
Practical Attacks on the Maelstrom-0

Compression Function

Stefan Kölbl and Florian Mendel

Graz University of Technology, A-8010 Graz, Austria
stefan.koelbl@student.tugraz.at

Abstract. In this paper we present attacks on the compression function
of Maelstrom-0. It is based on the Whirlpool hash function standardized
by ISO and was designed to be a faster and more robust enhancement.
We analyze the compression function and use differential cryptanalysis to
construct collisions for reduced variants of the Maelstrom-0 compression
function. The attacks presented in this paper are of practical complexity
and show significant weaknesses in the construction compared to its pre-
decessor. The methods used are based on recent results in the analysis
of AES-based hash functions.

Keywords: hash functions, cryptanalysis, collisions, near-collisions.

1 Introduction

Cryptographic hash functions are a fundamental part of modern cryptography.
They are used in many practical applications e.g., verification of message in-
tegrity, message authentication or secure storage of passwords. Typically a hash
function is used as a digital fingerprint of the information that needs authenti-
cation.

A cryptographic hash function takes as input a string of arbitrary finite length
and produce a fixed sized output. Usually the input domain is larger than the
output domain, therefore this functions are many-to-one. As a result the exis-
tence of collisions is unavoidable.

Hash functions have to be both fast and secure. The security can be discussed
by the following properties:

– Preimage Resistance: For a given output y it should be computationally
infeasible to find an input x′ such that y = f(x′).

– Second Preimage Resistance: For given x, y = f(x) find x′ �= x such that
f(x′) = y.

– Collision Resistance: Find two distinct inputs x, x′ such that f(x) = f(x′).

A hash function with n-bit output is secure if finding a (second) preimage takes
at least 2n and finding a collision 2n/2 (birthday attack) queries [1].

The most commonly used hash functions at the moment are SHA-1, SHA-
256 and SHA-512 certified by NIST. They are part of several standards and

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 449–461, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

450 S. Kölbl and F. Mendel

based on MD4 and MD5. In the last few years cryptanalysis made a huge leap
forward and weaknesses have been found for these functions. There are practical
collisions for MD4 [2], MD5 [3] and SHA-0 [4]. The computational effort to
construct collisions for SHA-1 is still impracticable, but the security bound is
much lower than expected [5] and attacks on reduced rounds are possible [6].
Therefore, there is a strong interest in new hash functions.

Maelstrom-0 is based on the Whirlpool hash function which has been adopted
in the ISO 10118-3:2004 standard [7]. Maelstrom-0 is designed to be a faster
and more robust enhancement of Whirlpool but we will show that the new
lightweight key schedule significantly weakens this hash function and allows us to
construct collisions for reduced rounds of the Maelstrom-0 compression function
with practical complexity. In detail, we show how to construct a collision for 6
out of 10 rounds and give a colliding message pair. Furthermore, we show attacks
for 8 and 10 rounds in a weaker attack scenario (near-collision and semi-free-start
near-collision) and a theoretical collision attack on 7 rounds.

The paper is structured as follows: First there will be a description of the
Maelstrom-0 hash function followed by an overview of the attack in Section 2.
We continue with a detailed section on how to construct a differential path for
6-rounds and how to obtain the colliding message pair in Section 3. Afterwards
possible extensions on more rounds are discussed followed by the conclusion.

2 Description of Maelstrom-0

Maelstrom-0 is an iterative hash function designed by Filho, Barreto and Rijmen
[8]. Maelstrom-0 processes 1024-bit message blocks and produces a 512-bit hash
value. It uses the Davies-Meyer construction (see Figure 1) and 3CM chaining
mode which is based on 3C [9]. If we have a message m = M1||M2|| . . . ||Mk we
can compute the hash value h in the following way

H0 = IV (1)
Hi = E(Hi−1,Mi) ⊕Hi−1, ∀i : 0 < i ≤ k (2)
h = E(Hk, sk||tk) (3)

where sk is the output of the second and tk the output of the third chain.
The second chain is the XOR accumulation of all the indermediate compression
function outputs and in the third chain a LFSR is involved in the accumulation
process.

Hj−1

Mj

Hj
state update
SB SC MR AK

key schedule

Fig. 1. Maelstrom-0 compression function

Practical Attacks on the Maelstrom-0 Compression Function 451

2.1 Block Cipher E

The block cipher E is based on the one used in Whirlpool. The only difference
between the block cipher used for Maelstrom-0 is that it uses a different key
schedule. The state update operates on a 8 × 8 states of 64 bytes therefore
the 512-bit input is bytewise transformed. The state is updated through 10
identical rounds and one key addition at the beginning. One round consists of
the application of the four transformations SubBytes, ShiftColumns, MixRows
and AddRoundKey similar to AES. We only give a very brief description and a
more detailed one can be found in [8].

SubBytes (SB)

The SubBytes step applies a nonlinear S-box on each byte using an 8-bit S-box.
The S-box is the same as in Whirlpool. For the definition of the S-box we refer
to [7].

ShiftColumns (SC)

The ShiftColumns step cyclically shifts each column j = 0, . . . , 7 by j steps
downwards.

MixRows (MR)

MixRows is a linear mapping based on a MDS code multiplying each row by
a 8 × 8 matrix over F28 . The values of the matrix are choosen such that the
branch number of MixRows is 9. Therefore the sum of active bytes (byte with
difference) at input and output is always at least 9.

AddRoundKey (AK)

The key addition uses bitwise xor to add the round key.

Key Schedule (KS)

The key schedule takes as input the 1024-bit message block M = (v0, . . . , v1023)
to generate the round keys K0, ...,K10. The message block M is mapped to a
column vector (K−2 = v0, . . . , v511,K

−1 = v512, . . . , v1023) and in each step two
new round keys are computed in the following way

(
K2i

K2i+1

)
= α

(
K2i−2

K2i−1

)
+ Ci ∀i = 0, . . . , 5 (4)

where

α =
(

1 1
x8 x8 + 1

)
(5)

and Ci is some round dependent constant. For the actual values we refer to [8].
There are only 11 keys needed so the last key is dropped. Multiplication is done

452 S. Kölbl and F. Mendel

over F2512 [x]/p(x) with p(x) = x512 + x8 + x5 + x2 + 1 . The 512-bit round keys
are transformed to a 8 × 8 state. For the actual round keys Maelstrom-0 uses
a key extraction function which applies the SubBytes and the MixRows step to
row 3 and 7 to obtain the round key. This is the only nonlinear transformation
used in the key schedule. Note that inverse key schedule looks almost the same
we only need to determine the inverse matrix of α which is given by

α−1 =
(
x8 + 1 1
x8 1

)
(6)

3 Outline of the Attack

For our attack on Maelstrom-0 we use differential cryptanalysis. Differential
cryptanalysis observes how the difference between a pair of inputs affect the
resulting output difference [10]. It was originally devised in the analysis of block
ciphers but is also used for stream ciphers and hash functions. Usual differential
cryptanalysis is a chosen plaintext attack. The basic method considers a pair of
messages (M,M ′) and the xor difference ΔM = M ⊕M ′.

For our analysis we use truncated differentials [11]. This means we do not
consider the full difference between two inputs, we only determine for single
bytes whether there is a difference or not.

The structure of Maelstrom-0 allows us to predict how differences propagate
through the key schedule and the round transformations to find a good differen-
tial path. For our goal to mount a collision attack we are looking for an input
pair (M,M ′) with output difference zero. The attack can be divided into two
individual steps. The first part is to find a differential path which holds with
high probability. We use differences in the key input (message input) such that
the resulting pattern can be fulfilled with a high probability. The second step is
to find a message following this differential path.

Similiar attacks have been applied to Whirlpool in [12] but they did not use
any difference in the key input due to the strong key schedule used in Whirlpool.
Our attack is similiar to the attacks on the AES hash mode in [13] using local
collisions to cancel out differences, but we use other techniques for finding the
confirming message pair [13]. In the following we define our notation and analyze
the differential properties of the round transformations and the key schedule,
before we describe the attack in detail.

Notation

We denote the state after round k after the transformationR={SB, SC,MR,AK}
by Rk

i,j where i, j are the row and column indices. Indices are used modulo 8.

3.1 Differential Properties of the Round Transformations

SB - SubBytes. For SubBytes we consider pairs of input/output differences
Δa,Δb ∈ {0, 1}8. Counting over all 216 possible differentials the number of
solutions for

Practical Attacks on the Maelstrom-0 Compression Function 453

SB(X) ⊕ SB(X ⊕Δa) = Δb (7)

can only be 0, 2, 4, 6, 8, 256. We are interested if a given input difference can prop-
agate to a given output difference. Counting over all possible inputs the proba-
bility for Δa to propage to Δb through SubBytes is equal to 0.395 respectively
there are about 101 valid transitions on average from Δa to another difference.
This can be computed by creating a difference distribution table (DDT) of size
256 × 256 for all possible values.

SC - ShiftColumns. This steps moves differences to different rows but the
values are not changed. The 8 bytes of a full active row are moved to 8 different
rows.

MR - MixRows. MixRows is a linear step, hence xor differences propagate
in a deterministic way. For truncated differences we only got the position of
the difference and the propagation through MixRows is probabilistic. Since the
branch number of MixRows is 9, one active byte will propagate to 8 active bytes
with probability 1. The probability for a transition from a to b active bytes with
1 ≤ a, b ≤ 8 and a+ b ≥ 9 is in general 2(b−8)·8.

AK - AddRoundKey. AddRoundKey uses simple xor to add the round key
hence difference propagate deterministic through this operation.

3.2 Differential Properties of the Key Schedule

The key schedule uses two 512-bit keysK−2,K−1 to compute the next two round
keys. Apart from the key extraction function the key schedule is linear. First we
can simplify the key schedule and ignore the addition of the round constant and
look at the two new keys separately.

K0 = K−2 +K−1

K1 = x8K−2 + (x8 + 1)K−1

The difference propagation to K0 is trivial because it simply xors the two input
keys. For the second key we have to look how multiplication over F2512 [x]/p(x) in-
fluences the differences. Multiplication by x8 equals shifting bytewise and adding
the irreducible polynomial p(x) depending on the values of the first byte (K0,0)
of each round key. If we avoid any differences in the first byte the differences will
just be shifted bytewise (see Figure 2). If we have a difference in the first byte
it will only affect the last two bytes due to the structure of p(x).

Key Extraction Function - ψ

The key extraction function applies SubBytes and MixRows to row 3 and 7 and
copies all other rows. Note that ψ is only applied on the round keys and does
not influence the state of the key schedule. For our attack we avoid difference in
this rows so we can ignore it for our further analysis.

454 S. Kölbl and F. Mendel

KS

K−2 K−1

K0 K1

Fig. 2. Example difference propagation through the keyschedule with differences in
K−2

6,7 and K−1
5,7 . Colored bytes denote differences.

3.3 Constructing the Differential Path

Constructing the differential path is rather simple due to the structure of the
round transformations. Using truncated differentials we can construct a good
path by hand.

For the 6-round differential path (see Figure 3) we start with a difference in
K1

6,7. We can ignore K−2 and K−1 because we can apply the inverse key schedule
to (K0,K1) to obtain the initial key. The difference introduced by K1 will end
up in a full active row in AK2 due to the properties of MixRows. After SC3

there will be an active byte in every row and therefore we will have a full active
state in AK3. We keep this full active state for AK4 and use the properties
of MixRows to obtain the pattern in AK5. Note that in row 6 we want the 8
active bytes to propagate to 4 active bytes so that they are canceled out with
the differences in K5. We choose this pattern to obtain a single active row after
applying ShiftColumns so that we can use the last MixRows to cancel out the
differences in K6. The number of active bytes for the rounds are:

0 − 1 − 9 − 64 − 64 − 8 − 0 (8)

AK0 AK1 AK2 AK3 AK4 AK5 AK6

K0 K1 K2 K3 K4 K5 K6

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

KS KS KS

Fig. 3. 6 round differential path for Maelstrom-0

Practical Attacks on the Maelstrom-0 Compression Function 455

In the next step, we determine the xor differences of the differential path. For
this we use the same approach that has been used in the rebound attack on
Whirlpool [14]. So far we only considered truncated differentials, now we use xor
differences.

Backward direction

1. Start with an arbitrary difference in K6
6,5,K

6
6,7. We want to cancel this dif-

ference out so we also fix the difference in MR5
6,5,MR5

6,7.
2. The next step is to compute the MixRows step backwards to obtain the

differences in SC5 respectively SB5. To compute backwards the SubBytes
step we choose an arbitrary possible input difference to the given output
difference using the difference distribution table (see Section 3.1).

3. Now we repeat this steps to propagate the differences backward through
MR4, SC4. The differences after SB4 are now fixed and in the following steps
we show how we can propagate the difference from the start such that they
match this fixed difference.

Forward direction

1. Start with the difference in AK1
6,7 and propagate it forward. We get a full

active row in MR1. For the next SubBytes step we choose arbitrary possible
output differences using the DDT to the 9 given input differences and we
end up with a full active state in MR2 and AK2.

2. Now we start the matching process for each row r = 0, . . . , 7 individual.
Select the bytes AK2

(8−r),i for i = 0, . . . , 7 and it follows that this bytes form a
single row after ShiftColumns. Propagate the bytes through SB3, SC3,MR3,
AK3 step. For the SubBytes step we use a random valid output difference.

(a) Check for all bytes in row r of AK3 if there is a valid transition from
the input difference to the output difference in SB4. For any given input
difference we get up to 114 possible output difference. On average the
probability that the differences in one byte transition is valid is 0.395 and
the total probability is ≈ 2−10.72 that a full row matches. In practice we
can improve this by using favorable differences. If we do not get a match
for the row, we just choose another output difference in the previous step.
For every byte we can choose from at least 89 possible output differences,
therefore we can easily generate enough solutions to find a match.

(b) Repeat the steps until all conditions are fulfilled. The expected costs are
8 · 210.72 = 213.72

After finishing this steps the differential path is fully determined.

3.4 Finding the Message Pair

To find the colliding message pair we need to find a message that follows the
previous differential path. We need to determine the message M = K−2||K−1.
This can be done by random trials which obviously leads to a high complexity. A

456 S. Kölbl and F. Mendel

AK0 SB0 SC0 MR0

AK1 SB1 SC1 MR1

AK2 SB2 SC2 MR2

AK3 SB3 SC3 MR3

AK4 SB4 SC4 MR4

AK5 SB5 SC5 MR5

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK SB SC MR

AK

K0

K1

K2

K3

K4

K5

K6

Fig. 4. Full differential path for 6 rounds using truncated differentials

Practical Attacks on the Maelstrom-0 Compression Function 457

more efficient method is to use the triangulation algorithm invented by Khovra-
tovich et al. in the cryptanalysis of AES in hash mode [13]. Due to the structure
of Maelstrom-0 the best result we achieved had a complexity of 2184 which is in
fact lower than the theoretical bound but we used the following approach which
turns out to be very efficient for Maelstrom-0.

1. Start at SB4 and determine the correct values for the given differences. We
need to fulfill the conditions on all 64 active bytes, but there are no restric-
tions yet so we can choose the right pair of values.

2. For SB5 we got 8 conditions but we can use the according bytes in K5 to
get the correct input values to this SubBytes layer. The values for the rows
affected by the key extraction function can be computed by inverting the
MixRows and SubBytes step to obtain the desired value.

3. Now we need to satisfy the conditions for the fourth SubBytes layer. We
can compute the values from the difference for SB3 and apply ShiftColumns,
MixRows and use K4 to correct them and get the right input to the fourth
SubBytes layer. After this step all values of K4 and 8 bytes of K5 are fixed.

4. Compute K2,K3 by applying the inverse KeySchedule. From the inverse
KeySchedule it follows that K5 is xored to K4 in both cases. We can use
the remaining 54 free bytes now to influence K3 and therefore the values
we need to satisfy the 9 byte conditions of the third SubBytes layer. By
changing single bytes in K3 we can influence the value of each active byte
in SB2. The probability that we get the right value is 2−8. There are still
7 bytes that are not fixed in every row of K5 so we can create 256 possible
values and are guarenteed to find a solution. Each row in K5 only affects one
respectively two active bytes in SB2 therefore we can find the right values
for each row individually. With the naive approach by trying out different
values for each row we get a total complexity of 216.

5. With only one byte condition left in SB1 to fulfill we can simply bruteforce
the last S-box and repeat the previous steps. This results in a semi-free start
collision with a complexity of 224.

A colliding message pair for 6 rounds is given in the Appendix A.

3.5 Extension to More Rounds

In this section, we show how the attack can be extended to more rounds. It is
possible to construct collisions for 7 rounds. This could be achieved by using a
different path with another state between the two full active ones. This leads to

0 − 1 − 9 − 64 − 8 − 64 − 8 − 0 (9)

active bytes. The attack can be constructed similar to the attack on 6 rounds,
but we have more conditions which can not be fulfilled using the message input.
A possible approach would be:

1. Fix the differences in AK4 and propagate them backward to SB3. Fix the
differences in SB2 and propagate them forward to AK3. We try to find a
match with the same method used in the 6-round attack previously.

458 S. Kölbl and F. Mendel

AK3 AK4 AK5 AK6 AK7

K3 K4 K5 K6 K7

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

SB
SC
MR
AK

KS KS

Fig. 5. 7 round differential path. The first three rounds are omitted and are the same
as for the 6 round path.

6-round path
(rounds 1-6)

AK0

K0

AK1

K1K1

AK9

K9

AK10

K10

SB
SC
MR
AK

SB
SC
MR
AK

KS KS

Fig. 6. Extending the differential path at the end to get a near-collisions for 8 rounds
with 25 active bytes. Furthermore, adding 2 rounds at the beginning for full 10-rounds
free-start near-collisions.

2. Choose a valid transition for the propagation from AK4 to SB4. Compute the
differences forward to AK5. Now choose a difference in AK6 and propagate
it backward to SB5 and try to find a match again.

Finding the message can now be done in the following way:

1. Determine the values at AK3 resp. SB3. We got 8 byte conditions at SB4

which can be fulfilled using the corresponding column in K4. The 64 byte
conditions for SB5 can be fulfilled using K5. Following onward this direction
we need one transition of 8 to 3 active bytes in MR6 which costs 240 and we
need them to cancel out with the last 3 bytes of K7. So the total complexity
for the forward direction is 264.

2. In backward direction this looks very similar. We got one 8 to 1 transition
in MR1 which costs 256 and two conditions for the bytes K1

6,7 and K2
6,7 to

cancel out. Therefore the complexity in forward direction is 272.
3. The total complexity is 2136 in this case.

By choosing a weaker attack scenario the previous collision attack on 6 rounds
can be extended to more rounds. If we allow differences in the output we get
near-collisions and additional differences at the input lead to semi-free-start near-
collisions.

Practical Attacks on the Maelstrom-0 Compression Function 459

Table 1. Summary of attacks

Attack rounds complexity generic attack

semi-free-start collision 6 224 2256

semi-free-start collision 7 2136 2256

semi-free-start near-collision 8 224 2156

free-start near-collision 10 224 2124

Adding two more rounds after the 6-round attack we get near-collisions for 8
rounds with the same complexity of 224. The key addition after round 6 leads
to 3 active bytes which propagate to 3 active rows. The last key adds another
active byte. This gives us a near-collision with 25 active bytes (see Figure 6).

Furthermore it is also possible to additionally prepend two rounds to construct
a free-start near-collisions for the full 10 rounds of Maelstrom-0.

4 Conclusion

In this paper, we have shown how to construct collisions for the Maelstrom-0
compression function. Maelstrom-0 was designed to be faster and more robust,
however the new lightweight key schedule significantly weakens the compression
function and allows efficient attacks. The linear key schedule allows to construct
good differential paths and the key extraction function can be easily avoided.
We can construct collisions for 6 and 7 rounds. Furthermore, the attack scenario
can be extended to full Maelstrom-0, resulting in a free-start near-collision. In
Table 1 we summarize our results for the Maelstrom-0 compression function.

Acknowledgments

We would like to thank the designers of Maelstrom-0 for providing a reference
implementation and Matthias Schlaipfer for providing a implementation of the
rebound attack for Whirlpool which helped us to verify our results. The work
in this paper has been supported in part by the Austrian Science Fund (FWF),
project P21936-N23 and by the European Commission under contract ICT-2007-
216646 (ECRYPT II).

References

1. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

2. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

3. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

460 S. Kölbl and F. Mendel

4. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

5. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

6. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

7. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted to
NESSIE (September 2000),
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (revised May 2003)

8. Filho, D.G., Barreto, P.S., Rijmen, V.: The maelstrom-0 hash function. In: SBSeg
2006 (2006)

9. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing Secure
Hash Functions by Enhancing Merkle-Damg̊ard Construction. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Hei-
delberg (2006)

10. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryp-
tology 4(1), 3–72 (1991)

11. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

12. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: Results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

13. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for byte-
oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
164–181. Springer, Heidelberg (2009)

14. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced whirlpool and grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

Practical Attacks on the Maelstrom-0 Compression Function 461

A Colliding Message Pair

Here a colliding message pair (M,M ′) and the chaining value are given. The
message pair has been found by using the 6-round path and the difference in the
messages are ΔM1

6,7 = ΔM2
6,7 = 01. Values are given in hex notation.

Chaining Value After 6 rounds (AK6)

62 c4 11 cf 0e 4e dd eb
7e 1f 07 7c d7 84 ae 56
a4 81 51 b2 1e 91 d3 fe
23 08 cd 4a b8 d4 82 b9
67 89 16 74 f0 e6 7d 58
76 e0 fa f9 b6 8b 01 9c
83 d8 d8 36 e3 9e 54 f2
43 0c 85 58 a0 9b 30 38

6d 85 84 15 32 bd fc 98
b6 db 17 12 ed c5 fe 73
f5 85 8e a7 93 ea b0 87
ac 8e da b0 e1 20 82 d8
15 32 a8 61 d5 3f bc 93
ba dd 0a 2b bb 20 87 1f
32 45 86 6a c2 41 73 df
34 81 63 4e 4a 10 18 a7

M M ′

25 fe e7 fa 16 6f 30 2b
c3 03 8e d9 79 3a d6 06
8e 53 d3 da 9b 41 33 e0
66 e6 da 6 5c 9b f1 f2
31 1a ff 5c a1 ac 25 cd
2f 6e 63 a9 84 0e d5 40
00 c0 d9 9f 24 ab 7c 20
1f 2f d8 2f bc d2 04 2a

34 8c 53 c5 17 b4 87 35
e1 9c 2c e8 1d fb df 80
97 3d 46 0f ee 1d 5d 4b
63 55 37 c3 de 04 88 8e
b8 13 92 12 2c d2 8d 8e
ef 3b fc 5a b3 44 6b 7b
ef f6 80 42 49 9a 5d de
9f 1b d8 e9 88 7f c4 73

25 fe e7 fa 16 6f 30 2b
c3 03 8e d9 79 3a d6 06
8e 53 d3 da 9b 41 33 e0
66 e6 da 06 5c 9b f1 f2
31 1a ff 5c a1 ac 25 cd
2f 6e 63 a9 84 0e d5 40
00 c0 d9 9f 24 ab 7c 21
1f 2f d8 2f bc d2 04 2a

34 8c 53 c5 17 b4 87 35
e1 9c 2c e8 1d fb df 80
97 3d 46 0f ee 1d 5d 4b
63 55 37 c3 de 04 88 8e
b8 13 92 12 2c d2 8d 8e
ef 3b fc 5a b3 44 6b 7b
ef f6 80 42 49 9a 5d df
9f 1b d8 e9 88 7f c4 73

	Practical Attacks on the Maelstrom-0 Compression Function
	Introduction
	Description of Maelstrom-0
	Block Cipher E

	Outline of the Attack
	Differential Properties of the Round Transformations
	Differential Properties of the Key Schedule
	Constructing the Differential Path
	Finding the Message Pair
	Extension to More Rounds

	Conclusion
	References

