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ABSTRACT
We present Disco, an asynchronous neighbor discovery and
rendezvous protocol that allows two or more nodes to oper-
ate their radios at low duty cycles (e.g. 1%) and yet still
discover and communicate with one another during infre-
quent, opportunistic encounters without requiring any prior
synchronization information. The key challenge is to operate
the radio at a low duty cycle but still ensure that discovery
is fast, reliable, and predictable over a range of operating
conditions. Disco nodes pick a pair of prime numbers such
that the sum of their reciprocals is equal to the desired ra-
dio duty cycle. Each node increments a local counter with
a globally-fixed period. If a node’s local counter value is
divisible by either of its primes, then the node turns on its
radio for one period. This protocol ensures that two nodes
will have some overlapping radio on-time within a bounded
number of periods, even if nodes independently set their own
duty cycle. Once a neighbor is discovered, and its wakeup
schedule known, rendezvous is just a matter of being awake
during the neighbor’s next wakeup period, for synchronous
rendezvous, or during an overlapping wake period, for asyn-
chronous rendezvous.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture and Design—Wireless communication; C.2.2
[Computer-Communications Networks]: Network Pro-
tocols

General Terms
Algorithms, Design, Experimentation, Performance
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Protocol, Neighbor Discovery, Rendezvous, Wireless
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1. INTRODUCTION
The interaction of things – energy-constrained mobile ob-

jects with other mobile and static objects – provides a fer-
tile ground for application-driven research. However, the
low-power, asynchronous neighbor discovery problem poses
one challenge for these applications: how can two systems
that are awake infrequently and perhaps rarely co-located
discover each other without any prior knowledge of their po-
tential encounters, and without external assistance? The
key issue is that nodes must operate their radios at low duty
cycles to maximize lifetime, and yet be actively vigilant to
detect the emergence of new links and the attrition of old
ones. These two requirements – low-power operation and ac-
tive vigilance – are at odds with each other since optimizing
for one may come at the expense of the other.

This paper presents Disco, a practical solution to the asyn-
chronous neighbor discovery and rendezvous problem that
works by scheduling radio wake times at multiples of prime
numbers, ensuring deterministic pairwise discovery and ren-
dezvous latencies without requiring global coordination of
duty cycles or superframe structure. The algorithm selects
a pair of prime numbers such that the sum of their recip-
rocals is equal to an application’s desired radio duty cycle.
Each node increments a local counter with a globally agreed-
upon period and, if this local counter is divisible by either
of the primes, the node turns on its radio for one counter
period. This protocol, a simple adaptation of Sun Zi’s two-
millenia old Chinese Remainder Theorem [18], ensures dis-
covery in bounded time, even if nodes independently set their
own duty cycle. Section 3 presents the Disco design starting
with a simplified version of the algorithm to show correct-
ness, and then relaxes the simplifying assumptions to flesh
out a protocol that works in practice.

To use Disco, an application first chooses a desired duty
cycle or discovery latency, and optionally a node class (nodes
in the same class do not need to minimize discovery latency
between themselves). Disco automatically selects primes
that match the desired duty cycle or discovery latency and
then turns on the radio at every multiple of the chosen
primes. During each such wakeup, a node can listen, beacon,
or do both, depending on application requirements. Sec-
tion 4 presents the details of our Disco implementation.

Disco performs well on key performance metrics like dis-
covery latency and rendezvous frequency as a function of
duty cycle. Disco also offers great flexibility for applica-
tions: nodes can independently select their own duty cycles
and still ensure discovery, or nodes can be assigned to dif-
ferent classes such that inter-class discovery times are guar-



anteed to be much faster than without class assignments,
or nodes can adjust duty cycles to achieve a particular dis-
covery latency, or nodes can choose to beacon, listen, or do
both, during their wake times. Section 5 compares Disco’s
performance with earlier work and sensitivity to several pa-
rameters through an in-depth simulation study. Section 6
presents empirical data collected from our implementation.

The flexibility afforded by Disco is motivated by the differ-
ent needs, duty cycles, and interaction patterns of emerging
applications. We identify three common patterns in mobile-
to-mobile or mobile-to-static interactions that we call talk-
ing, docking, and flocking, and briefly discuss them to set the
context for this work.

In the talking pattern, two mobile nodes encounter each
other, communicate, and part ways. Such encounters can
provide insight into many real-world social network effects [4].
Tracking social interactions can help epidemiologists study
the spread of disease in schools or sociologists better under-
stand children’s social development patterns. In the work-
place, many interactions occur face-to-face and outside the
purview of computing: water cooler conversations pass along
important gossip, many executives and managers “manage
by walking around,” and individuals spread information epi-
demically. And, we are all familiar with detecting zebra-to-
zebra encounters [14], tracking networking researcher inter-
actions [12], and logging hiker sightings after their trail-side
encounters with other hikers [10].

In the docking pattern, a mobile node discovers a static
node situated at a rendezvous point. For example, a com-
pany might want to ensure that a guard is doing his rounds
by checking the encounter logs in all corners of an office.
Other applications include uploading cargo transit history at
readers [15], reporting cattle movement data during feeding
times at the trough [28], tracking hikers via their encoun-
ters with trail-side waypoints [10], and tracking researchers’
whereabouts in the lab using Active Badges [27].

In the flocking pattern, a group of nodes move together
as a unit. For example, an elementary school teacher might
want to know if all the children are on the bus before it
departs from the zoo and, if a child is missing, when that
child was last seen and by whom. A railroad might want
to determine the manifest of a train en route or the order
of its constituent rail cars, especially as it switches cars in
and out at sidings and rail yards. A particularly forgetful
person might want to ensure that his personal items travel
together and be notified if he leaves one behind [1]. Or, one
node in a constellation of sensors monitoring a Parkinson’s
patient might want to inform the other sensors if it discovers
an access point where data can be uploaded [19].

2. RELATED WORK
For wall-powered or rechargeable nodes, the asynchronous

neighbor discovery problem has a simple solution: a node
periodically beacons its presence and any always-on neigh-
bor that receives the beacon considers the first node to be
a neighbor. The problem is also simple with some external
assistance: a node attempts to discover and join a network
just after being powered on or reset by a human operator
or just after being initially deployed [17]. Discovery is also
aided greatly by external synchronization: a node only bea-
cons and listens for neighbors for just a brief period after
each minute, quarter-hour, or hour, for example, if nodes
can synchronize their clocks using GPS [14]. The problem is

also simple if the nodes are deployed in a static network and
expect to have one or more neighbors at all times: nodes
maintain time synchronization [25], send packets with long
preambles [20], or repeatedly send the same packet until it
is acknowledged [2].

These simple techniques work because encounters are pre-
dictable: a sender has a reasonable expectation that the re-
ceiver is nearby, that its duty cycle is known, and that it will
be awake soon. The discovery problem becomes more chal-
lenging in energy-constrained, mobile environments since a
node may not know whether any neighbors are present, and
what duty cycles those neighbors might operate at, given
the widely varying energy availability and usage observed in
practice for both mobile [23] and static nodes [24]. Since idle
listening often dominates the system power budget [5], the
most expedient – perhaps only – way to balance the power
supply and demand is to reduce the listen duty cycle. An-
other reason asymmetric duty cycles are useful is that they
allow nodes with different roles or capabilities, like cattle
collars and static data sinks [28], to interact.

Once listen periods must be adjusted to reflect the avail-
able energy or differing workloads, sampling protocols that
employ low-power listening and assume a fixed listen period,
like B-MAC [20] and X-MAC [2], become less appealing for
neighbor discovery. This occurs because the required pream-
ble length to ensure discovery is no longer a network-wide
constant. Likewise, slotted protocols like S-MAC [29] that
periodically listen for a whole synchronization period to dis-
cover neighbors [13] assume global agreement on the length
of this period. Although Disco requires global agreement on
the period of a counter, which is comparable to a single com-
munications slot in slotted protocols, this dependence does
not preclude Disco nodes from independently choosing their
own duty cycles.

Prior work in asynchronous neighbor discovery has em-
ployed stochastic, quorum, and combinatorial techniques.
McGlynn and Borbash proposed “birthday protocols” for
asynchronous neighbor discovery in static ad hoc networks [17].
They considered the problems of energy conservation dur-
ing node deployment and energy-efficient neighbor discovery
following deployment using a scheme in which nodes listen,
transmit, or sleep with different probabilities. Their work
concludes that mobile ad hoc networks would not use dis-
covery, but that discovery would be useful in static ad hoc
networks. Even in static networks, however, they schedule
an explicit discovery phase that quickly terminates. Our pro-
posal differs in a few key ways. First, we note that discovery
can be quite valuable in mobile networks when the nodes
move slowly or have modest dwell times near peers. Second,
we suggest that discovery should be a fundamental and con-
tinuous service in both mobile and static networks, rather
than a one-time event. Finally, we note that probabilistic
discovery leads to aperiodic and unpredictable rendezvous
latencies, and long tails on discovery probabilities, reducing
its appeal.

Tseng et al. propose a quorum-based protocol for mul-
tihop ad hoc networks [26]. Their protocol divides time
into a sequence of beacon intervals which are grouped into
sets of m2 contiguous intervals, where m is a global param-
eter. In each group, the m2 intervals are arranged as a
two-dimensional m × m array in a row major manner. A
node arbitrarily picks one column and one row of entries to
transmit and receive, respectively, for a total of 2m − 1 in-



tervals, in each group of m2 intervals. Since m is a global
parameter, all nodes use the same duty cycle, which limits
flexibility. Jiang et al. generalize this result to any quo-
rum protocol that satisfies a rotation closure property [11].
We note that both sampling protocols, like B-MAC and X-
MAC, and scheduled protocols, like S-MAC, implicitly use
quorum-based neighbor discovery. Their use differs only in
the details of what happens during each interval and whether
transmissions are row major and listening is column major
in each group of m2 intervals as is the case for sampling
protocols, or the reverse for slotted ones.

Zheng et al. apply optimal block designs using difference
sets to the problem of asynchronous neighbor discovery [30].
Their solution addresses the symmetric duty cycle problem,
when all node duty cycles are uniform throughout the net-
work. They conclude that for asymmetric duty cycles, their
approach reduces to an NP-complete minimum vertex cover
problem requiring a centralized solution. These limitations
are at odds with the requirements of our problem.

Herman et al. explore the temporal partition problem in
sensornets where two or more groups of nodes with differ-
ing schedules become unaware of each other [8]. The paper
presents several self-stabilizing protocols to solve the prob-
lem of temporal partition; starting from an arbitrary tem-
porally partitioned state, these protocols lead the network
to a state in which all nodes have aligned sleep schedules.
Their approach uses randomly chosen relatively prime sleep
periods and occasional, and possibly random, probing of ex-
tra time slots. This approach constrains a node to only two
duty cycle choices and the paper further states that since de-
terministically guaranteeing that two groups make distinct
choices is difficult, the protocol resorts to randomization.
Disco addresses a more general set of neighbor discovery
problems and avoids the need for a randomized protocol by
using pairs of primes.

3. DESIGN
This section presents the design of the Disco neighbor dis-

covery and rendezvous protocol. Neighbor discovery (or re-
discovery) allows two nodes with independent duty cycles
and no prior (or current) synchronization information to
discover each other in bounded time when the nodes are
within radio range of each other. Rendezvous allows nodes
to deliver messages to previously discovered neighbors with
predictable and controllable latencies. We begin with a sim-
plified version of the Disco algorithm that makes proving
Disco’s correctness straightforward. We then relax the sim-
plifying assumptions to flesh out a protocol that works in
practice.

3.1 Simplified Algorithm
Discovery is the process by which nodes learn about their

current one-hop neighbors. The idea behind the discovery
algorithm is simple. Two nodes, i and j, pick two numbers,
mi and mj , such that mi and mj are relatively prime (co-
primes) and 1/mi and 1/mj are approximately equal to i
and j’s desired duty cycles, respectively. Time is divided
into fixed-width reference periods and consecutive periods
are labeled with consecutive integers. Nodes i and j start
counting the passage of these periods at times ai and aj ,
with their respective counters, ci and cj , initialized to zero,
and with i and j counts synchronized to the reference period
(we will relax this last assumption in later sections). If ci|mi

(ci is divisible by mi), then i turns on its radio for one period
and beacons (or listens, or does both, depending on appli-
cation requirements). Similarly, if cj |mj , then j turns on its
radio for one period and beacons. When both i and j turn
on their radios during the same period, they can exchange
beacons and discover each other.

It is easy to see that there is exactly one such overlapping
period every m = mimj periods. Letting x represent the
reference period number, we have

ci = x− ai

cj = x− aj

Our goal is to find an x such that ci|mi and cj |mj . We can
express this as a pair of simultaneous congruences

x ≡ ai (mod mi)

x ≡ aj (mod mj)

Such a set of congruences are known to have a common
solution by the Chinese Remainder Theorem [18]. This the-
orem states that if x0 is one such solution, then an integer
x satisfies the congruences if and only if x is of the form
x = x0 + km for some integer k. One x0 is

x0 = aibimj + ajbjmi

where the solution is unique (mod m) for m = mimj , and
where bi and bj must satisfy the congruences

bimj ≡ 1 (mod mi)

bjmi ≡ 1 (mod mj)

Let us consider a concrete example. Let node i select
mi = 3 (so i’s duty cycle is: DC ≈ 33%), start counting
at reference period x = 1 (so that ai = 1), with counter
values ci. Similarly, let node j select mj = 5 (so j’s duty
cycle is: DC ≈ 20%), start counting at reference period
x = 2 (so that aj = 2), with counter values cj . Figure 1
illustrates this timeline and counter values. Dark entries in
the ci and cj rows indicate ci|mi and cj |mj , respectively.
Columns where both ci and cj are dark indicate values of x
for which both i and j have overlapping on slots, and can
therefore communicate. In this example, when x = 7 and
x = 22, both i and j are turned on and can discover each
other.

We can express this example as the following simultaneous
congruences

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

and see that when x = 7, both congruences are solved

(1− 7)|3
(2− 7)|5

An analytic solution requires finding bi and bj

5bi ≡ 1 (mod 3)

3bj ≡ 1 (mod 5)

We see that values of bi = 2 and bj = 2 satisfy these congru-
ences and hence one solution x0 is

x0 = aibimj + ajbjmi

x0 = 1 · 2 · 5 + 2 · 2 · 3
x0 = 22



x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ci - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
cj - - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 1: An example discovery timeline. Two nodes, i and j, start their counters, ci and cj, at times x = 1
and x = 2, with periods mi = 3 and mj = 5, and duty cycles of approximately 33% and 20%, respectively. The
dark cells indicate times when the nodes i and j turn on their radio. Both nodes are awake at times x = 7
and x = 22. This pattern repeats when x = 7 + 15k, for all k ∈ Z+.

Since all solutions are unique (mod 15), we have

x0 = 22 (mod 15) = 7

which agrees with our solution from Figure 1 and gives x =
7 + 15k, for all k ∈ Z+.

The preceding analysis sidesteps a number of practical
considerations. Since, for example, the Chinese Remainder
Theorem requires the moduli mi and mj be coprimes to
guarantee a solution to the simultaneous congruences, these
values cannot be independently chosen by the nodes, which
is limiting. We also required that nodes be able to express
their desired duty cycle as the reciprocal of a positive inte-
ger (e.g. 1, 1/2, 1/3, . . . , 1/k, where k ∈ Z+), which is re-
strictive. We assumed that nodes i and j synchronized their
counting with the reference phase, which aids analysis but
is unlikely to hold in practice. The preceding analysis also
fails to explore the effect of clock drift on discovery, ignores
radio startup time and energy overhead, and assumes that
communications jitter is negligible. In the remainder of this
section, we progressively relax these assumptions, and evolve
our protocol, to flesh out one that works in practice.

3.2 Coprimes are not Enough
The Chinese Remainder Theorem requires the moduli mi

and mj be coprimes to guarantee a solution to the simulta-
neous congruences. This restriction raises some challenges.
First, the moduli cannot be chosen independently by the
nodes since such choices could lead to values of mi and mj

that are not coprimes. It would, of course, be preferable to
let nodes choose the moduli that best satisfy their individual
duty cycle requirements rather than require a static or cen-
tral assignment. Second, restricting the moduli to coprimes
is not scalable since there are only a handful of numbers that
can satisfy both the target duty cycle (typically 1-5%) and
coprime requirement. Third, if mi = mj , then nodes i and
j may never discover each if they wake up with the same
period but different phase.

One way to allow each node to select the best duty cycle for
itself while still ensuring discovery occurs is to require each
node i to pick two primes, pi1 and pi2 , such that pi1 6= pi2

and the sum of their reciprocals (approximately) equals the
desired duty cycle

DC ≈ 1

pi1

+
1

pi2

Each node increments a local counter and if a node’s local
counter is divisible by either of its primes, the node turns on
its radio for a single interval, whose length is the only global
parameter. This approach ensures that no matter what duty
cycles are independently selected at different nodes, for ev-
ery pair of nodes i and j, there will be at least one pair
in the set {(pi1 , pj1), (pi1 , pj2), (pi2 , pj1), (pi2 , pj2)} that are
relatively prime, satisfying the Chinese Remainder Theorem.

Note, however, that simply requiring pi1 and pi2 to be co-
primes does not satisfy the requirements of the Theorem,
and therefore cannot ensure discovery. For example, letting
(pi1 , pi2) = (30, 77) and (pj1 , pj2) = (35, 66), ensures that
intra-node pairs are coprime

gcd(pi1 , pi2) = gcd(30, 77) = 1

gcd(pj1 , pj2) = gcd(35, 66) = 1

however, the inter-node pairs are not

gcd(pi1 , pj1) = gcd(30, 35) = 5

gcd(pi1 , pj2) = gcd(30, 66) = 6

gcd(pi2 , pj1) = gcd(77, 35) = 7

gcd(pi2 , pj2) = gcd(77, 66) = 11

which means discovery may fail. Consider the case in which
node i starts counting at time x = 0, so node i’s radio is
on at times x = 30k and x = 77k, for all k ∈ Z+, and
node j starts counting at time x = 1, so node j’s radio is
on at times x = 35k + 1 and x = 66k + 1, for all k ∈ Z+.
There is no x for which both i and j have their radios turned
on simultaneously, ensuring discovery will fail. Therefore,
to ensure correctness, Disco uses prime pairs rather than
coprimes.

3.3 Choosing Primes
The choice of primes can have a large impact on discov-

ery latency. For example, a target duty cycle of 2% can be
achieved in several ways. One combination of primes that
achieves this duty cycle is 97 and 103 (1/97 + 1/103 = 2%)
but another combination is 53 and 883 (1/53 + 1/883 =
2%). Which combination is better? Assume that both nodes
picked the same pair of primes. In that case, with high prob-
ability, the worst-case discovery latency will be 97 × 103 =
9, 991 periods vs 53×883 = 46, 799 periods, more than a fac-
tor of four difference. Now, assume that one node picked 53
and 883 while the other node picked 57 and 409. In this case,
the worst-case discovery latency becomes 53 × 57 = 3, 201,
fifteen times faster than 53× 883 = 46, 799.

The ratio of the worst-case discovery latency between an
auspicious and an unfortunate set of prime pairs is bounded
by the duty cycle. For example, a 10% duty cycle results in
no worse than a 1:10 ratio, a 2% duty cycle is bounded by
a 1:50 ratio, and a 1% duty cycle results in at worse a 1:100
ratio. If we let c = 1/DC, we have

1

c
≈ 1

pi1

+
1

pi2

(1)

rearranging and solving for pi2 , we have

pi2 ≈
pi1c

pi1 − c
(2)



The limit of the ratio between the auspicious and unfor-
tunate worst-case latencies is

lim
pi1→c+1

p2
i1

pi1pi2

=
(c+ 1)2(c+ 1− c)

(c+ 1)(c+ 1)c
=

1

c
= DC (3)

These observations suggest that picking the prime pairs
requires care: a good choice can result in low discovery la-
tency but a poor choice can result in much longer worst-case
discovery latency. Low discovery times are possible if one of
the primes is very close to the reciprocal of the duty cycle
while the other prime is a much larger number. If this ap-
proach is taken, then it becomes important to randomize the
choice of prime pairs to reduce the chance that two nodes
will have picked the same pair if they both select the same
duty cycle.

If nodes can be assigned to different classes such that mem-
bers of a class do not need to discover or communicate with
each other, then it is easy to ensure good pairs are selected.
For each possible duty cycle, every node running Disco em-
ploys a deterministic algorithm to generate an ordered list of
prime pairs that can satisfy the duty cycle. A prime pair’s
position in the ordered list, taken modulo the number of
distinct classes defined by the application, dictates the par-
ticular class to which a pair is assigned. A node chooses at
random one of the prime pairs assigned to its class. This al-
gorithm ensures that nodes in different classes are assigned
distinct pairs, which, as we will show later can greatly im-
prove discovery latency. The policy of class label assignment
is left to the application, but the mechanism to ensure good
inter-class pairs are chosen is handled by Disco.

3.4 Slot Non-Alignment
We now relax the assumption that slots are aligned and

delve into the details of slot construction. In practice, slots
will rarely be aligned since nodes are run independently and
do not adjust clock skews or set up a global time reference.
Since we now assume slots are not aligned, we need to ensure
that two nodes will still discover each other regardless of how
their slots overlap. To maximize the likelihood that overlap-
ping slots result in discovery, Disco transmits a beacon at
both the beginning and end of a slot when beaconing.

Even if slots are generally non-aligned, nodes that are in-
phase may come into contact with each other from time to
time. When this happens, both nodes may attempt to trans-
mit their beacons at the same time, causing collisions or
receiving each others beacons during every slot. Although
this situation can occur, Disco leaves it to the application
to decide how to respond at a coarse grain by, for example,
changing the duty cycle or changing to a listen-only mode.
Part of the reason to leave this to the application is that
if nodes have even small variations in the clocks, nodes are
likely to fall out of phase naturally. One API design ques-
tion is whether there should be explicit support for letting
the application shift phase to explicitly deal with synchro-
nization?

An important question is what a node should do if the
channel is busy. There are a handful of options. A node may
blindly transmit regardless of channel contention, it could
enter a channel contention phase, it could forgo transmission
altogether, or it could wait until the channel is clear and
then transmit. Blindly transmitting when the channel is
busy is hardly scalable and would lead to channel contention
from colliding beacons. Entering channel contention could

introduce a long delay, effectively throwing off the timing of
the slot. Forgoing transmission also throws off the timing of
the slot. Disco currently transmits as soon as the channel is
clear, provided it does not expect any of its neighbors to do
so.

3.5 Duty Cycle from Discovery Latency
In many applications, it will be necessary to compute the

duty cycle or beacon rate required to satisfy a particular
discovery latency. The application will specify the worst-case
discovery latency tolerable and the minimum duty cycle will
need to be computed. The procedure to convert maximum
discovery latency, tdisco, to duty cycle is relatively simple.
Two nodes operating with primes pi1 and pj1 will discover
each other in at most pi1pj1 counter periods, where each
counter period is of length tslot. For discovery to occur in
the required time, the following inequality must hold

pi1pj1tslot ≤ tdisco

Without loss of generality, we assume the primes are equal
so that p = pi1 = pj1 , giving us the following constraint for
choosing the primes

p ≤
r
tdisco

tslot

Recall, however, that Disco requires a pair of primes to
ensure discovery when duty cycles are independently chosen.
Therefore the minimum duty cycle, DC, must satisfy the
following inequality

DC ≥ 1

p
+

1

p
=

2

p

Since each prime p results in a beacon slot every p slots,
the minimum required beacon rate is given by

fbeacon ≥
2

p · tslot
=

2√
tdiscotslot

Hz

Note that although the beacon rate increases with smaller
tslot values, the effective duty cycle decreases

DC ≥ 2

p
= 2

r
tslot

tdisco

3.6 Duty Cycle Granularity
A side effect of allowing only those duty cycles that can

be expressed as the sum of the reciprocal of two primes is
that many large duty cycles cannot be specified with fine
granularity. For example, the only legal duty cycles between
57.6% and 100% are shown in Table 1.

pi1 1 2 2 2 2 2 3 2
pi2 0 3 5 7 9 11 4 13

DC (%) 100 83.3 70 64.3 61.1 59 58.3 57.6

Table 1: Legal duty cycles (DC) between 57.6% and
100%. Many duty cycles cannot be realized and the
distribution of duty cycles is not uniform.

To allow a more flexible and fine-grained assignment of
duty cycles, Disco supports a third parameter, pi3 that can
assume any prime number. With this addition, the duty
cycle becomes

DC ≈ 1

pi1

+
1

pi2

+
1

pi3

(4)



4. IMPLEMENTATION
To evaluate the feasibility and performance of our design,

we implemented Disco using the nesC programming lan-
guage [6], TinyOS operating system [9], and Telos wireless
sensor node [21]. Figure 2 shows the radio on time, beacon
transmissions, and current draw profile during a 25 ms slot.
We experimented with a range of tslot values and found that
discovery performance degrades when tslot < 5 ms due to
the jitter introduced by the TinyOS timer library and radio
stack. Therefore, we use tslot = 10 ms in the rest of this
paper.

Figure 2: Beacon slot details (tslot = 25 ms). The
green line (top) indicates the on-time envelope of the
radio. The blue line (middle) shows beacon trans-
missions at the beginning and end of the slot, and
the orange line (bottom) shows the current draw in
mA (not mV) using a 1 Ω sense resistor in series
with the power supply.

The Discovery interface, shown in Figure 3, allows an ap-
plication to control discovery parameters, policy, and traffic
tunneling. A duty cycle between 0 and 100% can be re-
quested and the service will indicate the duty cycle actually
used. The worst-case discovery latency can be limited by as-
signing different nodes to different classes. The application
can control the beaconing policy and piggy-back packets over
the discovery channel.

interface Discovery {
// Request a duty cycle between 0 and 100 percent
command uint8_t setDutyCycle(uint8_t dutycycle);
command uint8_t getDutyCycle();

// Set the node class to reduce inter-class latency
command error_t setNodeClass(uint8_t classid);
command uint_t getNodeClass();

// Select beacon-and-listen or listen-only mode
command error_t setBeaconMode(bool beacon);
command bool getBeaconMode();

// Request, event, callback for app-specific payload
command error_t requestBroadcast();
event error_t fetchPayload(void *buf, uint8_t *len);
event message_t received(message_t* msg, void* buf,
uint8_t len);

}

Figure 3: The discovery programming interface.

5. SIMULATION STUDY
In this section, we evaluate the performance of Disco with

earlier work through simulation and we study the relation-
ship between slot length, beacon rate, discovery latency, dis-
covery rate, and duty cycle. In particular, we evaluate the
sensitivity of the protocol to the choice of primes.

We use the term balanced primes to refer to the case in
which the intra-node primes are approximately equal (e.g.
37 and 43). The term unbalanced primes refers to the case
in which the intra-node primes are significantly different (e.g.
23 and 157). We use the term symmetric pairs to refer to the
case in which both nodes choose the identical pair of primes.
The term asymmetric pairs refers to the case in which both
nodes choose a different pair of primes.

5.1 Simulation Models
Table 2 shows the three most closely related asynchronous

neighbor discovery services. We developed the closed form
expression of latency CDFs to speed up simulation runs
but also verified their output against a random set of brute
force simulations. Note that even though Disco is compared
against both Birthday and Quorum in this section, neither of
the two actually meets application needs. Birthday is based
on a randomized algorithm that does not provide predictable
rendezvous times and exhibits a long tail for discovery while
Quorum specifies a global constant that all nodes use for
their duty cycle.

5.2 Discovery Latency Comparison
Discovery latency refers to the delay between the moment

two nodes are within communications range to the moment
when they first discover each other. The distribution of dis-
covery latencies, as well as the tail of this distribution (i.e.
worst-case discovery latency), are both important metrics
for a neighbor discovery protocol. The worst-case discov-
ery latency determines the minimum amount of time two
nodes need to be in communications range to ensure discov-
ery. The distribution provides insight into the average case,
or median, behavior.

In this section, we compare the discovery latency of the
Disco approach with those of the probabilistic [17] and quo-
rum [26] approaches. We do not compare Disco with the
combinatoric approach that uses difference sets because that
approach addresses the symmetric problem, when node duty
cycles are the same, but concludes that for asymmetric duty
cycles, the approach reduces to an NP-complete minimum
vertex cover problem requiring a centralized solution [30].
These limitations are at odds with many of the requirements
of our problem.

For Disco, the discovery latency is a function of the partic-
ular prime pairs being used as well as the offset in the node
counters. For the grid quorum system, this latency is a func-
tion of the particular row and column choices being used as
well as the group size, m2, where these m2 intervals or slots
are arranged as a 2-dimensional m ×m array in row-major
manner [26]. For birthday protocols, the discovery latency is
a function of the beacon/listen probability of each node [17].

Figure 4 shows the cumulative distribution of discovery
latencies for Disco using the (37,43) balanced primes and
symmetric pairs, Quorum using m = 40 (value of m that
makes 2m−1

m2 = 5%), and Birthday using probability ptx =
prx = 0.05, with all protocols operating at 5% duty cycle.
The 50-th percentile discovery latency is 444 slots for Disco,



Protocol Cite Parameters Duty Cycle Latency CDF(n) Asymm?

Disco * (pi1 , pi2), (pj1 , pj2)
pi1+pi2−1

pi1 ·pi2
,

pj1+pj2−1

pj1 ·pj2
No closed form Yes

Birthday [17] 0 ≤ ptx, prx ≤ 1 ptx, prx 1− (1− ptx · prx)n, ∀n ∈ Z+ Yes

Quorum [26] m ∈ Z+ 2m−1
m2 1− (1− n

m2 )2, ∀n ≤ m2 No

Combinatoric [30] k = pq; p ∈ P, q ∈ Z+ k+1
k2+k+1

1− n
k2+k+1

, ∀n ≤ k2 + k + 1 No

Table 2: Comparison of asynchronous neighbor discovery techniques including Disco, Birthday, Quorum, and
Combinatoric. The duty cycle and discovery latency of these techniques are parameterized by primes (Disco),
transmit and receive probabilities (Birthday), the rank of a square matrix (Quorum), and powers of a prime
(Combinatoric). The latency cumulative distribution function describes the probability of discovery after n
trials or slots as a function of the protocol parameters. An asymmetric protocol allows each node to choose
a duty cycle independently of other nodes and still ensure discovery (with high probability in case of the
Birthday protocol). P is the set of primes. Z+ is the set of positive integers.
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Figure 4: The distribution and worst-case discovery
latency of Disco closely matches the Quorum pro-
tocol. Both Disco and Quorum trail the Birthday
protocol, which achieves the lowest latency 95% of
the time, but its probabilistic nature leads to a long
tail. The CDF of discovery latency for Disco, Quo-
rum, and Birthday protocols operating at a 5% duty
cycle is shown. The two Disco nodes use balanced
primes and symmetric pairs (37,43); the Quorum
system uses m = 40; and the Birthday protocol nodes
both turn on their radio with probability p = 0.05.

470 slots for Quorum, and 281 slots for Birthday. The dis-
tribution and worst-case discovery latency of Disco closely
matches the Quorum protocol, although Disco performs just
slightly better. Both Disco and Quorum trail the Birthday
protocol, which achieves the lowest discovery latency 95% of
the time, but its underlying probabilistic nature leads to a
long tail.

5.3 Discovery Latency: A Deeper Look
The discovery latencies in Figure 4 for Disco reflect a par-

ticular choice of prime pairs. In general, if two Disco peers
select balanced primes and symmetric pairs, their discovery
latency will closely track that of the Quorum protocol. If, on
the other hand, nodes choose unbalanced primes and asym-
metric pairs, then the discovery latency could be reduced
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Figure 5: The choice of prime pairs significantly
affects the latency distribution and worst-case dis-
covery latency. The CDF of discovery latency for
three different Disco prime pairs as well as the Birth-
day protocol, all operating at a 5% duty cycle, is
shown. Unbalanced primes in asymmetric pairs pro-
vide the best overall behavior and offer the lowest
worst-case discovery latency – better than all other
approaches. In contrast, unbalanced primes in sym-
metric pairs provide the worst average-case behavior
and the highest worst-case discovery latency.

significantly, or increased considerably, as Figure 5 shows.
Three Disco cumulative distributions are plotted, showing
the range of potential discovery latencies. The Birthday dis-
tribution for the same duty cycle is plotted as a baseline. Un-
balanced primes in asymmetric pairs of (23,157) and (29,67)
provide the best average-case behavior, 230 slots at the 50-
th percentile mark, and they also offer the lowest worst-
case discovery latency of 644 slots – better than all other
approaches. In contrast, unbalanced primes in symmetric
pairs of (23,157) and (23,157) provide the worst average-
case behavior, 1012 slots at the 50-th percentile mark, and
the highest worst-case discovery latency of 3454 slots. Bal-
anced primes in symmetric pairs of (37,43) and (37,43) and
Birthday using probability ptx = prx = 0.05 is shown for
comparison.
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Figure 6: The number of unique prime pairs that
generate a particular duty cycle and largest error
across all of the pairs for each duty cycle. Error is
measured as the magnitude of the deviation from
the desired duty cycle, e.g. for primes a and b, and

duty cycle c, the error is
˛̨̨
1
c
− a+b−1

a×b

˛̨̨
.

The ratio of the worst-case discovery latency between an
a good and bad pairing is bounded by the duty cycle. For
example, a 10% duty cycle results in no worse than a 1:10
ratio, a 5% duty cycle is bounded by a 1:20 ratio, and a
1% duty cycle results in at worse a 1:100 ratio. While these
numbers paint a grim picture of the worst-case downside,
they fail to capture how likely that downside is to occur.
Since unbalanced primes in symmetric pairs result in the
worst discovery latency, it is worth exploring how often such
bad pairs occur and what is lost if more conservative pairings
are used.

Bad pairings occur whenever two nodes pick the same
prime pairs. The key question is how often this happens.
Assume that two nodes operate at the same duty cycle and
they choose their prime pairs independently and uniformly
randomly from a set of k prime pair choices. Then, the
chance that they pick the same pair is 1/k. If k is large,
then this chance is small. Figure 6 shows the number of
unique prime pairs for each possible integral duty cycle from
1% to 25% as well as the largest duty cycle error across all
pairs for a given duty cycle. The number of unique pairs
possible for each integral duty cycle value grows quickly as
the duty cycle falls below 5%.

Since 5% appears to be near the elbow of the curve in
the number of unique pairs in Figure 6, we next explore the
cumulative distribution of discovery latencies across all 16
prime pair combinations for a 5% duty cycle. Figure 7 shows
the distribution of discovery latencies of all sixteen pairings
possible with each node choosing one of the following prime
pairs: (23,157), (29,67), (31,59), (37,43). The dark line with
a worst-case latency of 1,591 slots highlights the case when
both nodes select the (37,43) pair. All lines to the right of
the (37,43) line are cases when both nodes choose the same
pair while all lines to the left of the (37,43) line are cases
when nodes choose dissimilar pairs. The conclusion is clear:
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Figure 7: The cumulative distribution of discovery
latency across all 16 possible prime pair values for
a 5% duty cycle. Although the worst-case discovery
latency is 3,611 slots when both nodes choose the
(23,157) pair, the median discovery time is much
lower.
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Figure 8: The cumulative distribution of the median
(50-th percentile) and worst-case (100-th percentile)
discovery latency values across all 16 possible prime
pair combinations for a 5% duty cycle. The dot-
ted line intersects the CDF of the balanced primes
(37,43) in symmetric pairs.

asymmetric pairs dramatically reduce discovery latency, by
30 – 50%.

Figure 8 shows the cumulative distribution of the me-
dian (50-th percentile) and worst-case (100-th percentile)
discovery latency across all possible prime pair combina-
tions for a 5% duty cycle. These values are taken directly
from the 50-th and 100-th percentile data points from the
16 CDFs shown in Figure 7. The horizontal line labeled
“Balanced/Symmetric” identifies the median and worst-case
discovery latencies when both nodes select the (37,43) pair.
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Figure 9: Discovery latency decreases with increas-
ing asymmetry in pairwise duty cycles for a fixed
average duty cycle. The CDF of discovery latency
for an average duty cycle of 3% is shown. This 3%
average is achieved in three ways: (3%+3%)/2 using
prime pairs (61,73) and (61,73), (2%+4%)/2 using
prime pairs (97,103) and (47,53), and (1%+5%)/2
using prime pairs (191,211) and (37,43).

The key observation is that the data show excellent average-
case performance: 75% of all pairwise combinations result in
median discovery latency of less than 261 slots and over 93%
of all combination result in a median discovery latency of less
than 536 slots, 2.61 seconds and 5.36 seconds, respectively,
using our implementation slot length of 10 ms.

5.4 Impact of Duty Cycle Asymmetry
In some docking applications, discovery occurs between

nodes with dissimilar energy supplies [28]. In other applica-
tions, a fixed amount of energy may be allocated between two
or more nodes [19]. And, in a network of equal-energy nodes,
operating nodes at different duty cycles makes sense [7]. Fig-
ure 9 shows that inter-pair asymmetry reduces discovery la-
tency for a fixed pairwise-average duty cycle. This suggests
that more powerful beacons combined with less powerful mo-
bile tags is feasible and beneficial, and well supported by the
algorithm.

5.5 Latency-Driven Discovery
In some applications, the encounter window of two nodes is

short, and it becomes necessary to configure the duty cycle,
DC, or beacon rate, fbeacon, to ensure that discovery occurs
within this short window [3, 10]. The duty cycle and beacon
rate depend on the maximum tolerable discovery latency,
tdisco, and the length of a beaconing slot, tslot, as derived in
Section 3.5. The duty cycle required to ensure discovery in
time tdisco is

DC ≥ 2

r
tslot

tdisco

and beacon slot rate required to ensure discovery is

fbeacon ≥
2√

tdiscotslot

Hz
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Figure 10: The minimum duty cycle required to en-
sure a maximum discovery latency.
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Figure 11: The minimum beacon rate required to
ensure a maximum discovery latency.

Figures 10 and 11 show the minimum duty cycle and bea-
con slot rate, respectively, required to ensure a maximum
discovery latency across a range of tslot values.

6. EMPIRICAL EVALUATION
In this section, we evaluate the performance of Disco em-

pirically, based on our TinyOS implementation that runs on
Telos motes. We study the sensitivity of Disco to slot length,
real-world effects like clock skew and jitter, and node density.

6.1 Discovery Rate
Discovery rate refers to the number of discovery beacons

received per unit time. Figure 12 shows an empirical timeline
of discoveries between a pair of Telos nodes for two values of
the slot period, tslot, collected over two one hour periods. For
a tslot value of 10 ms, 150 discoveries are observed over a one
hour period, which translates to an average discovery period
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Figure 12: Empirical discovery timeline for two dif-
ferent tslot values (10 ms and 25 ms) using balanced
primes and symmetric pairs (97, 103). Rendezvous
is stable and predictable over the one hour experi-
ment.

of about 24 seconds. For a tslot value of 25 ms, 60 discoveries
are observed over a one hour period, which translates to an
average discovery period of about 60 seconds. The ratio of
these two numbers matches the ratio of the two different tslot

values, as expected, showing that the average discovery rate
scales linearly with slot length, even though duty cycle and
beacon rate do not. Note that with a 2% duty cycle using
symmetric pairs (97,103), the worst-case discovery latency
is 9,991 slots or about 100 seconds for the 10 ms slot and
250 seconds for the 25 ms slot.

6.2 Discovery Latency in Clusters
Figures 13 and 14 compare how simulated and empirical

results compare in clusters. These two figures present the
same underlying data in different ways. To collect this data,
seven nodes were programmed to operating at a 2% duty
cycle using balanced primes and symmetric pairs (97, 103).
The unique neighbor discoveries of one particular node (the
“test” node) were logged. Each time the test node discovered
all of its neighbors, it was held in reset. Each of the other
nodes were randomly reset while the test node was held in
reset. The test node started running (i.e. was released from
reset) a random amount of time after the other nodes were
reset. The discovery latency of each neighbor (time to first
discovery from reset) was logged.

The distribution of empirical discovery latencies is shown
in Figure 13 along with the simulated latencies. The empir-
ical discovery latency is lower than the simulated discovery
latency in 95% of trials (N = 408) but in 2% of the trials,
the empirical discovery latency exceeds the worst-case dis-
covery latency obtained through simulation. This difference
is principally due to the fact that slots are not aligned in
practice while in simulation they are aligned. It may also
be due to clock skew and jitter, both of which contribute to
small variations in slot times.

Figure 14 shows the time to discover the 1st, 2nd, 3rd, 4th,
and 5th neighbor when a node joins a cluster (simulated
by being reset). Note that the discovery latencies are for
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Figure 13: The empirical discovery latency is lower
than the simulated discovery latency in 95% of tri-
als (N = 408) but in 2% of the trials, the empirical
discovery latency exceeds the worst-case discovery
latency obtained through simulation. The nodes are
operating with a tslot = 10 ms and at a 2% duty cy-
cle using balanced primes and symmetric pairs (97,
103) for both empirical and simulation results.

the first through fifth neighbors discovered regardless of the
actual neighbor identifier. Discovery latency times for the
sixth neighbor is not shown because of a long tail (the tail
is, however, shown in Figure 13. The long tail may be an
artifact of channel contention or collisions, especially since
all nodes were using the same prime pairs. This data suggest
that beaconing rate adaptation may be necessary for node
clusters of modest density.

Despite the long tail, the median discovery latency for the
first (of six) neighbors is far lower than the median discovery
across all the neighbors shown in Figure 13. This suggests
that sharing neighbor table information may decrease neigh-
bor discovery latency.

7. DISCUSSION
Having presented and evaluated the Disco design both em-

pirically and through simulation, we now revisit some open
issues that merit further study and discuss some possible
extensions to this work.

7.1 Beacon Rate Adaptation
As node density increases, beaconing consumes an increas-

ing fraction of channel activity. For Disco to be able to scale
to high densities, the beaconing rate must be reduced when
nodes are in high density clusters. Disco currently allows
the application to control duty cycle, beaconing mode (bea-
con and listen, or listen only), and other service parameters.
Factoring out these policies from their underlying mecha-
nisms makes sense, especially since we do not have enough
experience with applications to craft an appropriate adapta-
tion policy nor do we understand how such a policy would
affect the predictability of discovery.

Still, we can envision some approaches to beacon rate
adaptation. In one scenario, nodes could track how often
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Figure 14: The discovery latency of the 1st, 2nd, 3rd,
4th, and 5th neighbors (regardless of their actual
ids) when a node joins a cluster with six nodes.. The
empirical discovery latency is lower than the simu-
lated discovery latency in 95% of trials (N = 408) but
in 2% of the trials, the empirical discovery latency
exceeds the worst-case discovery latency obtained
through simulation. The nodes are operating with a
tslot = 10 ms and at a 2% duty cycle using balanced
primes and symmetric pairs (97, 103) for both em-
pirical and simulation results. The sixth node is not
shown because of a long tail, suggesting beaconing
adaptation may be needed in dense node clusters.

they hear neighbors and they probabilistically adjust whether
to both beacon and listen during their on slots or just to
listen. If nodes are just listening, then they would send bea-
cons during their normally scheduled rendezvous slots with
nodes in their neighbor table to ensure that routing links re-
main connected and synchronized, but they would not send
other beacons. In this scenario, a neighborless mobile node
would beacon while nodes in the cluster would (largely) lis-
ten. Upon discovering a new node, members of the cluster
would gossip about their own neighbors with the new node,
which perhaps would help the new node discover its neigh-
bors more quickly.

7.2 Robustness to Clock Skew
Clock skew presents a challenge for many synchronized

protocols and requires nodes to estimate and adjust for neigh-
bors’ clock drift to maintain synchronization. Some time
synchronization protocols use linear regression to perform
this function [16, 22] but since Disco generally operates in an
unsynchronized manner, it only updates information about
clock offsets and does not compute skews. Over short time-
scales, this approach works well, but over longer timescales,
nodes that have significantly different skews are likely to
have difficulty with rendezvous, but asynchronous discov-
ery should still work. Whether or not skew compensation
is needed is unclear but one way to explore this question is
to assume clock skew is rskew = ∆f/f . Under normal cir-
cumstances, a cycle repeats every m = pix · pjy slots. If the
skew during a cycle must be less than some slot fraction α,

to ensure overlapping slots, then we must ensure

tslot · pix · pjy · rskew ≤ α · tslot (5)

For typical values of pix = 97, pjy = 103 (a 2% duty
cycle), and a conservative skew assumption rskew = 50 ppm,
α ≈ 0.5, suggesting that with typical crystals operating at
the very extremes of their temperature specification, there
could be up to 1/2 of a slot-width’s phase shift every m slots
when running at a 2% duty cycle. This may be the case for
some of the nodes used in our earlier experiments. Because
of the design of our slots – a beacon at the beginning and one
at the end – a phase shift simply means that a different pair
of slots will overlap, quite possibly sooner than predicted by
the Chinese Remainder Theorem, since every offset between
zero and max(pix , pjy ) occurs between overlapping slots.

For example, in Figure 1, we see that between time x = 7
and time x = 22, node i and node j have awake slots that
are offset from each other by every value between zero and
max(3, 5) = 5. Offsets of zero (x = 7), one (x = 12 and
x = 13; x = 16 and x = 17), two (x = 10 and x = 12;
x = 17 and x = 19), three (x = 7 and x = 10), four (x = 12
and x = 16; x = 13 and x = 17) and five (x = 7 and
x = 12; x = 17 and x = 22) all appear. This suggests that
even with clock skew, there may be overlaps that continue to
occur. Understanding and characterizing this phenomenon
may allow use of discovery at duty cycles below 1% and even
at the extremes of the temperature operating range.

7.3 Gossip
The current implementation does not make effective use

of gossip even though beacons do include a neighbor count
field (which indicates the number of one-hop neighbors in the
neighbor table). We envision that in the future, if a node i
receives a beacon from a node j with a neighbor count less
than some threshold (e.g. two), then node i could send a
longer beacon with (a random subset of) the entries of i’s
own neighbor table to help node j probabilistically speed up
its own neighbor discovery attempts. We suggest that the
speedup may be probabilistic in nature because i’s neigh-
borhood may or may not overlap j’s neighborhood. The
rationale for keeping beacons small normally, and sending
long beacons infrequently, is that it optimizes for the com-
mon case: sending long beacons most of the time wastes
bandwidth and energy as most beacons would not be heard
in mobile, low-power, or low-density networks.

7.4 Combining Discovery and MAC
The current Disco implementation runs as a standalone

client of the TinyOS radio stack and uses the standard link
layer message abstraction, ActiveMessage, to directly access
and control the radio. Since Disco is sensitive to timing
jitter, it requires exclusive control of the radio to meet its
timing constraints, and it therefore does not play well with
others today. Since Disco performs some of the functions
of a MAC, it may make sense for the Disco service itself to
present the same application programming interface as the
current stack does, and just layer on top of it.

For this approach to work, Disco would have to provide
the standard TinyOS Packet, AMPacket, Send, AMSend, and
Receive interfaces through a set of generic components that
virtualize the communication services. These services can
be layered above the standard TinyOS Hardware Interface
Layer (HIL), a platform independent abstraction over the



hardware. Since the HIL hides hardware differences, port-
ing Disco to other platforms would be easy. In addition to
these TinyOS interfaces, providing additional interfaces for
neighbor table management, phase adjustment, or neighbor
schedule tracking may be useful.

7.5 Secure Discovery
In some applications, it may not be advisable for mobile

nodes to normally beacon (i.e. they only listen), and only
respond if they first receive a peer’s message that can be
authenticated. A motivating application would be wireless
sensors mounted on military vehicles or personnel. Beacon-
ing would be undesirable because opposing forces might be
able to detect and track these transmissions. Peer authen-
tication, however, is tricky. It is not enough for a peer to
digitally sign a beacon because such a beacon could be cap-
tured and replayed across an entire city using a high power
transmitter. Including a timestamp in the beacon doesn’t
protect against a replay attack either. Identity, time, and
location must be authenticated to ensure that a node only
replies when it is verifiably close in both space and time to
an authenticated peer. The Disco application programming
interface needed to support secure discovery may require a
tighter coupling or greater application-layer influence over
the beacons.

8. CONCLUSION
This paper presents a practical solution to the low-power,

asynchronous neighbor discovery problem. Our solution is
conceptually simple and easy to implement: nodes pick a
pair of dissimilar primes such that the sum of their recip-
rocals is equal to the desired radio duty cycle. Each node
increments a local counter and if a node’s counter is divis-
ible by either of its primes, the node turns on its radio for
a single interval, whose length is the only global parameter.
This simple protocol achieves discovery faster than other dis-
covery protocols for a given duty cycle, allows nodes to in-
dependently select their own duty cycle, offers a provable
upper bound on discovery latency, and performs better than
expected in practice.

Going forward, we envision several new directions for this
work. Comparing the differences between the empirical and
simulated results shows that the simulation models are too
conservative. An obvious extension to this work would be
to develop richer models that can more faithfully simulate
the real-world factors like jitter, clock skew, and radio in-
teractions that occur during neighbor discovery, and more
importantly, which tend to improve discovery performance.
Since Disco performs many of the operations of a MAC
including neighbor discovery, neighbor table management,
rendezvous management, and media access arbitration, pro-
viding a complete set of MAC primitives would make Disco
more useful. Specifically, wrapping the discovery service in a
standard TinyOS interface, integrating it into a MAC layer,
and adding better gossip support are key. Extending the
ideas presented in this paper to support neighbor discovery
in a multi-channel MAC could also be fruitful and timely.

The asynchronous neighbor discovery problem principally
arises when two systems that are awake infrequently must
discover each other without any prior knowledge of their po-
tential encounters, and without external assistance. How-
ever, we observe that efficient, asynchronous discovery is
needed in many other contexts as well. Static networks, for

example, can experience link churn and may need to redis-
cover neighbors. Other applications with mobility patterns
like docking and flocking can also benefit from discovery.
These observations lead us to conclude that a continuous,
asynchronous, neighbor discovery process should be a basic
communications service integrated into the medium access
control function for all wireless networks.

9. ACKNOWLEDGMENTS
Special thanks to Rodrigo Fonseca, Igor Ganichev, Tim-

othy Wark, Richard Han, and the anonymous reviewers for
their insightful and constructive comments. This material is
based upon work supported by the National Science Foun-
dation under grants #0435454 (“NeTS-NR”) and #0454432
(“CNS-CRI”), a grant from the Keck Foundation, an NSF
Graduate Fellowship, a Microsoft Graduate Fellowship, and
generous gifts from Aginova, HP, Intel, Microsoft, and Sharp.

10. REFERENCES
[1] G. Borriello, W. Brunette, M. Hall, C. Hartung, and

C. Tangney. Reminding about tagged objects using
passive rfids. In Ubicomp, pages 36–53, 2004.

[2] M. Buettner, G. V. Yee, E. Anderson, and R. Han.
X-MAC: a short preamble mac protocol for
duty-cycled wireless sensor networks. In SenSys ’06:
Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, pages 307–320,
New York, NY, USA, 2006. ACM.

[3] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti,
and R. Kumar. Brimon: a sensor network system for
railway bridge monitoring. In MobiSys ’08: Proceeding
of the 6th international conference on Mobile systems,
applications, and services, pages 2–14, 2008.

[4] T. K. Choudhury. Sensing and modeling human
networks. PhD thesis, Massachusetts Institute of
Technology, 2004.

[5] P. Dutta, D. Culler, and S. Shenker. Procrastination
Might Lead to a Longer and More Useful Life. In The
6th Workshop on Hot Topics in Networks (HotNets
VI), 2007.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI’03:
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation,
June 2003.

[7] T. He, S. Krishnamurthy, J. A. Stankovic,
T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu,
J. Hui, and B. Krogh. Energy-efficient surveillance
system using wireless sensor networks. In MobiSys ’04:
Proceedings of the 2nd international conference on
Mobile systems, applications, and services, pages
270–283, 2004.

[8] T. Herman, S. V. Pemmaraju, L. Pilard, and
M. Mjelde. Temporal partition in sensor networks. In
SSS ’07: 9th International Symposium on
Stabilization, Safety, and Security of Distributed
Systems, pages 325–339, 2007.



[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System Architecture Directions for
Networked Sensors. In ASPLOS-IX: Architectural
Support for Programming Languages and Operating
Systems, pages 93–104, 2000.

[10] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: a
sensor-based loosely coupled search and rescue system
using witnesses. In SenSys ’05: Proceedings of the 3rd
International Conference on Embedded Networked
Sensor Systems, pages 180–191, New York, NY, USA,
2005. ACM.

[11] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai.
Quorum-based asynchronous power-saving protocols
for IEEE 802.11 ad hoc networks. Mobile Networks
and Applications, 10(1-2):169–181, 2005.

[12] J. Leguay, T. Friedman, and V. Conan. Evaluating
mobility pattern space routing. In INFOCOM’06:
Proceedings of the 25th IEEE Conference on Computer
Communications, 2006.

[13] Y. Li, W. Ye, and J. Heidemann. Energy and latency
control in low duty cycle MAC protocols. In IEEE
WCNC ’05: Proceedings of the IEEE Wireless
Communications and Networking Conference, 2005.

[14] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi.
Implementing software on resource-constrained mobile
sensors: experiences with Impala and ZebraNet. In
MobiSys ’04: Proceedings of the 2nd International
conference on Mobile Systems, Applications, and
Services, pages 256–269, New York, NY, USA, 2004.
ACM.

[15] M. Malinowski, M. Moskwa, M. Feldmeier,
M. Laibowitz, and J. A. Paradiso. Cargonet: a
low-cost micropower sensor node exploiting
quasi-passive wakeup for adaptive asychronous
monitoring of exceptional events. In SenSys ’07:
Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems, pages 145–159,
New York, NY, USA, 2007. ACM.
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