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Abstract: Kalman filtering for stochastic dynamic tidal models, is a hyperbolic filtering problem. 
The questions of observability and stability of the filter as well as the effects of the finite difference 
approximation on the filter performance are studied. The degradation of the performance of the 
filter, in case an erroneous filter model is used, is investigated. In this paper we discuss these vari- 
ous practical aspects of the application of Kalman filtering for tidal flow identification problems. 
Filters are derived on the basis of the linear shallow water equations. Analytical methods are used 
to study the performance of the filters under a variety of circumstances. 
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I Introduction 

Kalman filtering has turned out to be a powerful new tool for tidal prediction (e.g. 
Budgell and Unny 1980; Brummelhuis,  De Jong and Heemink 1984; Heemink 
1986). Ka lman  filtering is a data  assimilation technique that  incorporates measure- 
ments into a numerical  model (Parrish and Cohn 1985, Mil ler  1986, Budgell 1986, 
Heemink  1988). In most common data  assimilation approaches some estimates of 
the error statistics of the numerical  model are used to correct the results of the 
model  using on-line measurements.  Employing Kalman filtering these error statis- 
tics are determined by using the stochastic extension of the numerical  model. In 
this way the correction produced by the Kalman filter is guaranteed to be con- 
sistent with this stochastic model, even in the case of very irregular flow patterns 
caused by complicated geometries. 

In rivers and estuaries a one-dimensional representation of the water movement 
is adequate.  Based on the work of Heemink and De Jong (1982) and of Brum- 
melhuis, De Jong and Heemink (1984, 1988), a Kalman filter procedure has been 
developed for one-dimensional tidal filtering. It is based on the non-linear St. 
Venant equations describing the long wave motion in an open channel. By means 
of the Preissmann four-point scheme these equations are discretised and by intro- 
ducing a system noise process into the resulting difference equations, a discrete sys- 
tem ~representation of the stochastic-dynamic model is obtained. By employing an 
extended Kalman filter procedure,  the state of the system as well as some uncer- 
tain parameters  in the model, such as the bottom friction coefficient and the wind 
stress coefficient,  are identif ied using measurements of the water-level only. The 
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resulting filter is applicable to a wide range of practical shallow water flow prob- 
lems. A number of stochastic-dynamic tidal models have been implemented in the 
;Netherlands, e.g. of the Eastern Seheldt estuary, the Western Scheldt estuary and 
~the Rhine-Scheldt channel. 

In employing a Kalman filter procedure for tidal prediction, it is important to 
study questions of observability and stability of the filter as well as the effects of 
,the finite difference approximation on the filter performance. As known (Jazwinski 
'1970), one of the major problem in the application of Kalman filtering is that the 
'noise statistics have to be specified. This knowledge is very poor in case of 
environmental systems and, consequently, it is important to get insight into the 
degradation of the performance of the filter in case erroneous noise statistics are 
used. In this paper we discuss these practical aspects of Kalman filtering for 
hyperbolic-type identification problems. We derive filters on the basis of the linear 
one-dimensional equations. In this case it is possible to employ analytical methods 
to investigate the performance of the filters. In Section 2 we recall some basic 
aspects of the shallow water equations and discuss the questions of observability 
and filter divergence from a continuum physics viewpoint. Section 3 is devoted to 
the numerical approximation of the shallow water equations, while in Section 4 the 
choice of the noise statistics is discussed. A specific filtering problem is solved in 
Section 5. For this case the sensitivity of the filter performance is studied with 
respect to the choice of the finite difference scheme as well as modelling errors. 

2 The one-dimensional shallow water equations 

The linear one-dimensional shallow water equations used throughout this paper are 
(Abbott 1979): 

__0F + C OF + CzF = 0, (1) 
O t 1-~x 

where: 

and h = water-level, u = water velocity, D = depth of the water, g = accelera- 
tion of gravity, )~ = g/D where g = linear bottom friction coefficient. The water 
movement is completely described by these equations, provided that initial and 
boundary conditions are given. 

Resolving the question of the observability of the hyperbolic system (1) is 
important in choosing measurement locations in the spatial domain and to get 
insight into the predictive capabilities of the Kalman filter. We discuss this ques- 
tion using the definition of observability of a distributed parameter system pro- 
posed by Goodson and Klein (1970) who have investigated the observability from a 
continuum physics viewpoint. Their definition is based on the theory of the 
existence and uniqueness of the solution to a partial-differential equation. 

Consider Eq. (1) and assume measurements are available over the time interval 
[to,tp] at some locations. This system is said to be G-K-observable in the domain 
~o(X,t,tp) if and only if a unique solution u(x,t), h(x,t) in ~o(x, t , t , ) is  esta- 
blished by the measurements taken and by the boundary conditions. 
G-K-obs'ervability may also be established by the measurements alone without 
knowledge of the boundary conditions. It  can be shown that for linear ordinary dif- 
ferential equations G-K-observability reduces to observability as defined by Kalman 
(1960) (Goodson and Klein 1970). 
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Figure 1. Construction of the observability domain and the prediction horizon 

Figure 2. Construction of the memory domain 

The concept of the G-K-observability domain f~o(X,t,tp) is used to determine a 

prediction horizon at time tp. This prediction horizon %(x,tp) of the filter estab- 
;lishes in each point of the spatial domain the period over which predictions are 
uniquely  determined by the measurements taken up to time tp and, if known, by 

the boundary conditions. One expects that for periods greater than Yo(X,tp) the 
prediction is inaccurate. In Fig. 1 an example of the G-K-observability domain 
f~o(X,t,tp) and the prediction horizon Yo(X,tp) are given. Here we consider the 

model (1) without friction and prescribe the water-level at x = x 0 and at x = x L 
the condition u = 0. 

Now we consider again the system (1) without bottom friction and with boun- 
dary conditions as given and we construct the set of characteristic lines that inter- 
sect the line t = tp, x E [Xo,XL]. This domain is considered as the memory of the 

filter (see Fig. 2). Since the water-levels and velocities outside the memory domain 
does not affect u(x,tp) and h(x,tp), x E [x0,xz], only measurements taken inside 

this domain are useful to estimate u(x,tp) and h(x,tp), x E [Xo,XL]. The most 

recent observations are used to determine these estimates. 
With respect to the problem of filter divergence the construction of the memory 

domain is important. The problem of divergence is caused by the fact that the sto- 
chastic model used by the filter is never perfect. When the filter operates with a 
great amount of data, it may learn the state "too well". The error covariance, as 
well as, the filter gain become very small and subsequent observations have little 
effect on the estimate. In essence, filter divergence is due to the fact that old 
observations are weighted too heavily. They can be valueless when predicted over 
long periods of time through an erroneous model. Numerous ad hoe remedies to 
the problem of filter divergence have been developed (Jazwinski 1970). A well- 
known approach which has a sound theoretical basis is the limited memory filter. 
This filter produces estimates of the state only on the basis of the N most recent 
observations. N should be chosen such that the model is an adequate approxima- 
tion to the real system over the time interval [tk_N,tk]. By constructing the 
memory domain of the system (1) without bottom friction (see Fig. 2), one can 
show that the memory of this filter is limited in nature. Therefore, filter 
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divergence is not likely to occur. This important conclusion holds for many practi- 
cal filtering problems of the hyperbolic type. 

3 D i s e r e t i s a t i o n  

To develop a discrete system representation Eq. (1) is discretised. Defining a grid 
(see Fig. 3), we consider two different finite differences schemes. Firstly, we 
employ the implicit four-point Preissmann scheme (Liggett and Cunge 1975): 

1 t~k+l  1 c' tF/~+0 F~+O) r l~k+l/2 " ~ ' k r i + l / 2  --  Fk+l/2) 4- -~X'"Ik i-t-1 --  -~" ~.~2L'i_bl/2 ~--- 0, (2) 

where F k is the approximation of F(iAx,kAt) and 

v +1/2 = 1/2(FL1 + F? +~ = 0F? +1 + 

Here 0 is a weighting factor. For the special case of X = 0 it is easy to show that 
the finite difference scheme (2) is a consistent second-order approximation of the 
partial-differential equation: 

C OF _ 2 O2F 0. (3) OF + _ _ _ =  
Ot 1 W  (0 0.5)AtC 10x  2 

Comparing Eqs. (1) and (3) we see that the original Eq. (1) is solved with second- 
order accuracy only for 0 = 0.5. By choosing 0.5 < 0 _< 1.0 one introduces 
numerical diffusion. 

The second finite difference scheme considered is the explicit Lax-Wendroff 
scheme (Richtmyer and Morton 1967): 

F p + l  = F/k At C I ( F ? +  1 __ F L 1 )  
2Ax 

At 2 k + (-~-x C1) (Fi+ 1 -- 2F~ + F/k_1) -- AtCz(F/k_I + F/g+l). (4) 

This scheme is of second-order accuracy. 
To analyze the stability and to gain insight into the dissipative properties of the 

schemes for initial value problems, a Von Neumann stability analysis is employed. 
Consider the behaviour of the Fourier integral: 
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0.5Ax 
F k = f ~k(g)eJ2rtgiax dg, (5) 

--0.5Ax 

under the operation given by Eq. (2). Here j is the imaginary unit, g is the wave 
number and 0.5Ax is the highest wave number that can be resolved. Substituting 
this Fourier integral into the Preissmann scheme (2) yields: 

A ( g ) ~ k + l ( g )  = B ( g ) ~ k ( e ) ,  (6) 

where: 

A ( g )  = I + -Ta tC2  + 2j Otan(rcgAx)C1 and 

= I - - ~ A t G  - " a t  B(~) 2j-~-x (1 --O)tan(pldx)Cv 

Equation (6) can be rewritten as: 

~k+l(g) = G(e)~k(g), (7) 

where G ( g ) =  A(g) - lB(g)  is the amplification matrix of the finite difference 
scheme. This matrix amplifies the value of ~k(g) over a time step At. In case 
0.5 < 0 _< 1 we have for the eigenvalues gl,2(g) of G(C) that I gl,2(~)l < 1 and 
consequently the scheme is unconditionally stable. 

Analogously the amplification matrix of the Lax-Wendroff scheme is given by: 

G($) = I -- j--~--Clsin(2rcgAx ) 
[-.~X 

(A-~C1)2(1 -- cos(2/tgAx)) -- AtC2cos(21tgAx), (8) 

yielding the sufficient condition for stability: 

k/(1/2)~,At < Cr < V/i + (1/2)~,At, 

with Cr = ~ . a t / A x  the Courant number. 

(9) 

4 On the choice of the system noise 

The tidal movement is not perfectly described by the finite difference equations. 
Therefore, we embed these equations into a stochastic environment by adding sys- 
tem noise. For the Preissmann scheme we obtain: 

1 (Fk+l/2 _ i + 1 / 2  "1- " ~ x  l k l ' i + l  ' At- w21 ' i+1/2  + w k  = 0, (10)  Fk+l  ) 1 c t r k + 0 - - F / k + 0 )  r t~k+l/2 
At 

where W k = [WmikWcik] T is the system noise. The noise processes Wmi k and Wc~ 
are associated with the uncertainty of the momentum equation and the continuity 
equation respectively. The covariance of W~ is chosen as: 

Qil,i2(kl), kl = k 2 
E{W~I W/~2} = ~0, k l =/= k 2 

By introducing the system noise, we associate this random process with the 
discretised momentum and continuity equations. However, when employing an 
implicit scheme it is also possible to introduce the system noise process after the 
finite difference k equations have been solved and F i is known explicitly. In this 
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case the system noise process is associated with the uncertainty of the computed 
water-levels and velocities. 

For the Lax-Wendroff scheme we introduce the system noise as follows: 

F k+ l  = F~ -- A-- 'LCI(Fk+I--FL1 ) 
2Ax 

-5 (A---LC1)2(Fk+I--2Fk+Fik_I) -- AtC2(Fkl +Fk+l) -5 AtWi k. (12) 
/ A X  

The system noise represents the errors of the corresponding deterministic model. 
It includes the variability in the natural system, e.g., due to turbulent effects and 
model structure errors such as neglected non-linearities or wrong parameter values, 
as well as, errors caused by the discretisation of the partial-differential equations. 
Unfortunately, in practice very little is known about the statistics of the system 
noise. In some cases (Jazwinski 1970) it is possible to use a systematic approach to 
determine the covariance Qil,i2(k). However, usually it has to be established by 
means of "trial and error", i.e., the filter is employed for various values of 
Qil,i2(k), until one gets satisfactory filter performance. 

In choosing a suitable value for Qil,i2(k), it has to be taken into account that 
finite difference schemes are not able to accurately represent short waves, i.e., 
waves with a wavelength of the order of 2Ax. Therefore, in order to obtain mean- 
ingful solutions and to avoid instabilities when solving the time propagation of the 
estimation error covariance, the energy of these short noise waves should be lim- 
ited. 

Assuming the system noise is location invariant it is then described by the spa- 
tial covariance functions: 

e{Wrn k Wrn~} = Qm(I i1-i21 ,k) (13) 

E{Wc~ Wc~} = Oc( l i l - i2 l ,k  ), (14) 

where Wrnp and Wcp are supposed to be mutually independent. Neglecting boun- 
dary effects the distribution of the system noise as function of the wave number e 
is given by: 

co  

Srn(e,k) = Ax ~ Qm(li I,k)e -j2neiAx (15) 

Sc(g,k) = Ax ~_. Qc([i I,k)e -j2neiAx (16) 

As noted before, the energy of the short waves has to be limited. However, this 
energy is not allowed to be too small in order to avoid that the filtering problem is 
ill-conditioned and that numerical  difficulties due to the numerical computation 
using finite wordlength are likely to occur. 

Finally, we note that in practice the time-varying behaviour of the statistics of 
noise processes is poorly known. Therefore, these processes are usually assumed to 
be stationary. 

5 Kalman filtering in the wave number domain 

As described in Section 3, a finite difference scheme can be transformed into the 
wave nqmber domain by deriving the amplification matrix G(g) of the scheme. 
Although this procedure can only be employed for linear equations and does not 
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include the influence of the boundary conditions, it increases the insight into the 
properties of a finite difference scheme. In some special cases, this approach can 
be generalized to study the properties of the Kalman filter. 

Suppose the propagation in time of the process Fp is described by Eq. (10) or 

(12), where the noise processes Wrni k and Wci k are supposed to be location invari- 
ant, stationary and mutually independent. Observations of the water-level are 
available at all grid points: 

Z~ = M F [  + V?, (17) 

where M ---- [0 1], and Vp is the measurement noise with covariance: 

r , kl = k2, il = i2, 
e{v  1 2}=t0, 

0, il =~ i2" 

In practice the number of measurement stations in rivers and estuaries is often 
large, so this assumption is not too unrealistic. The main object of this analysis is 
to apply Kalman filtering to a simplified problem that, however, still contains the 
essential feature of practical filtering problems. By solving the simplified problem, 
it becomes possible to expose the potential difficulties of more realistic Kalman 
filter applications. 

Analogously to Eq. (5) we consider the Fourier integrals: 
0.5Ax 

Fi k = f Fk(g)e jg~eiAx dg (18) 
--0.5Ax 

0.5Ax 
Wmi k = f Wmk(g)e j2ggiAx dg (19) 

--0.5Ax 
0.5Ax 

We k = f Wck(t)e j2rtgidxx de (20) 
--0.5Ax 

0.5Ax 
Zp  = f gk(e)e j2neiAx de (21) 

--0.5Ax 
0.5Ax 

Vi ~ = f Vk(e)e jz=eiAx de. (22) 
--0.5Ax 

In the above e is the wave number. Substituting these integrals into Eq. (I0) or 
(12) and then into Eq. (17) one has 

[Wmk(g) ] 
Fk+l(e)  = G(e)Fk(e) + A(e)  -1 [Wck(e ) j (23) 

Zk(e)  = MFk(e) + Vk(e), (24) 

where G(e) is the amplification matrix of the finite difference scheme and, for the 
Preissmann scheme, A(e) is defined by Eq. (6). For the Lax-Wendroff scheme we 
have A(e)  = I.  The covariance of the system and measurement noise are 
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R(e) = Sr (26) 

Here Sm(g,k) =- Sin(e) and Sc(g,k) = Se(e) are defined by respectively the Eqs. 
(15) and (16). If the initial condition Po is given, the Kalman filter equations are 
employed to solve the filtering problem for each wave number separately (Maybeck 
1979): 

Pk-(e) = G(~)P+_I(e)G(e) T + A(e)- IQ(e)A(e)  - T  (27) 

V~(e)  = [I -- Kk(e)MlP[(e) ,  (28) 

where P ~  and P +  are the covariances of the estimation error respectively before 
and after the k-th measurement. Furthermore: 

K k ( e )  = es163 r + Sr1-1, (29) 

is the Kalman filter gain. 
Given the model (23)-(26), questions of observability and controllability can be 

answered (Jazwinski 1970). It is a well-known fact that if a system model is both 
uniformly completely observable and controllable, the Kalman filter is uniformly 
exponentially stable (Maybeek 1979). Furthermore, we recall that if the original 
system is exponentially stable, the Kalman filter is also exponentially stable (Kwak- 
ernaak and Sivan 1972). 

We now consider the system model (23)-(26) in more detail for both the Lax- 
Wendroff scheme and the Preissmann scheme in case the system noise is intro- 
duced each time step after the implicit finite difference equations have been solved 
(see Section 4). In both cases the matrix A(~) -1 does not appear in Eq. (23). 
Employing the Preissmann scheme we have for waves with a length of 2Ax 

G ( A x )  = 0 - - (1--0) /0  ' (30) 

and it can easily be verified that the water velocity is not observable. In this case 
the stability of the original system, introduced by choosing 0.5 < 0 _< 1.0 have to 
guarantee the stability of the filter. Analogously, employing the Lax-Wendroff 
scheme we have for waves with a wave length of 2Ax: 

G ( 1 A x )  = [ l-2Cr2+)~AtO 1--02Cr2]' (31) 

and again the velocity component turns out to be not observable. However, in this 
case the sufficient condition for stability (9) guarantees the stability of the filter. 
Finally, for both the Preissmann and the Lax-Wendroff schemes, the amplification 
matrix for very long waves approaches: 

Again, the velocity component is not observable. In this case bottom friction has 
to guarantee the stability of the filter. 

To eliminate the effect of the initial condition we study the steady-state 
behaviour of the filter. We define: 
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Figure 4. Steady-state filter performance using the Preissmann scheme with 0 = 0.53 and with a 
bottom friction coefficient )~ = 0.25 • 10 -6 

Figure 5. Steady-state filter performance using the Preissmann scheme with 0 = 0.60, a bottom 
friction coefficient )~ = 1.0XIO -6 and spatially correlated system noise 

K(e) = lira Kk(s (33) 
k~cx~ 

{P.+(O pS(e)] 
P + ( g )  = [ P u ~  Ph+(g)J = l im~176 (34) 

where P + ( g )  and Ph+(e) are the steady-state distributions of the estimation error 
of the water velocity and water-level just after a measurement has been incor- 

porated. Pu+h(g) is the cross spectrum between these processes. P + ( g )  is the com- 

plex conjugate of Pu~(l). P+( s  and K(g) can be determined by means of Eqs. 

(27)-(29). To gain insight into the stability of the filter we also compute the state 
transition matrix of the steady-state filter: 

4t(g) -- [I  -- K(~)M]G(I) ,  (35) 

and its eigenvalues hl,2(~ ). 

In Fig. 4 the steady-state distributions P + ( s  and P + ( g )  are shown as a func- 

tion of the number of grid points per wave length N = 1/Ax if the Preissmann 
scheme is used. The system noise has been chosen to be uncorrelated in space, 
yielding Sin(g) = Sm and Sc(g) = Sc. These values are also shown in Fig. 4. 

and 
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The depth was chosen to be 10 meters while the effects of bottom friction 
(~. -~ 0 .25X10 -6)  and numerical viscosity (0 = 0.53) were taken into account in 
order to obtain an exponentially stable filter. Figure 4 shows that the uncertainty 
P +  for the number of grid points per wave length N = 2 is rather large. As 

described above this is caused by the fact that this velocity component is not 
observable and P +  for N = 2 is bounded only because of the numerical viscosity. 

The fact that P +  for N = 2 is relatively small is caused by the same effect. 

Since the water velocity component does not affect the water-level, the appearance 
of the system noise Sm for N = 2 does not increase the uncertainty Ph of this 
water-level component. Similar effects occur for the very long wave lengths. In 
this case bottom friction has to guarantee that Pu for large N is bounded. In Fig. 

4 the modulus of the eigenvalues gl,2 of the amplification matrix and hi, 2 Of the 
state transition matrix are shown too. This figure illustrates that the filter is more 
stable than the original system. Unfortunately, this stability improvement turns out 
to be the least for very short waves. 

In Fig. 5 we choose a spatially correlated system noise and increase the bottom 
friction coefficient ()~ = 1.0•  10 -6)  and the numerical viscosity (0 = 0.60). As a 
consequence, P +  is decreased both for the long wave lengths as for the very short 

waves. Decreasing the uncertainty for the very short waves is essential since finite 
difference schemes are not able to represent short waves accurately. The existence 
of these short waves can cause unsatisfactory filter performance or may, in the 
non-linear case, introduce instabilities. 

In Fig. 6 we consider the Preissmann scheme in which the system noise is intro- 
duced implicitly as described by Eq. (10) and not, as in the case of Figs. 4 and 5 
each time step after the implicit finite difference equations have been solved. The 
system noise has been chosen to be uncorrelated in space.. As can be seen from 
Fig. 6, P +  and Ph- behave in a similar way as in Fig. 5 and in this case, it is not 
necessary to assume that the system noise is spatially correlated. However, the 
filter is not controllable for very short waves. Despite the fact that Q is positive 
definite, all the elements of A -1,  and consequently of the noise covariance 
A-1QA -1, are zero for the short waves. Therefore, the eigenvalues of P +  for 
these waves become zero too. In practical filtering problems using a finite 
wordlength on the computer this may easily cause numerical problems. 

Finally, Figure 7 demonstrates that similar results as in the case of Fig. 5 are 
obtained by using the Lax-Wendroff scheme instead of the Preissmann scheme. 

In applying the filter to the system (23)-(26) the bottom friction coefficient as 
well as the noise statistics must be specified. However, these parameters are not 
known exactly. That is, the system model used in constructing the filter differs 
from the real system that generates the observations. It is clear that an inexact 
filter model degrades the performance of the filter. For the special filtering prob- 
lem described in this section, we study this effect quantitatively. Suppose that the 
real sYstem is described by: 

Fk+l(g)  = Gr(e)Fk(f,) + Ar(g,) -~ [Wck(e ) ] , (36) 

zk(g) = MFk(e)  + vk(e), (37) 

where the covariances of the system and measurement noise are: 
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Figure 6. Steady-state filter performance using the Preissmann scheme with 0 = 0,60, a bottom 
friction coefficient ~. = 1.0X 10 -6 and system noise introduced implicitly 

Figure 7. Steady-state filter performance using the Lax-Wendroff scheme with bottom friction coef- 
ficient ~, = 1.0X 10 - 6  

0 
Qr(g) = [Srno(g) Scr(g,) ] (38) 

Rr(e ) = Sir. (39) 

A measure of filter performance is provided by the est imation error covariance. 
The best performance of the filter is obtained when we model the real system by 
the correct Eqs. (36)-(39). Solving the filter equations results in the steady-state 
filter gain K~(g) and estimation error: 

e'+(e) = Lp ,(e) eh+(e) 

However, in practice, we model the system by the Eqs. (23)-(26) that differs from 
,the real system described by the Eqs. (36)-(39). Solving the filter Eqs. (27)-(29) 
using this erroneous model yields the steady-state filter gain K(g) and estimation 
error P+(g). 

The computed covariance matrix P+(g) is not the actual estimation error since 
the filter model differs from the real model. Neither produces this filter the 
optimal estimation error P+(g). The actual estimation error: 
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Figure 8a. Steady-state filter performance in case the system noise is chosen too small 

Figure 8b. Steady-state filter performance in case the system noise is chosen too large 
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Figure 9. Steady-state filter performance using the first-order Lax-scheme instead of the second- 
order Lax-Wendroff scheme 

I P . o + ( e )  P.h +(e)] 
= e h o + ( e )  , (41)  

can be obtained by solving the equations: 
P a ( g )  = Gr(g)P+(I)Gr(g)  T + Ar(g)Qr(~)Ar(g) T (42) 

P + ( e )  = [Jr - K ( e ) M I W ( e ) [ 1  - K(e)g]  r + K ( g ) S r r K ( r  r .  (43) 

In Fig. 8 the solutions of the Eqs. (42) and (43) are shown for some cases to 
study the effect of erroneous noise statistics. Here we employ the Lax-Wendroff  
scheme and assume that  the real system behaviour is described by Fig. 7. The bot- 
tom friction coefficient )~ is again chosen to be 1.0)< 10 -6 .  The following situations 
are considered: 

The system noise is too small by an order of magnitude (see Fig. 8a): 
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S i n ( l )  = O .1Smr(1 ) ;  S c ( g )  = 0.1SCr(g);  S r  = S r  r. 

The system noise is too large by an order of magnitude (see Fig. 8b): 

S r n ( g )  = lOSrnr(e) ;  S c ( g )  = lOSer(g) ;  S r  = S r  r. 

The main conclusions that are drawn from these figures are: 

The  effect of choosing large incorrect system noise variance is small with 
respect to the large error that was introduced. This is of practical importance 
since the statistics of the system noise are often poorly known. 

Over-estimation of the system noise variance is less serious than under- 
estimation. 

Finally, we study the influence of the use of a finite difference scheme that 
possesses first-order accuracy. The scheme that is considered is the Lax scheme 
(Richtmyer and Morton 1967): 

F?  +1 = ( F L 1  q- F?+I) -- 2~x(F/k+l  -- F/k l) -]- AIC2(FL1 -]- F?+I) , (44) 

with the amplification matrix: 

At 
G(g) = cos(2/rgAx)I -- j - ~ x C l S i n ( 2 1 r ~ A x )  - A t C 2 c o s ( 2 x g A x  ). (45) 

Again we assume that the real system is based on the Lax-Wendroff scheme with 
second-order accuracy and that it behaves as described in Fig. 7. Both the noise 
statistics as the bottom friction coefficient (~. = 1.0X10 -6)  are assumed to be 
known perfectly. However, we model the system using the Lax-scheme. The 
results shown in Fig. 9 indicate that the influence of the second-order terms of the 
finite difference equations is small compared to the effect of the choice of an 
incorrect system noise, except for very short waves. 

6 C o n c l u s i o n  

In developing Kalman filtering procedures for numerical tidal models one is faced 
with questions of observability, stabilitY and divergence of the filter, the numerical 
properties of the filter algorithm as well as the influence of the finite wordlength 
on the filter performance. In this paper we analyzed these aspects of Kalman 

filtering by deriving filters on the basis of the linear shallow water equations. 
Furthermore, we solved a specific filtering problem to expose the potential difficul- 
ties of the Kalman filter application. From the insights thus obtained we are able 
to compare different implementations with respect to the expected filter perfor- 
mance. 
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