analogues.86 The influence of the solvent
model on calculated hydration free energies of nucleobases and
chloroform-to-water partition coefficients was recently studied
by Wolf and Groenhof87 using various combinations of force
fields in conjunction with their native and non-native water
models. It was found that the large differences in solvation free
energies between different force fields are actually due to the
nucleobase parameters and not the solvent models and that the
difference in hydration free energy due to the use of a different
water model is larger in case of aromatic amino acid analogues
than in case of nucleobases. Hess and van der Vegt88 also came
to the conclusion that the choice of water model strongly
influences the accuracy of calculated free energies of hydration
of amino acid side-chain analogues.
Predictions of hydration free energies for compounds with

multiple functional groups showed that the training sets
currently used still lack sufficient coverage of chemical
space.89,90 For the class of nitroaromatic compounds, Ahmed
and Sandler91 tested 16 force-field/(charge+water) models, out
of which only 6 performed approximately equally well in
predicting measured hydration free energies.
To assess the state of the art of a force field other properties

than the solvation free energy should also be considered. Using
a total of 146 molecular liquids, Caleman et al.92 compared the
ability of the OPLS-AA and GAFF force fields to reproduce key
properties of neat liquids such as density, enthalpy of
vaporization, surface tension, heat capacity at constant volume
and pressure, isothermal compressibility, volumetric expansion
coefficient, and static dielectric constant. The overall perform-
ance of the OPLS-AA force field was found to be somewhat
better, but both force fields have issues with reproduction of the
surface tension and the dielectric constant. By including
experimental dielectric response data, in addition to liquid
density and heat of vaporization, into the parameter
optimization, Fennell et al.93 arrived at new GAFF parameters
for hydroxyl groups that also lead to improvements in the
calculation of hydration free energies for a test set of 41 small
molecule alcohols.
The more diverse the test sets become, and the more diverse

the chemical environments are in which small molecules should
be simulated, the more likely it becomes that fixed charge
models are reaching their limits. Mobley et al.67,90 reported an
RMS deviation from experimental numbers of 5.2 kJ mol−1 for
their test set of 504 molecules, which is comparable to the
RMSD of 6.5 kJ mol−1 Caleman et al.92 found for the heat of
vaporization. For larger molecules with multiple functional
groups, the error in the hydration free energy increases to up to
10 kJ mol−1.89 To be compatible with statistical QSPR
methods94,95 to predict solubility, which have negligible
computational cost, the RMS error has to decrease to about
4 kJ mol−1, also for complex molecules, to justify the significant
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computational overhead of explicit solvent simulations. Addi-
tional degrees of freedom can be included in the para-
metrization process by modifying the form of the potential
energy function for the short-range interactions, the combina-
tion rules for unlike interaction partners, and by considering
explicit polarization. While the Lennard-Jones 12−6 potential
energy function is the most widely used one, it is well-known
that increasing the repulsion exponent may improve the
description of vapor−liquid equilibrium data.96,97 Repulsive
exponents smaller than 12 such as 9 or 8 have also been
suggested.98,99 The former is used for example in the
condensed-phase force field COMPASS.100 Regarding the
combination rules, the standard arithmetic or geometric mean
rules often perform poorly101,102 and are mainly used due to the
lack of systematic and transferable procedures for the derivation
of improved combination rules. For including explicit polar-
ization in empirical force fields, various strategies are currently
developed for many of the condensed phase force fields103

together with automated parametrization schemes that aim at
reproducing hydration free energies.85 However, from disagree-
ment between an experimental and a calculated hydration free
energy alone, it cannot be concluded whether explicit
polarization is needed. This usually requires the consideration
of additional properties such as the dielectric permittivity.
Missing polarizability has, for example, been demonstrated to
be the reason for the underestimation of the hydration free
energy and the dielectric permittivity of N-methylacetamide by
fixed charge models.104 We note, however, that the calculation
of solvation free energies for small molecules is only one aspect
of the complex process of (bio)molecular force-field develop-
ment.
For protein simulations, force-field improvements can only

be evaluated on the basis of comparing simulation results to
experimental data for a diverse set of protein structures.
Recently, Nerenberg et al.105 presented a parametrization
strategy for a fixed-charge protein force field based on the
AMBER ff99SB parameters106 combined with the TIP4P-Ew
water model,107 which is a reparameterized version of the
standard TIP4P water model for use with Ewald summation
techniques. They calibrated the solute−solvent van der Waals
interaction parameters of a set of 47 small molecules
representing all of the chemical functionalities of standard
protein side chains and backbone groups. To be consistent with
the charge model used in AMBER ff99SB, partial charges were
obtained by fitting calculated electrostatic potentials at the HF/
6-31G* level using the RESP method.79 The RMSE in
solvation free energies could be reduced from 7.3 to 2.5 kJ
mol−1. With the combination of original AMBER ff99SB
parameters and TIP4P-Ew water, nearly every chemical moiety
was undersolvated. The new solute−solvent interaction
parameters were evaluated based on simulations of dipeptide
solutions, of short disordered peptides and of ubiquitin. For the
latter case, the favorable enhancement of solute−water
interactions resulted in partial unfolding although the hydro-
phic core remained intact. By reintroducing a 12−10 hydrogen
bonding potential energy term108,109 (instead of 12−6), this
problem could be remedied.
The latter study made use of reweighting for evaluating the

influence of modified van der Waals parameters based on
trajectories generated with the unmodified ones. This approach
is very efficient for parameter studies if the perturbed ensemble
has sufficient overlap with the unperturbed one.110,111 Through

the use of Jacobian factors, it can also be used in case of
geometric changes.112

We conclude that the use of solvation free energies in force-
field calibration, testing, and comparison has become a standard
tool. However, it is again noted that the force-field parameters
are empirical. They have been derived using a specific set of
conditions to reproduce a specific set of properties. As with any
empirical force field, the choice of temperature, treatment of
long-range nonbonded interactions, pressure coupling scheme,
and so on, are implicitly incorporated into the parametrization
but are in fact properties of the underlying algorithms used to
integrate Newton’s equations of motion. This should be kept in
mind when using force fields in conjunction with MD codes
that were not used for the original parametrization or when
changing the implicitly included parameters. The density of
liquid octanol, for example, was reported to be significantly
overestimated while, at the same time, the heat of vaporization
was reported to be underestimated with the GROMOS 53A6
force field, using the GROMACS code presumably with
nonstandard settings113 compared to the recommended
settings in GROMOS.60 This problem might become more
subtle for polarizable force fields, which include additional
choices, such as how they treat intramolecular polarization.114

The current momentum in the area of solvation free energy
calculations will soon lead to a further reduction of the
discrepancy between experiment and simulation, and it remains
to be seen what the residual error will be that defines the limit
of classical force fields.
In terms of the three choices, we conclude that the choice of

the Hamiltonian is the one that has the strongest influence on
the accuracy of solvation free energies of small neutral
molecules. For the other two choices, the current literature
demonstrates that a variety of techniques is available (see
below), which can, in many cases, be used interchangeably to
calculate a solvation free energy with a precision higher than
the acurracy of the force field. However, also, relatively small
molecules require special attention if they show slow torsional-
angle transitions such as in carboxylic acids,115 ibuprofen,116 or
dimethoxyethane.117

Because many methods can often be used interchangeably to
calculate solvation free energies, such simulations are frequently
used in method development, testing, and comparison.
Prompted by difficulties with complex intramolecular potential
energy surfaces, expanded ensemble methods,118,119 a hybrid
Monte Carlo−molecular dynamics approach, has been found to
be significantly more efficient than TI120 or BAR4 due to an
enhanced conformational sampling.121−123 A combination of λ-
dynamics and metadynamics124 has been suggested recently to
enhance sampling on virtual variables.
Alternatives to the widely used nonlinear soft-core scaling

proposed by Beutler et al.125 are being developed that flatten
the potential energy only in a region that is energetically
inaccessible under normal conditions.126 Naden and Shirts127

proposed a formalism based on splitting the potential energy
function into a configurational and an alchemical part. This
approach leads to a lower variance and can be efficiently
implemented. Also, methods based on sampling along a
reaction coordinate, such as the adaptive biasing force
method,128 have been used to calculate the solvation free
energy directly by transferring a solute from the gas phase into
the solvent across the gas/solvent interface.129

Hydration free energies provide a probe of the underlying
physics. Due to the asymmetry of the charge sites in water, its
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response to polar solutes depends on the internal charge
distribution of the latter. Mobley et al.130,131 studied the
hydration of various polar solutes (both fictious ones with
simple geometry and real ones) in different explicit water
models. By inverting the charge distribution in the artificial
solutes, large differences in the hydration free energy of up to
40 kJ mol−1 were found, largely driven by the structure of water
in the first hydration shell. Charge hydration asymmetry also
occurs in ionic solvation and the insights gained from explicit
solvent simulations have helped to improve implicit solvent
models.132−134 Also, the treatment of nonpolar contributions to
the solvation free energy in implicit solvent models could be
improved based on insights gained from explicit solvent
simulations.135 By studying the solubility of alkanes up to n-
eicosane in water Ferguson et al.136 detected no sharp peak in
the dependence of the solubility upon carbon numbers larger
than 12 as suggested by different experimental sources, but
rather a nearly exponential decrease. Moreover, remarkable
similarities in the conformational ensemble in the gas and
solvated phases were found suggesting that the effect of the
solvent interaction is the appearance of a free energy barrier of
order kBT separating the compact and extended free energy
basins for sufficiently long chains and a destabilization of the
most extended chain conformations.
Finally, solvation free energy calculations are used to predict

physicochemical properties of compounds for which exper-
imental data are scarce and structure−property relationships are
uncertain such as for nitroaromatic compounds.137,138

3. SOLVATION OF LARGER (DRUG-LIKE)
HETEROMOLECULES

In many practical applications, topologies and force-field
parameters of larger heteromolecules such as substrates,
inhibitors, cofactors, or drug molecules139−142 are needed.
These parameters are not standardly available and often have
no close analogues within the desired biomolecular force field.
Therefore, they have to be specifically assigned manually or by
automated procedures, which are available for all of the main
families of force fields such as for Amber/GAFF,68,85,143

CHARMM/CGenFF,74,75,77,85,144 OPLS,145 and GRO-
MOS,146,147 although with different levels of sophistication.
Because the parametrization is an underdetermined problem, it
has to be ensured that the parameters are consistent with the
macromolecular force field applied to the other components of
the system. For thermodynamically calibrated force fields, this
validation should include the calculation of the solvation free
energy in polar and nonpolar environments. Unfortunately,
experimental values for solvation free energies are only known
for less than one percent of the millions of organic compounds
prepared to date.148,149 It is of importance to develop efficient
robust and reliable calculation procedures for such molecules
that are often characterized by multiple conformational
substates150−154 that have to be sampled sufficiently in both
the liquid and the gas phase such that the calculated free energy
depends only on the force-field parameters. This makes the use
of enhanced sampling techniques mandatory in many cases.
Khavrutskii and Wallqvist155 combined thermodynamic inte-
gration with Hamiltonian replica exchange and showed that
converged results are obtained for molecules with internal
rotational barriers of up to 60 kJ mol−1 using only a few
nanoseconds of simulation time.
Paluch et al.156 proposed a method to predict the solubility

limit of low solubility solids based on a single experimental

reference solubility for each solute and a single free energy
simulation of the solute−solvent system. The latter was carried
out using an expanded ensemble calculation along with a
combined Wang−Landau/Bennett’s acceptance ratio method.
A particularly important aspect was that the proposed method
requires fewer experimental data points than the Abraham
general solvation model157 used for comparison.
In the absence of any experimental data, solvation free

energies are often predicted by group contribution methods,
such as to predict the hydration free energies of amino acids or
proteins. However, explicit-solvent MD-based hydration free
energies for 15 N-acetyl-methylamide amino acids with neutral
side chains differ considerably from those based on additive
group contribution methods.158

Another example of missing experimental hydration free
energies is that of barbiturates, which are of great
pharmaceutical interest. Using parameters from the OPLS-AA
force field, Garrido et al.159 tested different simulation setups
for an efficient calculation of the hydration free energy
including alternative ways to account for electrostatic
interactions, such as the reaction-field method and the
particle-mesh Ewald method. If the former is used in an
automated setup, the problem of assigning atoms to charge
groups may arise. Recently Canzar et al.160 showed how this
problem can be solved efficiently.
A recent blind test including 63 complex drug-like molecules

showed that solvation free energies are, at present, predicted
with an RMS error of 10−14 kJ mol−1.148

In terms of the three choices, we conclude that the choice of
Hamiltonian for the solvation of drug-like molecules is as
crucial as for the solvation of small neutral molecules but its
accurracy is more difficult to assess due to scarse experimental
data. Moreover, the sampling protocol and free-energy
estimator determine the efficiency of the calculation much
more than is the case for small molecules. The choice of an
appropriate technique is more case-dependent than for small
molecules.
This renders the question of convergence to be more crucial

for drug-like molecules compared to the case of small molecules
discussed above. Approaches such as “double-wide sampling” or
forward and reverse transformations to check for hysteresis in
an alchemical free energy difference are only of limited value if
the forward and reverse directions show very different
convergence behavior such as in case of insertion and deletion
of particles.161 If both equilibrium ensembles have been
sampled, the two trajectories can be efficiently combined in
the context of the Bennett acceptance ratio (BAR) method.4

Apart from sampling errors that originate from suboptimal
sampling of important regions of phase space, the bias due to
finite sample size162,163 is more crucial for larger molecules with
multiple possibly slow degrees of freedom. As pointed out by
Lyman and Zuckerman,164 the simulation length to achieve
statistically independent configurations may be much longer
than expected. On the way to install measures for quality
assurance of simulation results,165 several best practices and
validation tests have been proposed that help standardize the
setup and evaluation of free energy calculations.166−168

4. SOLVATION OF (SINGLE) MONOATOMIC IONS

Within the realm of classical thermodynamics, only sums of
thermodynamic quantities associated with neutral sets of ions
can be probed. These sums may be partitioned into single-ion
contributions, but only within an unknown offset constant
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weighted by the integer ion charge. Single-ion thermodynamics
becomes accessible when spectroscopic techniques such as
photoionization or laser photodetachment are combined with
statistical mechanics.169 However, the resulting parameters, also
referred to as real single-ion solvation parameters, still account
for the mixture of two physically very different effects: bulk
solvation and liquid−surface properties. The estimation of the
surface term requires extrathermodynamic considerations,
which may be either experimental or theoretical, and show
considerable spread (e.g., as much as 100 kJ mol−1 in terms of
solvation free energies for monovalent ions), making the
estimation of intrinsic absolute solvation parameters (i.e., those
which originate exclusively from the ion−solvent interactions)
uncertain. For a comprehensive discussion of these issues, we
refer to the book of Hünenberger and Reif.169 In the context of
atomistic (explicit-solvent) simulations, the single-ion solvation
free energy is usually measured as the work of coupling the
solute (ion) to the solvent (water) and thus reflects naturally
the intrinsic absolute solvation free energy of an ion Iz (denoted
by ΔsG

□ [Ig
z] in ref 169), that is, ideal solvation in a surface-free

fluid at a fixed reference concentration (the same number of
moles per liter in the vapor and solution) under which
condition the entropy of translation in the vapor equals the
entropy of liberation from a fixed point in solution.
Since the earliest calculations of ionic solvation free energies

in the 1980s,170−173 it has been realized that the raw results can
be dramatically sensitive to the boundary conditions and
treatment of electrostatic interactions used during these
simulations, with typical variations on the order of 100 kJ
mol−1 or larger in terms of solvation free energies for
monovalent ions in water. As a result, the parametrization of
ion−solvent interaction parameters suffers from problems
related to the ambiguity of the experimental training set as
well as from the need to correct the raw methodology-
dependent simulation results, so that methodology-independ-
ent values are obtained. The main factors that lead to
discrepancies between simulation (using fixed-charge water
models) and experiment in the context of single-ion solvation
are

(1) approximate force-field representation (functional form,
e.g. absence of explicit electronic polarizability in the
model),

(2) approximate force-field parameters (water and ion−water
parameters),

(3) finite sampling errors,
(4) approximate electrostatics errors,
(5) finite size errors,
(6) improper summation errors,
(7) additional approximations involved in the evaluation of

properties other than the solvation free energy (see
below),

(8) inaccuracy or ambiguity of the experimental data.

Points 1 and 2 are related to the choice of the Hamiltonian
and are thus not different from other free-energy calculations.
Also, point 3 has to be considered carefully in every free-energy
calculation. For points 4−6, a scheme has been developed that
allows to correct raw solvation free energies ex post, so that
methodology-independent values are obtained.61,169,174−178

The corrected results are then exclusively characteristic of the
underlying molecular model, as determined by the representa-
tion of the solvent, of the ion, and of the ion−solvent van der
Waals interactions, and no longer depend on arbitrary

simulation parameters such as the system size or the
electrostatic cutoff distance. These values correspond to the
idealized situation of an infinite bulk phase exempt of surface
polarization, in which electrostatic interactions are exactly
Coulombic. Using this correction scheme, a reparametrization
of the ion−solvent Lennard-Jones interaction coefficients for
Na+ and Cl− (among other ions) with the SPC water model179

(as well as the SPC/E model180) against experimental
hydration free energies was conducted by Reif and
Hünenberger.61 Three different parameter sets (L, M, and H)
were calibrated, corresponding to different assumed values for
the absolute intrinsic hydration free energy ΔGhyd

⊖ [H+] of the
proton at P° = 1 bar and T− = 298.15 K, which is an
experimentally elusive quantity.169 Recently, Dahlgren et al.181

extended the correction scheme to derivative thermodynamic
hydration and aqueous partial molar properties (point 7 in the
above list) and showed that approximate internal consistency
and qualitative agreement with experimental results can only be
achieved when an appropriate correction scheme is applied,
along with careful consideration of standard-state issues. As for
the free energy itself, the correction terms for derivative
thermodynamic hydration and aqueous partial molar properties
are substantial. Directions for future improvements, with the
ultimate goal of reaching a consistent and quantitative
description of single-ion hydration thermodynamics in atom-
istic simulations, are also provided in the latter work. Apart
from point 8, the correction scheme permits a thermodynami-
cally consistent calibration of ion−solvent interaction param-
eters. Not correcting for points 4−6 necessarily leads to some
kind of system-size dependence in the calculated quantities, the
degree of which depends on the actual electrostatic scheme
used. This might be acceptable for simulations focusing on
structural properties such as radial distribution functions, which
show remarkable insensitivity to the detailed treatment of
electrostatic forces. Simulations attempting to calculate
quantities related to the energy of the system, however, lump
all the overlooked errors into the non-Coulomb interaction
parameters and are therefore not transferable to other system
sizes and electrostatic schemes. When reviewing the most
recent literature related to ionic force-field parametrization or
the use of atomistic simulations to probe single-ion solvation
properties,182−191 however, it is striking that correction terms
are seldom taken into account. One of the reasons for not
including such corrections might be that in practical simulations
ions are propagated with approximate electrostatic interactions
within systems of finite sizes which differs from the ideal
situation of Coulombic electrostatic interactions in a macro-
scopic nonperiodic system underlying the interaction parame-
ters calibrated against methodology independent hydration free
energies. This might strongly affect the configurational
sampling and might lead to a significant undersolvation
especially for small box sizes,190 because the correction terms
representing methodology-independent ion hydration free
energies are predominantly negative. It would therefore be
desirable to design effective electrostatic interaction schemes
which correct the approximate electrostatics and finite-size
effects at the level of the forces, so as to achieve a solvent
polarization around ionic groups that is exempt of artifacts.
Attemps to include the correction terms into the equation of
motion by means of restraints are in progress.192

We note that calibrating ion-pairs instead of single ions leads
to an approximate cancellation of improper summation errors
because these are linear in the ionic charge, but it has the
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disadvantage that the underlying single-ion solvation free
energies can only be determined up to an additive constant
leading to a range of possible interaction parameters that all
lead to the correct ion pair properties in dilute solutions. When
using simulations of finite concentrations to determine these
additive constants and thus the appropriate interaction
parameters, one faces the problem of calibrating simultaneously
ion−ion and ion−solvent interactions, even for low concen-
tration.193,194 Note that the problem of an unknown additive
constant also appears in case of single-ion solvation where all
values are anchored on the elusive absolute intrinsic hydration
free energy of the proton. Also, in that case, a range of
interaction parameters consistent with what is known about
pair properties in dilute solutions is obtained.61 However, the
advantage of calibrating against absolute intrinsic single-ion
properties is the possibility to sequentially calibrate ion−solvent
(infinite dilution regime) and ion−ion (finite concentration
regime) interaction parameters.
In terms of the three choices, we conclude that neither the

sampling protocol nor the free energy estimator constitute an
obstacle in calculating the solvation free energies of ions. The
choice of the Hamiltonian is classically reduced to the choice of
the ion−solvent interaction parameters and the choice of the
water model, possibly complicated by the need to use
nonstandard mixing rules for ion−ion interactions.61,183

Whether the water model is chosen to be polarizable depends
on the purpose of the ion force field, that is, whether it should
be applied in combination with a biomolecular force field that is
calibrated for a specific water model. The consideration of the
correction scheme represents a fourth choice in the simulation
of ions in solution and allows to obtain solvation free energies
which are independent of the method used to treat the
electrostatic interactions. However, it is currently only available
as an ex post scheme. As a result, ions parametrized in the
context of this scheme might have the tendency to be
undersolvated in practical applications such as using them as
counterions in an MD simulation of a biomolecule. We note
that while it is commonly taken for granted to choose the ionic
partial charges equal to their formal (integer) charges in
nonpolarizable force fields, an alternative suggestion has been
made to use reduced charges of 0.7 e as a first-order
approximation for electronic polarizability.195−198

5. SOLVATION OF POLYATOMIC IONS

In force-field calibration for monatomic ions, the only degree of
freedom is usually the Lennard-Jones repulsion parameter,
while the dispersion parameter can be derived on the basis of
approximate formulas relating it to the ionic polarizabil-
ity61,169,199 and the ionic charge is either set to the formal
charge or scaled by a factor of approximately 0.7 to implicitly
account for the effect of electronic polarization.195−198 For a
given value of the standard absolute intrinsic hydration free
energy of the proton, ΔGhyd

⊖ [H+], and a given water model,
there is a unique relationship between the repulsion parameter
and the experimentally accessible conventional hydration free
energy. In contrast, the parametrization of polyatomic ions is an
underdetermined problem; it allows for multiple solutions of
similar quality with respect to the reproduction of a single
experimental value. This is due to the multiplicity of atomic
partial charges and Lennard-Jones repulsion parameters, as well
as to the loss of a direct connection between dispersion
parameters and atomic polarizabilities, the latter being ill-
defined when considering (united) atoms within molecules.

Another difference to free energy calculations of monatomic
ions is that the electrostatic interaction correction
scheme61,176,177 requires a numerical solution of the Poisson
equation to obtain a continuum-electrostatics estimate for the
charging free energy of the ionic solute in a macroscopic
nonperiodic system with Coulombic electrostatic interactions
and based on the experimental solvent permittivity, and in a
periodic system with a specific electrostatic interaction scheme
and based on the model solvent permittivity. These two
calculations allow to account for the combined effect of
approximate electrostatics errors, finite size errors, and
deviations between experimental and model solvent permittiv-
ity. In the case of rigid ions, these calculations can be performed
on the basis of a single structure. The improper summation
errors can be accounted for in a way similar to the case of
monatomic ions.
The latter scheme was proposed by Reif et al.49 and used to

recalibrate the nonbonded interaction parameters for the
charged amino acid side chains in the GROMOS force field,
based on ionic side-chain analogues. As for the monatomic ions,
the parametrization was based on ΔGhyd

⊖ [H+] = −1100 kJ
mol−1. The resulting GROMOS 54A8 force field is the first of
its kind to contain nonbonded parameters for charged amino
acid side chains that are derived in such a rigorously
thermodynamic fashion. Subsequently, the force field was
tested on structural properties of electrolyte solutions, lipid
bilayers, and proteins.200

Note that the recently revised AMBER parameters201 for
phosphate ions are anchored to a different value of ΔGhyd

⊖ [H+]
(= −1052 kJ mol−1) compared to the GROMOS force field
illustrating an additional difficulty when comparing force-field
parameters for ions.
In terms of the three choices, we note that all the difficulties

present in the context of monatomic ions also apply to
polyatomic ions. Depending on the size and flexibility of the
latter, sampling problems similar to the ones discussed in the
context of neutral flexible molecules might appear.

6. NONCOVALENT BINDING

Molecular recognition forms the basis of virtually all biological
processes. Understanding the interactions between proteins
and their ligands is key to rationalize the molecular aspect of
enzymatic processes and the mechanisms by which cellular
systems integrate and respond to regulatory signals. From a
medicinal perspective, there is great interest in the development
of computer models capable of predicting accurately the
strength of protein−ligand association202 making the accurate
computation of free energies of binding a key challenge for
computer-aided drug design.202−207 The main advantage of
atomistic simulations over faster, empirical scoring functions is
a more realistic inclusion of all thermodynamically relevant
phenomena such as protein or/and ligand flexibility208−211 and
the possibility of the explicit inclusion of the solvent, which is
usually necessary to account for the entropic contribution to
the free energy. However, despite their potential, the
effectiveness of atomistic simulations as predictive tools for
protein−ligand binding remains uncertain.10,212

In contrast to the preceding sections, binding free energy
calculations are usually affected by a mixture of inaccuracies in
all three choices, that is, by errors in the force field, by
insufficient sampling, and by the propagation of the former two
effects by the free energy estimator. For sizable systems such as
protein−ligand complexes, convergence may be hard to assess
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because of slow degrees of freedom or rare events such as side-
chain flipping at the binding site, both introducing considerable
noise into the calculated free energy. It is therefore important
to ask whether the time scale characteristic of the slowest
degree of freedom is crucial for the free-energy change being
estimated.161

The theoretical framework for calculating binding free
energies in the realm of statistical mechanics is well
established.203 However, depending on the desired accuracy
and available computational recources, different approaches can
be used to calculate binding affinities. The state of the art for
calculating binding free energies has been discussed in several
recent reviews and perspective articles,23,201,206,207,213−218 such
that we limit our discussion to the three choices and some
general challenges, which are independent of the methodology
chosen.
Different choices for the three basic ingredients give rise to a

multitude of methods each with a different trade-off between
accuracy and computational efficiency. Three main classes of
methods can be envisioned to calculate binding free energies,
which are (i) end-point methods, (ii) methods based on the
calculation of the free energy along a reaction coordinate, the
potential of mean force (PMF), and (iii) methods based on the
calculation of the free energy along a thermodynamic pathway
employing alchemical transformations.
End-point and PMF methods are usually used to calculate

the free energy change associated with the process that brings a
ligand from an unbound state to bind to a receptor. This free
energy change is often referred to as the absolute free energy of
binding, while it is in fact a free energy difference. Here, we
prefer the term binding f ree energy for this quantity and
distinguish it from a relative binding f ree energy, which denotes
the difference in binding free energies between two
compounds. The calculation of relative binding free energies
is a common application of alchemical free energy methods.
However, these methods can also be used for the calculation of
binding free energies, for example, in the context of the double-
decoupling approach.203 Comparison to experimental data
requires the consideration of standard state corrections203,219

leading to the standard binding f ree energy.
End-point methods such as the molecular mechanics/

Poisson−Boltzmann surface area (MM/PBSA)220,221 and
molecular mechanics/generalized Born surface area(MM/
GBSA)220,222 only consider the two end states of interest,
such as the protein free from and bound to a ligand, and
calculate their absolute free energies. The binding free energy is
then obtained by subtraction. Each of the free energies is
decomposed into the mean enthalpic energy of the solute, the
mean solute entropy, the polar solvation free energy, and the
nonpolar solvation free energy. The entropic contributions are
restricted to the conformational entropy and can be estimated
from normal-mode analysis,223−226 quasi-harmonic analy-
sis,225,227 and the restrain and release approach225,228,229 or
are simply neglected.213,230−232 Inaccuracies inherent in these
methods arise from a sensitivity toward the choice of the
dielectric constant for the PB and GB calculations,226 the use of
implicit solvent,233−235 inaccuracies in calculating entropic
contributions,229,236 and also from subtracting two large
numbers (the approximate absolute free energies before and
after binding), typically orders of magnitude larger than the
binding free energy.237 Recently, Silver et al.238 proposed a
novel end-point method based on uniform, rotameric
enumeration of ligand torsional degrees of freedom to map

out and explicitly integrate over the potential energy landscape.
The method is structured around the use of the dead-end
elimination and A* algorithms, which sort configurations by
their energies and explicitly computes their contribution to the
Boltzmann distribution. Linear interaction energy (LIE) is
another end-point method that is based on the assumption that
the free energy of binding shows a linear dependence on the
polar (with parameter β) and nonpolar (α) changes in ligand-
surroundings energies from MD averages.239 Because LIE has
several parameters, care should be taken not to overfit the
data.229 PDLD/S-LRA/β combines the semimicroscopic
protein dipoles Langevin dipoles method, the linear response
approximation (LRA), and the nonelectrostatic part of LIE.
This approach seems to be more effective than MM-PBSA,
LRA, or LIE.229 An alternative end-point method, not based on
molecular dynamics or Monte Carlo simulations, is the “mining
minima” method,240 which estimates the partition function
through a harmonic approximation to the Hessian matrix. The
exploration of minima local to the starting configuration, by
transformations along low-frequency eigenvectors, allows for
the inclusion of multiple possibly relevant states in the partition
function estimate.
Methods based on the calculation of the free energy along a

reaction coordinate are based on the definition of a pathway
that connects the two states of interest and are reviewed, for
example, in refs 241−243. The major challenges are to
determine which degrees of freedom are important and how
they participate in the reaction coordinate. An accurate reaction
coordinate should convey the reaction mechanism, provide
kinetically meaningful free energy surfaces, and facilitate
calculations of the rate constant. For any reaction, the exact
reaction coordinate is the committor probability,244−246 the
fraction of trajectories initiated from an atomic configuration r ⃗N

that commit to the product basin (B).247−249 Unfortunately,
the committor probability pB(r ⃗

N) is not easy to compute and
usually approximated in terms of collective variables that are
functions of the configuration that compress many atomistic
details into variables supposed to be physically important. The
key challenge is to learn which collective variables are important
and how they are involved in the reaction coordinate. For ion-
pair dissociation, Mullen et al.250 showed that dynamic
recrossing of the dividing surface at the pB(r ⃗

N) = 1/2 isosurface
is an inescapable consequence of dimensionality reduction to a
single coordinate. An erroneous reduction of energy barriers by
one-dimensional potentials of mean force was recently reported
by Kopelevich251 in the context of transport of a hydrophobic
nanoparticle into a lipid bilayer. However, if calculation of the
free energy of binding is the main purpose, one-dimensional
PMFs combined with restraints, orthogonal to the direction of
binding, can be an efficient approach.252 It has also to be kept
in mind that molecular recognition can be significantly more
complex than a two-state process.253 Recently, de Ruiter and
Oostenbrink introduced the distance field (DF) as a reaction
coordinate for the calculation of reversible protein−ligand
binding.254 DF is a grid-based method in which the shortest
distance between the binding site and a ligand is determined
avoiding routes that pass through the protein.
Methods based on the calculation of the free energy along a

thermodynamic pathway employing alchemical transformations
are widely used in the calculation of relative binding free
energies. Apart from the established methods such as TI and
staged FEP many other approaches including EDS,255 BAR,4

MBAR,256 and λ-dynamics17 have been tested on relevant
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protein−ligand systems. In any case, errors due to insufficient
sampling are more significant than the differences in the free-
energy estimator.257 Binding free energies can also be calculated
by alchemical transformation, usually in the context of the
double-decoupling method,203,212,258 in which two separate
calculations are carried out for decoupling the ligand from the
solution and receptor environments. The latter process is often
carried out using restraints to lock the noninteracting ligand
into the binding pocket to enhance convergence of the free
energy. The free-energy contribution associated with these
restraints has to be taken into account in the thermodynamic
cycle, for example by analytical approaches.203,227,259 From a
computational perspective the determination of the binding site
volume in the presence of restraining potential energy terms in
the Hamiltonian is crucial for obtaining reliable free-energy
estimates.206 Another alchemical method to calculate (abso-
lute) binding free energies is the binding energy distribution
analysis method (BEDAM), which is, in practice, only
applicable using an implicit solvent.260 It involves simulation
of the ligand restricted to the protein binding site, but without
interactions between the protein and the ligand. From this, the
probability distribution for the binding energy is determined.
In the course of molecular design projects, end-point

methods are most useful in the early, exploratory stages,
while methods involving conformational sampling are most
useful in later stages, when the goal is to optimize promising
lead compounds.203 Such a hierarchy of methods has been used
recently to shed light on the molecular recognition of the
coreceptor CXCR4 by the HIV-1 glycoprotein gp120.261

Another approach is to combine the strength of different
methods, such as LIE and one-step perturbation, in order to
improve efficiency while maintaining accuracy.262 When
screening drug candidates prior to more elaborate free-energy
calculations, it should be kept in mind, however, that MM-
PBSA, in general, cannot be expected to reliably resolve
differences within 12 kJ mol−1.213 The availability of automated
workflows for the setup and analysis of binding free energy
calculations263−266 is expected to facilitate a more realistic
evaluation of the different methods and how these could be
combined in an efficient way to guide molecular design
projects. However, to be acceptable for inclusion into work
flows for lead-optimization, binding free energies have to be
converged reliably with 4.2 kJ mol−1 variance error.213

Current challenges, which are of general nature and not
bound to a particular method, are as follows:

(1) Multiple binding modes. Often multiple binding modes
are of importance either due to different possible ligand
orientations within the binding site,209 or due to different
conformations a ligand may adopt267 or due to a
combination of both effects.268 These multiple orienta-
tions have to be sampled with the correct relative
populations to avoid any bias. In the context of relative
free-energy calculations, the two ligands to be compared
may have distinct orientations giving rise to a slowly
converging reorientation step in the calculation. Such
cases can be treated more efficiently using the recently
suggested “separated topologies” method.269 This
approach can also be used to determine the relative
free energies of multiple orientations of the same ligand.
However, also, the characterization of the ligand’s
unbound state can be of major relevance.270 If a ligand
has different conformations in the solvent but only one

conformer binds to the protein, the free energy of
focusing the different conformers to the one that binds to
the protein has to be accounted for in binding free-
energy calculations.271,272 In the same line, the protein
may also adopt several metastable states that contribute
to the binding free energy. Considering only one
conformational state neglects the free energy associated
with confining the protein to that particular config-
uration.273

(2) Binding-site hydration. Upon binding, the ligand may
replace several water molecules in the binding site.
Depending on the free-energy change, these water
molecules experience when leaving the site, this
replacement might contribute (un)favorably to the
binding free energy.274 Several studies on model
cavity−ligand systems275−279 demonstrated that the
role of water-mediated interactions and ligand dehy-
dration can be far more relevant than the direct cavity−
ligand interaction, owing to electrostatic screening and to
entropic terms arising from solvent reorganization.280,281

For proteins with solvent-exposed binding sites, these
effects are difficult to capture with methods relying on
implicit solvent models.282,283 For a binding site deeply
buried, the exchange of water molecules with the bulk
region may be very slow, which may lead to convergence
problems.258 When estimating the effect of ligand
modifications on binding free energies, it is crucial to
take into account that water molecules are maintained for
one variant but may be displaced for others.284,285 To
study which water molecules can favorably be replaced
by a ligand, the free-energy difference between a water
molecule and an apolar probe was calculated for a
selection of water sites in the binding pockets of two
proteins.286 Such an analysis may give valuable insights
for potency optimization in drug design.

(3) Definition of the bound state. The standard binding free
energy depends on the definition of the bound state. If
the binding is strong and specific, this does usually not
pose a problem as long as the specific choice covers all
important conformations of the complex.203,260,287,288

For weak and less localized binding the dependence on
the binding site volume would be noticeable. As pointed
out by Mihailescu and Gilson,288 the theoretical
expression for the binding constant depends on the
experimental technique used.

(4) Standard state correction. To convert calculated binding
free energies into standard binding free energies, a
correction term needs to be added that can be expressed
in terms of the system volume or ligand concentration in
the unbound state.203,219 However, alternative ap-
proaches to estimate the required corrections in practice
may differ significantly.289

(5) Finite size effects. Another underappreciated aspect are
finite-size effects in binding free energy calculations. At
present, finite-size effects on charging free energies are
best understood in the context of the solvation of
monatomic ions.61,169,175−177,181,290 In this case, a
numerical correction scheme176 and a corresponding
approximate analytical version177 are available. The
numerical version of this scheme has recently been
extended to the case of small polyatomic ions49 and to
insertion of such ions into a simple model receptor,
namely a functionalized C60 buckyball in water.291
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However, considering the most general case of a complex
polyatomic charged ligand inserted into a charged
protein in solution, none of the schemes available at
present227,254,291−296 are sufficiently general, practical,
and accurate. Recently, a new method for removing finite
size effects has been proposed based on a continuum-
electrostatics analysis. It requires performing Poisson−
Boltzmann calculations on the protein−ligand system.178

The approach introduces the concept of the residual
integrated potential to account for the finite-size effect
related to the solvent-excluded volume of the protein and
the ligand, an effect that is absent in monatomic ion
solvation.

(6) Force-field inaccuracy. Due to the hundreds of
parameters involved in empirical force fields the
propagation of errors in these parameters on calculated
binding free energies is a complex problem. Recently,
Rocklin et al.297 investigated the sensitivity of binding
free-energy calculations to the nonbonded energy
parameters in force fieldsatomic radii, dispersion
well-depths, and partial chargesby performing tens of
thousands of small parameter perturbations. They
estimated that random, uncorrelated errors in force-
field nonbonded parameters must be smaller than 0.02 e
per charge, 0.06 Å per radius, and 0.04 kJ mol−1 per well
depth in order to obtain 68% confidence that a
computed binding affinity for a moderately sized lead
compound will fall within 4.2 kJ mol−1 of the true
affinity, if these are the only sources of error considered.
Fixed charge models of ligands, parametrized against
hydration free energies, might easily have larger
uncertainty in the partial charges, especially in nonpolar
binding sites.

7. CONFORMATIONAL CHANGES

The importance of knowing the change in free energy
associated with a change in molecular conformation was
already mentioned in the context of hydration or binding free
energy calculations. It relies on the definition of conformational
states as well as on the ability to define a reduced set of
(spatial) coordinates R(r ⃗N) on which the free energy is
projected. Such a hypersurface is commonly called a reaction
coordinate and, in configurational space, is a function of the
positions of atoms in the system. Note that the term reaction
coordinate is eventually associated with the minimum-free-
energy pathway connecting the reference state to the target
state but is commonly employed to characterize the order
parameter along which the variation of the free energy is
determined. The free energy as a function of the reaction
coordinate R′(r ⃗N), or the potential of mean force, is given by eq
5, where the term in curly brackets is the probability of finding
the system lying on the reaction coordinate. Difficulties related
to the representation of the reaction coordinate have been
sketched in the previous section. A comprehensive discussion
of methods to obtain reaction coordinates298−300 is beyond the
scope of the present review. Another difficulty is related to the
definition of conformational states. For small systems such as
carbohydrates, states can be relatively well-defined due to the
rigid nature of the glycosidic linkage. Carbohydrates are
therefore often used for testing new methodology301,302 or to
calibrate force fields.303 Small peptides in solution show
significantly more flexibility. Dipeptides are often used to test

new methodology304 or to investigate the pathway dependence
of the free energy.305 For larger (oligo)peptides the free-energy
difference between different helical forms may depend on the
definition of states. Relative free energies of 4, 0, and 12 kJ
mol−1 for the π, α, and 310 helical forms of a deca-alanine
peptide in water were calculated by BS-LEUS using the sum of
the two dihedral angles, ϕn+1 + ψn, encompassing the successive
peptide bonds to define the helical states,306 and values of 5, 0,
and 47 kJ mol−1 were obtained by EDS using an RMSD
criterion to define the helical states.307 As is the definition of
optimal reaction coordinates, the structure classification of
biopolymeric structures is also an active field of research.308,309

For proteins the characterization of the unfolded state
represents a major obstacle in the calculation of folding free
energies.310

A further difficulty in conformational free-energy calculations
is the need to use enhanced sampling and biasing
techniques19,241,301,311−318 along with appropriate reweighting
to the original Hamiltonian319,320 for all but a few simple
systems for which simple counting of configurations from a
long MD trajectory works.321

In terms of the three choices, we conclude that conforma-
tional free energies are among the most challenging systems
due to the many choices involved in setting up these
calculations. As in the case of the choice of reaction coordinate,
the free-energy difference will depend on the choice of
definition of the conformational states. Next, if such conforma-
tional states are of high energy, the accuracy of the Hamiltonian
is difficult to assess because conformations high in free energy
are difficult to sample. Recently, EDS has been applied to solve
this problem.322 So, state definition and securing sufficient
sampling are the main challenges when calculating free-energy
differences between different conformational states.

8. CONCLUSION AND OUTLOOK

Although the two fundamental problems of inaccuracies in the
Hamiltonian and of insufficient sampling are still prevalent, the
calculation of free energy differences has seen some
consolidation through the definition of best practices166,167,323

and through a healthy skepticism toward the performance of
computational models.324 One of the great challenges remains
the accurate calculation of the entropic contribution in
molecular processes, which may or may not be a substantial
portion of the free energy.325 Some developments in the field
that may lead to further consolidation are as follows:

(1) Evaluation and standards. Validation sets such as those
provided at alchemistry.org,326 in the binding data-
base,327 or through various blind tests148,328 will help to
generate a commonly accepted set of benchmark data
useful for method and force-field development.

(2) Sensitivity analysis. Because free energies may be
sensitive to the force-field parameters,297 the use of
efficient perturbation approaches may help to provide an
estimate for the uncertainty due to an inaccurate
Hamiltonian. The use of different free-energy methods
for the same problem may give information regarding
convergence and the sensitivity toward the free-energy
estimator.

(3) Comparison of methods. Because different free-energy
calculation methods use different information from the
Hamiltonian, a comparison of methods on a pure
theoretical basis may not always be sufficient to provide
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practical recommendations. Comparison of methods in
practical settings is therefore as important.257,329−332

(4) Interavailability of code. The transfer of a new method
developed, implemented and tested for one particular
MD software package to another one is far from being
trivial because today’s molecular dynamics packages are
very complex pieces of software developed over decades
often by a diverse group of contributors with different
backgrounds and experience.51 However, such transfer is
essential for a wider acceptance of a particular method
and also for a better comparison to other methods not
implemented in the original software. Plug-ins with
interfaces to different MD codes may help to disseminate
new methods to a wider community of users.333

(5) Critical use of experimental data. Experimental measure-
ments are invariably contaminated with errors, which
may affect the maximally possible correlation between
simulation and experiment that can be achieved.324,334,335

Often modelers try too hard to reproduce experimental
data as precisely as possible, ignoring the fact that these
data are also subject to uncertainty.334,336−338
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P. N.; Soares-da-Silva, P.; Learmonth, D. A. J. Med. Chem. 2010, 53,
3396−3411.
(141) Scott, D. E.; Coyne, A. G.; Hudson, S. A.; Abell, C.
Biochemistry 2012, 51, 4990−5003.
(142) Mallinson, J.; Collins, I. Future Med. Chem. 2012, 4, 1409−
1438.
(143) YASARA AutoSMILES Server . www.yasara .org/
autosmilesserver.htm (accessed Jan. 14, 2014).
(144) Miller, B. T.; Singh, R. P.; Klauda, J. B.; Hodoscek, M.; Brooks,
B. R.; Woodcock, H. L. J. Chem. Inf. Model. 2008, 48, 1920−1929.
(145) Ribeiro, A.; Horta, B. A. C.; de Alencastro, R. B. J. Braz. Chem.
Soc. 2008, 19, 1433−1435.
(146) Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair,
P. C.; Oostenbrink, C.; Mark, A. E. J. Chem. Theory Comput. 2011, 7,
4026−4037.
(147) Koziara, K. B.; Stroet, M.; Malde, A. K.; Mark, A. E. J. Comput.-
Aided Mol. Des. 2014, 28, 221−233.
(148) Guthrie, J. P. J. Phys. Chem. B 2009, 113, 4501−4507.

(149) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. J.
Chem. Inf. Model. 2012, 52, 2864−2875.
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(191) Moucǩa, F.; Nezbeda, I.; Smith, W. R. J. Chem. Theory Comput.
2013, 9, 5076−5085.
(192) Reif, M. M.; Oostenbrink, C. Personal communication, May 13,
2014.
(193) Eisenberg, B. Life’s solutions are complex fluids. 2012; http://
arxiv.org/abs/1207.4737.
(194) Eisenberg, B. Biophys. J. 2013, 104, 1849−1866.
(195) Leontyev, I. V.; Stuchebrukhov, A. A. J. Chem. Phys. 2009, 130,
085102.
(196) Leontyev, I. V.; Stuchebrukhov, A. A. J. Chem. Theory Comput.
2010, 6, 3153−3161.
(197) Leontyev, I. V.; Stuchebrukhov, A. A. Phys. Chem. Chem. Phys.
2011, 13, 2613−2626.
(198) Leontyev, I. V.; Stuchebrukhov, A. A. J. Chem. Theory Comput.
2012, 8, 3207−3216.
(199) Slater, J. C.; Kirkwood, J. G. Phys. Rev. 1931, 37, 682−697.
(200) Reif, M. M.; Winger, M.; Oostenbrink, C. J. Chem. Theory
Comput. 2013, 9, 1247−1264.
(201) Steinbrecher, T.; Latzer, J.; Case, D. A. J. Chem. Theory
Comput. 2012, 8, 4405−4412.
(202) Jorgensen, W. L. Science 2004, 303, 1813−1818.
(203) Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A.
Biophys. J. 1997, 72, 1047−1069.
(204) Gohlke, H.; Klebe, G. Angew. Chem., Int. Ed. 2002, 41, 2645−
2676.
(205) Jorgensen, W. L. Acc. Chem. Res. 2009, 42, 724−733.
(206) Gallicchio, E.; Levy, R. M. Adv. Prot. Chem. Struct. Biol. 2011,
85, 27−80.
(207) Wereszczynski, J.; McCammon, J. A. Q. Rev. Biophys. 2012, 45,
1−25.
(208) Carlson, H. A. Curr. Pharm. Des. 2002, 8, 1571−1578.
(209) Mobley, D. L.; Graves, A. P.; Chodera, J. D.; McReynolds, A.
C.; Shoichet, B. K.; Dill, K. A. J. Mol. Biol. 2007, 371, 1118−1134.
(210) Baron, R.; McCammon, J. A. ChemPhysChem 2008, 9, 983−
988.
(211) Lawrenz, M.; Baron, R.; Wang, Y.; McCammon, J. A. J. Chem.
Theory Comput. 2011, 7, 2224−2232.
(212) Mobley, D. L.; Dill, K. A. Structure 2009, 17, 489−498.
(213) Shirts, M. R.; Mobley, D. L.; Brown, S. P. In Drug Design:
Structure- and Ligand-Based Approaches; Merz, K. M., Ringe, D.,
Reynolds, C. H., Eds.; Cambridge University Press: New York, 2010;
pp 61−86.
(214) Michel, J.; Essex, J. W. J. Comput.-Aided Mol. Des. 2010, 24,
639−658.
(215) de Ruiter, A.; Oostenbrink, C. Curr. Opin. Chem. Biol. 2011, 15,
547−552.
(216) Homeyer, N.; Golke, H. In In Silico Drug Discovery and Design;
Lill, M. A., Ed.; Future Science: London, U.K., 2013; pp 50−63.
(217) Baron, R.; McCammon, J. A. Annu. Rev. Phys. Chem. 2013, 64,
151−175.

(218) Westermaier, Y.; Hubbard, R. E. In De Novo Molecular Design;
Schneider, G., Ed.; Wiley-VCH: Weinheim, Germany, 2014; pp 373−
415.
(219) General, I. J. J. Chem. Theory Comput. 2010, 6, 2520−2524.
(220) Srinivasan, J.; Cheatham, T. E., III; Cieplak, P.; Kollman, P. A.;
Case, D. A. J. Am. Chem. Soc. 1998, 120, 9401−9409.
(221) Homeyer, N.; Gohlke, H. Mol. Inf. 2012, 31, 114−122.
(222) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.;
Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak,
P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., III Acc. Chem. Res.
2000, 33, 889−897.
(223) Sadiq, S. K.; Wright, D. W.; Kenway, O. A.; Coveney, P. V. J.
Chem. Inf. Model. 2010, 50, 890−905.
(224) Hu, G.; Wang, D.; Liu, X.; Zhang, Q. J. Comput.-Aided. Mol.
Des. 2010, 24, 687−697.
(225) Singh, N.; Warshel, A. Proteins 2010, 78, 1724−1735.
(226) Hou, T.; Wang, J.; Li, Y.; Wang, W. J. Chem. Inf. Model. 2011,
51, 69−82.
(227) Woo, H.-J.; Roux, B. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
6825−6830.
(228) Strajbl, M.; Sham, Y. Y.; Villa, J.; Chu, Z.-T.; Warshel, A. J.
Phys. Chem. B 2000, 104, 4578−4584.
(229) Singh, N.; Warshel, A. Proteins 2010, 78, 1705−1723.
(230) Chong, L. T.; Pitera, J. W.; Swope, W. C.; Pande, V. S. J. Mol.
Graph. Modell. 2009, 27, 978−982.
(231) Hu, R.; Barbault, F.; Maurel, F.; Delamar, M.; Zhang, R. Chem.
Biol. Drug Des. 2010, 76, 518−526.
(232) Vorontsov, I. I.; Miyashita, O. J. Comput. Chem. 2011, 32,
1043−1053.
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Schlick, T., Schütte, C., Skeel, R., Eds.; Springer: Berlin, 2006; pp
213−249.
(242) Trzesniak, D.; Kunz, A. P.; van Gunsteren, W. F.
ChemPhysChem 2007, 8, 162−169.
(243) Li, W.; Ma, A. Mol. Sim. 2014 , DOI: 10.1080/
08927022.2014.907898.
(244) Ma, A.; Dinner, A. R. J. Phys. Chem. B 2005, 109, 6769−6779.
(245) Best, R. B.; Chen, Y.-G.; Hummer, G. Structure 2005, 13,
1755−1763.
(246) E, W.; Ren, W.; Vanden-Eijnden, E. Chem. Phys. Lett. 2005,
413, 242−247.
(247) Du, R.; Pande, V. S.; Grosberg, A. Y.; Tanaka, T.; Shaknovich,
E. J. Chem. Phys. 1998, 108, 334−350.
(248) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. Annu.
Rev. Phys. Chem. 2002, 53, 291−318.
(249) Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Adv. Chem. Phys.
2002, 123, 1−78.
(250) Mullen, R. G.; Shea, J.-E.; Peters, B. J. Chem. Theory Comput.
2014, 10, 659−667.
(251) Kopelevich, D. I. J. Chem. Phys. 2013, 139, 134906.

Journal of Chemical Theory and Computation Perspective

dx.doi.org/10.1021/ct500161f | J. Chem. Theory Comput. 2014, 10, 2632−26472645

http://arxiv.org/abs/1207.4737
http://arxiv.org/abs/1207.4737


(252) Doudou, S.; Burton, N. A.; Henchman, R. H. J. Chem. Theory
Comput. 2009, 5, 909−918.
(253) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M.
A.; Shaw, D. E. J. Am. Chem. Soc. 2011, 133, 9181−9183.
(254) de Ruiter, A.; Oostenbrink, C. J. Chem. Theory Comput. 2013,
9, 883−892.
(255) Christ, C. D.; van Gunsteren, W. F. J. Chem. Phys. 2007, 126,
184110.
(256) Shirts, M. R.; Chodera, J. D. J. Chem. Phys. 2008, 129, 124105.
(257) Christ, C. D.; Fox, T. J. Chem. Inf. Model. 2014, 54, 108−120.
(258) Deng, Y.; Roux, B. J. Phys. Chem. B 2009, 113, 2234−2246.
(259) Boresch, S.; Tettinger, F.; Karplus, M. J. Phys. Chem. B 2003,
107, 9535−9551.
(260) Gallicchio, E.; Lapelosa, M.; Levy, R. M. J. Chem. Theory
Comput. 2010, 6, 2961−2977.
(261) Tamamis, P.; Floudas, C. A. Biophys. J. 2013, 105, 1502−1514.
(262) de Ruiter, A.; Oostenbrink, C. J. Chem. Theory Comput. 2012,
8, 3686−3695.
(263) Liu, P.; Dehez, F.; Cai, W.; Chipot, C. J. Chem. Theory Comput.
2012, 8, 26062616.
(264) Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.;
Gohlke, H.; Roitberg, A. E. J. Chem. Theory Comput. 2012, 8, 3314−
3321.
(265) Homeyer, N.; Gohlke, H. J. Comput. Chem. 2013, 34, 965−
973.
(266) Liu, S.; Wu, Y.; Lin, T.; Abel, R.; Redmann, J. P.; Summa, C.
M.; Jaber, V. R.; Lim, N. M.; Mobley, D. L. J. Comput.-Aided Mol. Des.
2013, 27, 755−770.
(267) Stockwell, G. R.; Thornton, J. M. J. Mol. Biol. 2006, 356, 928−
944.
(268) Stjernschantz, E.; Oostenbrink, C. Biophys. J. 2010, 98, 2682−
2691.
(269) Rocklin, G. J.; Mobley, D. L.; Dill, K. A. J. Chem. Phys. 2013,
138, 085104.
(270) Irudayam, S. J.; Henchman, R. H. J. Phys. Chem. B 2009, 113,
5871−5884.
(271) Zeifman, A. A.; Stroylov, V. V.; Novikov, F. N.; Stroganov, O.
V.; Kulkov, V.; Chilov, G. G. J. Chem. Theory Comput. 2013, 9, 1093−
1102.
(272) Hritz, J.; Lap̈pchen, T.; Oostenbrink, C. Eur. Biophys. J. 2010,
39, 1573−1580.
(273) Mobley, D. L.; Chodera, J. D.; Dill, K. A. J. Chem. Theory
Comput. 2007, 3, 1231−1235.
(274) Englert, L.; Biela, A.; Zayed, M.; Heine, A.; Hangauer, D.;
Klebe, G. Biochim. Biophys. Acta 2010, 1800, 1192−1202.
(275) Baron, R.; Setny, P.; McCammon, J. A. J. Am. Chem. Soc. 2010,
132, 12091−12097.
(276) Hummer, G. Nat. Chem. 2010, 2, 906−907.
(277) Setny, P. J. Chem. Phys. 2007, 127, 054505.
(278) Setny, P. J. Chem. Phys. 2008, 128, 125105.
(279) Setny, P.; Baron, R.; McCammon, J. A. J. Chem. Theory
Comput. 2010, 6, 2866−2871.
(280) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 808−813.
(281) Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. J.
Am. Chem. Soc. 2008, 130, 2817−2831.
(282) Genheden, S.; Mikulskis, P.; Hu, L. H.; Kongsted, J.;
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