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Abstract

Attack graphs are a valuable tool to network defenders,
illustrating paths an attacker can use to gain access to a
targeted network. Defenders can then focus their efforts on
patching the vulnerabilities and configuration errors that
allow the attackers the greatest amount of access. We have
created a new type of attack graph, the multiple-prerequisite
graph, that scales nearly linearly as the size of a typical
network increases. We have built a prototype system us-
ing this graph type. The prototype uses readily available
source data to automatically compute network reachability,
classify vulnerabilities, build the graph, and recommend ac-
tions to improve network security. We have tested the proto-
type on an operational network with over 250 hosts, where
it helped to discover a previously unknown configuration er-
ror. It has processed complex simulated networks with over
50,000 hosts in under four minutes.

1 Introduction

Defending large enterprise networks is very difficult. A
defender must be able to locate all paths into the network
and prevent attackers from using them; an attacker needs to
find only one unprotected path. A network defender has the
advantage of intimate knowledge of the network, such as
the ways traffic may move through it, the services running
on it, and the vulnerabilities in those services. A defender
can use that knowledge to improve situational awareness.

Attack graphs are one way to leverage that data. There
are many different papers on attack graphs and many rep-
resentations, but the core idea remains the same: an attack
graph shows the ways an attacker can compromise a net-
work or host. Defenders can then use the attack graph to
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identify critical bottlenecks and work to secure those bot-
tleneck hosts and services first.

Previous work on attack graphs has suffered from two
substantial problems [19]. First, a large amount of source
data must be assembled to accurately build an attack graph,
and many past papers assume the data is both preprocessed
and extensive. While this assumption is valid for a the-
oretical graph design, it is unsuitable for implementation.
Our system assumes the data is provided in common for-
mats, and performs all of the necessary preparatory work.
Second, past research has had difficulty scaling to large,
enterprise-size networks with tens of thousands of hosts.
We have focused heavily on scalability concerns and have
developed a system capable of handling very large networks
in reasonable amounts of time using commodity hardware.

Our system, called NetSPA, is able to import data from
common sources, including the Nessus [4] vulnerability
scanner, Sidewinder and Checkpoint firewalls, the CVE [2]
dictionary, and the NVD [20] vulnerability database. It au-
tomatically computes reachability, or the ability for a given
host to connect to open ports on all hosts in the network. It
rapidly generates an attack graph showing how an attacker
can maximally compromise the targeted network. The tool
can model an attacker able to start from any IP address,
maximally exploiting any special “holes” in the perimeter
firewalls. Our system builds multiple-prerequisite graphs,
or MP graphs, which are faster to build and have greater ex-
pressive power than our previous work’s predictive graphs
[17, 18]. MP graphs are able to model portable creden-
tials, such as passwords, which an attacker can use from
anywhere to compromise a target. MP graph construction
is substantially faster than all other published attack graph
results of which we are aware [19, 25].

We have implemented a working prototype in Perl and
C++ that is capable of automatically computing reachability
from readily available source data, generating an MP graph,
analyzing it, and producing the graph and recommended ac-
tions as output. We have explored our system’s scalability
by evaluating simulated networks with up to 50,000 hosts,



Figure 1. Simple Example Network

and verified its value by conducting a field test on an opera-
tional network with over 250 hosts.

For the remainder of the paper, the simple network
shown in Figure 1 will be used to explain the data required,
computations performed, and results obtained. The attacker
begins on host A, and does not use arbitrary source IP ad-
dresses. Every other host in the network has a single open
port, with a single remotely-exploitable vulnerability. The
firewall permits hosts C and D to communicate with host E
and drops all other traffic.

The paper is organized as follows: Section 2 explores
the source data required for graph generation. Vulnerabil-
ity evaluation is touched upon in Section 3. Reachability
generation is discussed in Section 4. Section 5 explains
the structure of the multiple-prerequisite attack graph and
how it is built. Section 6 proposes techniques for using the
resulting graph, by simplifying it for viewing and by auto-
matically analyzing it to produce recommended defensive
actions. Tests on real and simulated networks are covered
in Section 7. Related work is reviewed in Section 8. Section
9 concludes the paper.

2 Data Used by the NetSPA tool

NetSPA’s network model supposes that an individual
host possesses one or more interfaces which have listen-
ing addresses. These interfaces have zero or more open
ports, accepting connections from other hosts. A host and
its interfaces may have rules that dictate how network traf-
fic may flow to, and through, the host. A port has zero or
more vulnerability instances, particular flaws or configura-
tion choices which may be exploitable by an attacker. Each
interface on a host is connected to a link, representing some
combination of hubs and switches connecting a set of inter-
faces together. An attacker is able to obtain one of four ac-
cess levels on a host: “root” or administrator access, “user”
or guest access, “DoS” or denial-of-service, or “other,” a
confidentiality and/or integrity loss. The combination of a
host and an access level is an attacker state. A state may
provide the attacker zero or more credentials; vulnerability
instances may require zero or more of them. An attacker
obtains a host’s reachability if “root” or “user” access is

achieved. Reachability and credentials serve as prerequi-
sites to exploitation of a vulnerability instance. This model
is admittedly simplistic, but we can populate it using avail-
able data and it is realistic enough for our needs.

Our use of the term “vulnerability” is somewhat uncon-
ventional. In NetSPA, a vulnerability is any way an attacker
could gain access to a system. Examples include software
flaws, trust relationships, and server misconfigurations. A
feature, such as remote login with the use of a private key,
is a vulnerability from the point of view of an attacker.

NetSPA requires a large amount of data to populate its
model, but system administrators often collect this data as a
matter of course. The core pieces are network topology, vul-
nerability information, and credentials. NetSPA itself runs
offline using the provided data, minimizing the risk of an
attacker obtaining the source data or resultant graph.

Network topology is obtained from both the user and the
Nessus vulnerability scanner [4]. The user must provide a
“map” of the network, enumerating the links and indicating
which Nessus scans belong to which link, and which mul-
tihomed hosts’ interfaces are on which links. The map is
fairly small and static, and should remain a tractable task
as larger networks are considered. Firewall rulesets are also
a component of the network model; the user provides the
original rulesets from the firewall directly to NetSPA, which
converts the rulesets to an internal format for use. Nes-
sus provides information on individual interfaces, ports, and
vulnerability instances.

Our concept of “credential” is any information used as
access control: a password or a private key, for example.
It may be possible to automatically determine where cre-
dentials are and what they protect – [28] has done so for
SSH, for example – but any data import will be specific to
an application or platform, hampering its use. We do not
currently have any readily available, automatable sources
of credential data, nor have we written importers that could
automatically import credential-related data.

For the sample network in Figure 1, two Nessus scans
are required: one on the left side of the firewall, targeting
hosts B, C, and D, and one on the right, targeting E and F.
If scans are not carried out inside each subnet, the firewall
could prevent Nessus from finding and reporting every host,
port, and vulnerability.

Notably absent are data regarding non-cyber attacks,
such as social engineering attacks and physical attacks on
a datacenter’s perimeter. While these threats are real and
relevant, we have focused our efforts on data that can be
readily obtained in an automated fashion. Tying the genera-
tion of the attack graph to data that can be obtained quickly
ensures that any new vulnerabilities are discovered, evalu-
ated, and reported as early as possible, minimizing the time
the network is exposed to attack.

We additionally utilize non-network-specific data which



Figure 2. The (a.) Reachability Matrix, (b.)
Reachability Groups, and (c.) Collapsed
Reachability Matrix for the Simple Example
Network

needs to be imported only once. These data, discussed in
Section 3, allow NetSPA to determine the impact of the vul-
nerability instances reported by Nessus.

NetSPA must derive a few core pieces of knowledge to
build an attack graph. For a given host, the tool must know
which ports the host can reach. For each instance of a vul-
nerability, the tool must know what is required to exploit it
and what is gained by exploiting it.

3 Vulnerability Evaluation

In addition to network-specific data, the system requires
additional knowledge about vulnerabilities. Nessus can
identify the hosts, interfaces, and ports on a network, pin-
pointing where vulnerabilities are. However, Nessus does
not clearly articulate a vulnerability’s prerequisites or what
an attacker gains by exploiting it. We define a straight-
forward representation to model vulnerability prerequisites
and postconditions.

In our model, a vulnerability has locality, indicating
whether it is remotely exploitable. It provides an effect,
which is one of the four access levels an attacker can obtain
in our model: root, user, DoS, or other. When known, any
credentials required for exploitation are also considered.

The vulnerability model is simple because available data
constrains the fidelity. Vulnerability databases such as NVD
[20] and Bugtraq [1] describe vulnerabilities’ impacts in de-
tail. Unfortunately, much of the available data is intended
for human consumption and is sometimes incorrect or out
of date [9]. NetSPA uses a simple logistic regression clas-
sifier, trained on a hand-evaluated sample set, to automat-
ically classify vulnerabilities. Details on the classifier are
available in [18].

Our attacker model is likewise simple: the attacker
knows about all vulnerabilities and will successfully exploit
all reachable vulnerabilities to their fullest effect. A worst-
case attacker model prevents false negatives and requires no
additional assumptions about the potential threat.

4 Computing Reachability

Computing reachability is a complex, time-consuming
task, but an attack graph system applicable to real networks
must obtain and use reachability information. Reachabil-
ity computation uses available information on the network
topology, filtering devices, and hosts to find paths between
source hosts and target ports. The rulesets of all filtering
devices on the network must be imported and modeled.

A straightforward method to compute reachability is to
try to reach every known target IP address and port from
every host in the network. Such an approach would gener-
ate a reachability matrix, where a row represents a source
interface on a host, a column represents a target port on a
destination interface, and each cell indicates whether or not
the source can reach the target. A reachability matrix for the
sample network of Figure 1 is shown in Figure 2a. This is
correct, but it scales poorly in terms of both space and time.

We have made three improvements to the straightforward
approach. We collapse sections of the matrix into reacha-
bility groups [18], saving large amounts of both time and
memory. Filtering rulesets are collapsed into Binary Deci-
sion Diagrams (BDDs) [10], allowing the reachability sys-
tem to traverse a set of filtering rules in constant time. We
also hypothesize a “generic attacker” by selecting a link on
which the attacker will begin and allowing the attacker to
use the most advantageous source IPs.

Reachability groups identify redundancies in the reach-
ability matrix and collapse submatrices into single subrows
before computing the contents, saving both time and space.
First, intra-subnet reachability which is not influenced by
any filtering devices can be collapsed into a single subrow,
because every source interface within the subnet will have
the same reachability to all ports within that same subnet.
The two intra-subnet reachability groups for the sample net-
work are shown as light grey boxes in Figure 2b.

Second, inter-subnet reachability can be collapsed by
identifying sets of interfaces within a subnet which are
treated identically by the filtering devices on the network.
If the source IP addresses of a set of interfaces on the same
subnet match in the same set of filtering rules, the interfaces
are grouped together and reachability is computed for only
one of them. Grouping interfaces is expensive, but far less
expensive than actually recomputing reachability. The three
inter-subnet reachability groups for the sample network are
shown as dark grey boxes in Figure 2b.

Reachability groups drastically reduce the cost of com-
puting the reachability matrix. The collapsed reachability
matrix for the sample network, shown in Figure 2c, is 60%
smaller. The reduction is often much larger in sizeable net-
works as a larger number of interfaces collapse together into
a handful of reachability groups.

Reachability groups reduce the number of cells which



must be computed. BDDs reduce the cost of computing
an individual cell. Our implementation uses the ideas of
the FIREMAN firewall modeler [33] to collapse filtering
rulesets into a BDD, permitting constant-time traversal of
a ruleset. Like FIREMAN, the NetSPA prototype uses the
BuDDy library [16] to manipulate BDDs.

It is important to consider an attacker coming from an
arbitrary source location. Production firewall rulesets are
often large, and may contain mistakes allowing unintended
traffic [32]. NetSPA is able to exercise all of these rules
by discovering the source IP addresses of greatest advan-
tage to an attacker. The tool collects a representative IP
address from every IP singleton, subnet, and range used in
rules in the network, and uses each of those addresses in
turn to compute reachability for the attacker’s starting loca-
tion. This can uncover interesting flaws and vulnerabilities
in the network configuration. The sample network in Figure
1 and graphs in Figure 3 do not use this feature.

5 Attack Graphs

It is easy to determine attack paths for the sample net-
work of Figure 1 by hand. The attacker from host A can
directly compromise hosts B, C and D. From C or D, the
attacker can traverse the firewall and compromise host E.
From E, the attacker can compromise host F, completing the
process. The paths are monotonic, assuming an attacker will
never need to relinquish a state. The assumption of mono-
tonicity greatly simplifies the task of modeling attacker ac-
tions and has been made in several other papers [7, 15, 25].

Part of a full graph [8] for the sample network is shown
in Figure 3a. Nodes correspond to states, and edges to vul-
nerability instances. Full graphs add a node to the graph if
no ancestor node has the same state as the new node and
was reached via the same vulnerability as the new node. To
conserve space, the children of the B and C nodes at the top
level are omitted from the figure.

Full graphs illustrate every order in which the attacker
can compromise the hosts in the network – first B, then C,
or vice versa. However, they scale as O(n!) and quickly
become too large to compute as the network size increases.

A predictive graph [17, 18] is shown in Figure 3b. Nodes
and edges have the same meanings as in the full graph. Pre-
dictive graphs add a node to the graph if no ancestor of the
current node used the same vulnerability to obtain the same
state as the new node. They avoid much of the redundant
structure of the full graph and correctly predict the impact
of removing any of the vulnerability instances in the net-
work. Predictive graphs are much faster to build than full
graphs, and we have used them on large, real networks, but
they still include redundant structure in some cases. For
example, the subtrees beneath C and D in Figure 3b are re-
dundant, a phenomenon called a firewall explosion in [18].

Figure 3. The (a.) Full Graph, (b.) Predictive
Graph, and (c.) Multiple-Prerequisite Graph
for the Example Network

Predictive graphs are also unable to model credentials.
A multiple-prerequisite (MP) graph for the simple net-

work is shown in Figure 3c. The MP graph has contentless
edges and three node types, discussed in Section 5.1. It
explicitly represents the prerequisites of an attack. In this
example, the only prerequisite is reachability.

The MP graph’s cycles embed the information contained
in full and predictive graphs without the redundant struc-
ture. If no credentials are used, we can build a full graph
from the MP graph by exploring the MP graph in a depth-
first manner, stopping the exploration when we reach a vul-
nerability instance already used on the path from the root
to the current node. Similarly, we can build a predictive
graph from the MP graph by exploring the MP graph in a
breadth-first manner.

During graph construction, both predictive and full
graphs must attempt actions which are not shown on the
graph. The bottom node F of the full graph of Figure 3a, for
example, must explore (and then prune) every possible vul-
nerability that could be reached from host F. The MP graph
avoids this problem by evaluating a prerequisite, such as the
ability to reach hosts E and F, only once. Full and predictive
graphs must evaluate a prerequisite once for each state that



provides the prerequisite.
The MP graph also shows all hosts which can be compro-

mised from any host the attacker has compromised. Host F,
for example, is capable of compromising host E. The MP
graph shows this (via backedges), but the other graph types
do not. We can take advantage of this property to generate
“all sources, all targets” MP graphs, showing every mali-
cious action that could take place from any host or attacker
starting location to any host in the network. Because it con-
tains every potential attack path in the network, such a graph
could be useful to tools attempting to correlate IDS alerts
with known attack paths.

5.1 MP Attack Graph Structure

The maximum number of nodes in an MP graph is lin-
early related to the source data. There is at most one node
for each vulnerability instance, state, reachability group,
and credential. The maximum number of reachability
groups is proportional to the number of interfaces, but is
generally much smaller.

The MP graph uses the following three node types:
State nodes represent an attacker’s level of access on a

particular host. Outbound edges from state nodes point to
the prerequisites they are able to provide to an attacker. In
Figure 3c, state nodes are circles.

Prerequisite nodes represent either a reachability group
or a credential. Outbound edges from prerequisite nodes
point to the vulnerability instances that require the prereq-
uisite for successful exploitation. In Figure 3c, prerequisite
nodes are rectangles.

Vulnerability instance nodes represent a particular vul-
nerability on a specific port. Outbound edges from vul-
nerability instance nodes point to the single state that
the attacker can reach by exploiting the vulnerability. In
Figure 3c, vulnerability instance nodes are triangles.

These three node types in turn define the sole ordering
of paths in the graph: a state provides prerequisites, which
allow exploitation of vulnerability instances, which provide
more states to the attacker.

5.2 Data Structures

This section and Section 5.3 cover the process of con-
structing MP attack graphs. We first examine the necessary
data and how it may be stored in memory. Section 5.3 will
then use these data to efficiently construct the MP graph.

The data we store and abbreviations for each are shown
in Table 1. Most of the input data can be stored in ar-
rays, and other dynamic structures can be immediately allo-
cated as arrays because their maximum size is tractable and
known. We use the notation “X2Y” to indicate a data struc-
ture where the key is of type X and the value or values are

Symbol Name
C Credential
H Host
I Interface
L Link
N Node in the MP graph
P Prerequisite (a reachability group or a credential)
R Reachability group
S State (host and access level)
T Target port
V Vulnerability instance

Table 1. Data Types Used During Graph Gen-
eration

of type Y. For example, P2N is a mapping from a prerequi-
site to the unique node in the attack graph representing it.
The only data structures we dynamically resize are T2R and
R2T, which represent the collapsed reachability matrix dis-
cussed in Section 4. Their worst-case size is O(TI), but the
actual size of O(TR) is much smaller in practice. A reach-
ability group is only formed and placed in R if the attacker
has gained access to it.

The graph’s nodes and edges also need to be represented.
The root nodes, representing the attacker’s starting loca-
tions, are kept in an array because their number is known
at the outset. (Root nodes are states, so they are also noted
in the S2N structure.) Pointers to all other nodes are kept
in V2N, P2N, and S2N, as well as in edge pointers between
nodes. All nodes maintain parent and child adjacency lists
in balanced search trees, making it easy to traverse the graph
and determine if a node has a specific parent or child.

5.3 Graph Construction

The graph is built using a breadth-first technique. No
node is explored more than once, and a node only appears
on the graph if the attacker can successfully obtain it. The
pseudocode for the process is shown in Figure 4. With the
exception of line 4, all of the lines in the pseudocode are
straightforward. We will discuss line 4 in detail, based on
the type of node being considered.

• if CurNode is a state, then DestSet includes all cre-
dentials from S2C for that state. If the state’s access
level is user or root, indicating the attacker has access
to the system, then we add all reachability groups from
I2R for every interface on the state’s host.

• if CurNode is a prerequisite that is a reachability
group, then DestSet is initially every vulnerability
instance that the reachability group can reach. We use
R2T to determine all reachable ports, and then use



1 BFSQueue starts with the root node(s),
representing the attacker’s
starting STATE(s)

2 while( BFSQueue is nonempty )
3 CurNode = BFSQueue.dequeue()
4 DestSet = all nodes that can be

reached from CurNode
5 foreach node DestNode in DestSet
6 add an edge from CurNode to DestNode
7 if DestNode is brand-new,
8 BFSQueue.enqueue( DestNode)

Figure 4. Pseudocode for Main Loop

1 VulnInst = the vulnerability instance
we’re evaluating

2 DestPort = V2T(VulnInst)
3 if T2R(DestPort) is empty
4 return Failure // there is no known

// reachability to the port
5 foreach Cred in V2C(VulnInst)
6 if P2N(Cred) is empty
7 return Failure // there is an

// unavailable credential

Figure 5. Pseudocode for Vulnerability Pre-
requisite Verification

T2V for each port to determine the vulnerability in-
stances. If there is not yet a node for a given vulnera-
bility (V2N(VulnInst) is empty), we must further ver-
ify that all the vulnerability’s prerequisites are satisfied
before adding them to DestSet. Figure 5 contains
the pseudocode for the verification step.

• if CurNode is a prerequisite that is a credential, then
DestSet is initially every vulnerability in C2V for
the given credential. If there is not yet a node for a
given vulnerability, ie. V2N(VulnInst) is empty, we
must perform the same verification step as in the pre-
vious case.

• if CurNode is a vulnerability instance, then
DestSet is the single state in V2S for the given vul-
nerability instance.

The most intricate step is the addition of vulnerability
instance nodes. The attacker can successfully exploit a vul-
nerability if it can be reached from at least one host the
attacker has access to, and if the attacker has obtained all
credentials required by the vulnerability. The pseudocode
in Figure 5 checks to ensure the needed prerequisites are
present. If they are, we draw edges to the new vulnerabil-
ity instance node from all of the reachability groups able to

reach it and from all of the credentials used to satisfy it.
An upper bound for the graph’s computational complex-

ity can be obtained by observing that the maximum number
of nodes is fixed. Assume a network with V vulnerability
instances, T ports, C credentials, I interfaces, and R reach-
ability groups. For simplicity, assume T < V . The most ex-
pensive operation is the transition from reachability group
prerequisites to vulnerability instances, costing O(V +V C)
time to check every reachable vulnerability and determine
if the credentials it requires are present. Over all possible
reachability groups, computation is O(V R+V RC). In typ-
ical networks where C is small and R � I , performance
is nearly linear in the overall network size. The expected
worst-case performance is O(max(V, T )RC).

6 Automated Graph Analysis

Attack graphs for all but the smallest networks are too
large for hand evaluation. We have considered two ap-
proaches to this problem: automatic graph simplification
and automatic recommendation generation. The former
aims to reduce the size of the graph by collapsing similar
nodes together. The latter treats the attack graph as an in-
termediate structure, not a final product, and extracts useful
information from the graph for presentation to the user.

6.1 Graph Simplification

Although an MP graph is much smaller than the corre-
sponding full graph, it is still large, and the number of cycles
makes it difficult to lay out coherently. We have developed a
simple algorithm to “collapse” many graph nodes together,
simplifying the visual presentation.

First, state nodes are combined when the prerequisites
that can be used to reach them, the prerequisites provided
by them, and the access levels match. Vulnerability instance
nodes are then combined when the prerequisites necessary
to exploit them and the collapsed state nodes they provide
match. The resulting simplified graph shows the relation-
ships between prerequisites and the quantity of compromise
they enable. In Figure 3c, the states C and D would col-
lapse, followed by the vulnerability instances VC and VD.

The simplified MP graph can be efficiently derived from
the original MP graph. Each pass visits the N nodes and E
edges of the graph a constant number of times, and we sort
hashes of the matching criteria to discover matches. The
resulting complexity is O(E + N lg N). Other forms of
graph simplification may also prove valuable.

6.2 Recommendation Algorithms

Even visually simplified attack graphs can be large and
unwieldy. The core information from the graph should be



Figure 6. Field Test Network

extracted by the tool and presented to the user in a more
immediately useful form.

Often an attacker must compromise a directly-accessible
host through a filtering device in order to attack a group of
hosts behind the filtering device. Attack graphs can be used
to identify these bottlenecks and produce a list of the critical
vulnerabilities which allow the attacker to compromise the
bottleneck hosts. Defenders can then patch these vulnera-
bilities first to protect all of the hosts beyond the bottleneck.

We form recommendations by computing, for each in-
dividual prerequisite in the graph, which vulnerability in-
stances need to be removed in order to prevent the attacker
from reaching the prerequisite, and which states the attacker
cannot reach with the prerequisite absent. We accomplish
this by rebuilding the MP graph for each potential recom-
mendation, noting which vulnerability instances are actu-
ally necessary to reach the selected prerequisite and which
states are no longer achievable. Some prerequisites may
yield identical recommendations. We discard duplicates.

We weight recommendations based on the number of
hosts denied the attacker. A user could supply per-host “as-
set values” or weights to prioritize steps that protect critical
servers. Other weighting metrics, such as the ratio of pro-
tected hosts to required patches, may be preferable.

7 Test Results

We have applied NetSPA in one field test deployment
and successfully discovered a misconfigured firewall. We
have also verified our scaling assumptions by testing against
simulated networks.

7.1 Field Test Results

We have tested our prototype on a small operational
network, shown in Figure 6. The network has 252 hosts,
3,777 ports, and 8,585 vulnerability instances. No creden-
tials were modeled. The prototype used Nessus scans of

To protect 116 hosts, patch
the following 4 vulnerabilities:

on Host server01.example.gov @ 10.90.0.2,
on Port 25/tcp:
CAN-2003-0161: The prescan() function in the ad ...
CVE-2002-0906: Buffer overflow in Sendmail befo ...
CAN-2002-1337: Buffer overflow in Sendmail 5.79 ...

on Port 53/tcp:
nessus11318: The remote BIND 9 server, accordin ...

Figure 8. Recommendation Excerpt for Field
Test Network

the four links shown and copies of the rulesets of the two
firewalls. The field test results were computed on a laptop
with a Pentium-M 1.6Hz processor and 1GB of main mem-
ory, running a 2.6 Linux kernel. We have used anonymized
hostnames and IP addresses. During normal network op-
erations, a computer from the external network should be
able to reach server01.example.gov on the internal
network only via SMTP.

NetSPA’s Perl frontend converted the source data to
NetSPA’s internal binary format. The firewall rulesets and
Nessus scans were automatically read and interpreted. All
of the vulnerabilities were read and classified as in [17, 18].
The entire import stage required 24 seconds.

Once converted, the network is read into the C++ stage of
the prototype. This stage computes reachability, generates
the MP attack graph, computes automated recommenda-
tions, and creates the simplified MP attack graph. It writes
the two graphs to disk in the DOT language [3] and the rec-
ommendations as text. When the attacker is hypothesized
on the “external network” segment of the network, the en-
tire time for load, computation, and write was 0.5 seconds.

The resulting MP graph contains 8,901 nodes and 23,315
edges. A total of 12 filtered and four unfiltered reachability
groups were formed. In order to evaluate the sixteen po-
tential recommendations, the MP graph was rebuilt sixteen
times in the 0.5 second runtime.

The simplified MP attack graph, presented in Figure 7,
is still too complicated to read and interpret despite an over
99% reduction in size. The graph contains 80 nodes and 190
edges. The attacker’s starting location is in the upper right.
States are represented by black nodes, prerequisites by dark
grey nodes, and vulnerability instances by light gray nodes.

The list of eleven automatically generated recommenda-
tions is far more helpful. The recommendation that protects
the most hosts is shown in Figure 8.

We expected reachability to the SMTP server on
server01.example.gov from the external network,
but not to the DNS server. We used the NetSPA prototype
to automatically generate a complete list of every port an at-
tacker could reach and how an attacker could get there. We
discovered a misconfigured firewall rule that allowed exter-



Figure 7. Simplified MP Attack Graph for Field Test Network

nal access to all hosts on the inside network via port 53. The
rule was corrected following our analysis. The misconfig-
uration only permitted access from a few IP addresses that
are not normally used. A Nessus scan from the external
network to the internal network would not have discovered
this, because the scanner would not have used one of the
source IP addresses able to cross the firewall.

We also recomputed the results for all possible starting
locations at once – placing an attacker with the ability to
spoof any source IP on all four links, and also allowing all
hosts to initiate attacks. No recommendations are gener-
ated in this case. Loading the data, computing reachability
and the MP graph, and saving the results consumed 0.54
seconds. The resulting MP graph shows all possible com-
promises in the network – from all sources, to all targets.

The field trial’s results fuel optimism in the prototype
and its utility. We are working to conduct additional field
trials on larger, more complicated networks.

7.2 Simulation Test Results

We used an automated network generator to explore the
scalability of the NetSPA prototype. The generator created
a network of three sites. Each site had a fairly generic net-
work structure, with its own border firewall, DMZ, inter-
nal administrative LAN, and multiple other internal sub-
nets. Our test setup used 400 filtering rules on each border
firewall, six hosts on the DMZ and administrative LANs,
and 80 other internal subnets in each site. Each host had
30 open ports. Half had ten remote-to-other vulnerabili-
ties, and the other half had one remote-to-root vulnerability
and nine remote-to-other. The available attack path to each
site from the outside compromised one DMZ host, then one
administrative LAN host, and finally all of the vulnerable
hosts on the inside. NetSPA collapsed each site’s 80 inter-
nal subnets into single unfiltered reachability groups.

Figure 9 shows results with this configuration, varying
the number of hosts on the 80 internal subnets of each site.

These tests were performed on a Windows Server 2003 ma-
chine with dual 3.2GHz Xeon processors and 2GB of main
memory. The prototype is single-threaded and never re-
quired swap space. The Y axis is the elapsed time, in sec-
onds, and the X axis is the total number of hosts in the net-
work. The plot shows that scaling is linear, as expected,
and handles a network with over 50,000 hosts and over 1.5
million ports in under four minutes. NetSPA was able to
compute an “all sources, all targets” graph for the 50,000
host network in under twelve minutes.

The effects of different network configurations (via sim-
ulation) are examined further in [18]. The results in [18] are
based on the use of predictive graphs, however; we expect
equal or better performance with MP graphs.

8 Related Work

Some of the earliest work on attack graphs was done by
hand. Schneier’s attack trees [29] were designed to show
how multiple attack vectors could compromise a single tar-
get. The approach is worthwhile when brainstorming a
set of potential attacks and there is a single goal or target.
Schneier’s example is opening a safe.

Ritchey and Ammann [26] used model checking tech-
niques to find a counterexample to an asserted security pol-
icy. Although model checking is more powerful and does
not require a monotonicity assumption, it scales very poorly
for this application, as noted in [15] and elsewhere.

Others explored the use of full attack graphs [8, 30], as
shown in Figure 3a. Full graphs grow combinatorially and
cannot be used for large networks.

Ammann [7] developed an algorithm which scales as
roughly O(n6) [19], but is capable of finding all exploits
which can be used to reach a specified goal. Jajodia et al.
[15] adopt the algorithm and use Nessus scans to identify
some vulnerability locations and reachability. The paper
proposes the use of Nessus to discern reachability by scan-
ning from every subnet to every other subnet. This approach



may introduce false negatives by neglecting reachability un-
available to machine running the Nessus scanner.

In later work, Ammann et al. [6] presented an O(n3) al-
gorithm that quickly determines the worst-case attack paths
to all compromisable hosts, and argues that such a report is
more useful to an analyst or penetration tester than a tradi-
tional attack graph. The method may also be applicable to
MP graphs in O(n3) time.

An approach due to Ou et al., called MulVAL [25], uses a
monotonic, logic-based approach. MulVAL requires reach-
ability information and can produce counterexamples for a
given security policy. The results shown in [25] imply a
runtime between O(n2) and O(n3).

Other research has focused on the source data required to
build attack graphs. Ritchey et al. [27] propose a framework
for modeling reachability. NetSPA uses a simpler reachabil-
ity model that is decoupled from the underlying host’s soft-
ware and vulnerabilities. Templeton and Levitt’s [31] pre-
requisite/postcondition model for attack components and
Cuppens and Ortalo’s LAMBDA language [14], for exam-
ple, provide detailed models of vulnerability and attacker
action. We are not aware of any readily available vulnera-
bility database populated with the level of detail required by
these approaches, nor any similarly detailed scanner. Such
tools would be very useful.

Another research focus is tools to explore attack graphs
and utilize the information they contain. Noel et al. [24]
propose a symbolic equation simplifier to produce recom-
mendations from the graphs of [15]. They also simplified
graphs by collapsing related nodes [22] and by transform-
ing the results into an adjacency matrix [23]. NetSPA’s sim-
plified MP graphs serve a similar purpose to [22], but im-
proved visualization remains a concern.

Attack graphs may be used to form scenarios and filter
IDS alerts. If a series of alerts matches a path in the attack
graph, the series is more likely to be genuine. Papers such
as [11, 13, 21] explore this use, but no practical application
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has yet been constructed. Ning identifies the method in [21]
as NP-complete. NetSPA does not address this application.

Skybox View [5] is a commercial tool that performs at-
tack graph analysis. The company’s patent [12] describes
their algorithm, asserts it is O(n3), and suggests O(n2) is
possible. Based on the patent, we believe that Skybox may
build a variant of a host-compromised graph [17, 18], and
may report only the shortest attack paths to a target.

9 Conclusion and Future Work

Attack graphs are a useful tool in the arsenal of network
defenders. Vulnerability scanners such as Nessus report
large numbers of vulnerabilities, prioritizing them based on
severity in isolation. The amount of work necessary to patch
every identified vulnerability is often overwhelming. At-
tack graphs are able to coalesce a large amount of source
data into a useful form, focusing defenders’ efforts where it
is most needed.

Attack graphs also enable the safe evaluation of what-if
scenarios. Defenders can hypothesize new zero-day vulner-
abilities on critical services, evaluate the impact of chang-
ing filtering rulesets, and determine the effect of adding a
new, unpatched computer to various locations in a network.
Alterations to the network’s defensive posture can be eval-
uated before they are implemented.

The NetSPA system is able to build a new graph type,
the multiple-prerequisite graph, at a very high rate of speed,
enabling defenders to quickly evaluate their network’s se-
curity. The NetSPA prototype can be applied to real op-
erational networks in a straightforward manner, using data
that network operators routinely collect. It produces valu-
able recommendations in seconds, helping defenders filter
through thousands of vulnerability reports to find the few
vulnerabilities that matter most.

The NetSPA prototype is useful in its current form.
It can automatically import readily available source data,
quickly compute network reachability, generate the MP
graph, and produce useful recommendations. However, ad-
ditional work remains. The MP graph is capable of support-
ing credentials as prerequisites to successful attack. How-
ever, we have no readily available source of credential data
and have conducted no field trials utilizing it. “Client-side”
attacks, in which an attacker uses a malicious server to com-
promise a vulnerable client, are not modeled. The recom-
mendation algorithm does not evaluate the effect of protect-
ing multiple prerequisites. New approaches to graph visual-
ization and simplification may make better use of the graph
as well. Future work on obtaining better source data and
producing better recommendations and analyses promises
to further improve the system’s utility.
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