
Practical Authenticated Pattern Matching
with Optimal Proof Size

Dimitrios Papadopoulos
Boston University

dipapado@cs.bu.edu

Charalampos Papamanthou
University of Maryland

cpap@umd.edu

Roberto Tamassia
Brown University

rt@cs.brown.edu

Nikos Triandopoulos
RSA Laboratories & Boston University

nikolaos.triandopoulos@rsa.com

ABSTRACT

We address the problem of authenticating pattern matching queries

over textual data that is outsourced to an untrusted cloud server. By

employing cryptographic accumulators in a novel optimal integrity-

checking tool built directly over a suffix tree, we design the first

authenticated data structure for verifiable answers to pattern match-

ing queries featuring fast generation of constant-size proofs. We

present two main applications of our new construction to authen-

ticate: (i) pattern matching queries over text documents, and (ii)

exact path queries over XML documents. Answers to queries are

verified by proofs of size at most 500 bytes for text pattern match-

ing, and at most 243 bytes for exact path XML search, indepen-

dently of the document or answer size. By design, our authentica-

tion schemes can also be parallelized to offer extra efficiency during

data outsourcing. We provide a detailed experimental evaluation of

our schemes showing that for both applications the times required

to compute and verify a proof are very small—e.g., it takes less than

10µs to generate a proof for a pattern (mis)match of 102 characters

in a text of 106 characters, once the query has been evaluated.

1. INTRODUCTION
The advent of cloud computing has made data outsourcing com-

mon practice for companies and individuals that benefit from dele-

gating storage and computation to powerful servers. In this setting,

integrity protection is a core security goal. Ensuring that informa-

tion remains intact in the lifetime of an outsourced data set and

that query processing is handled correctly, producing correct and

up-to-date answers, lies at the foundation of secure cloud services.

In this work we design protocols that cryptographically guaran-

tee the correct processing of pattern matching queries. The prob-

lem setting involves an outsourced textual database, a query con-

taining a text pattern, and an answer regarding the presence or ab-

sence of the pattern in the database. In its most basic form, the

database consists of a single text T from an alphabet Σ, where a

query for pattern p, expressed as a string of characters, results in an-

swer “match at i”, if p occurs in T at position i, or in “mismatch”

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 21508097/15/03.

otherwise. More elaborate models for pattern matching involve

queries expressed as regular expressions over Σ or returning multi-

ple occurrences of p, and databases allowing search over multiple

texts or other (semi-)structured data (e.g., XML data). This core

data-processing problem has numerous applications in a wide range

of topics including intrusion detection, spam filtering, web search

engines, molecular biology and natural language processing.

Previous works on authenticated pattern matching include the

schemes by Martel et al. [28] for text pattern matching, and by De-

vanbu et al. [16] and Bertino et al. [10] for XML search. In essence,

these works adopt the same general framework: First, by hierarchi-

cally applying a cryptographic hash function (e.g., SHA-2) over the

underlying database, a short secure description or digest of the data

is computed. Then, the answer to a query is related to this digest via

a proof that provides step-by-step reconstruction and verification

of the entire answer computation. This approach typically leads to

large proofs and, in turn, high verification costs, proportional to the

number of computational steps used to produce the answer. In fact,

for XML search, this approach offers no guarantees for efficient

verification, since certain problem instances require that the proof

includes almost the entire XML document, or a very large part of it,

in order to ensure that no portions of the true (honest) answer were

omitted from the returned (possibly adversely altered) answer.

On the other hand, recent work on verifiable computing (e.g.,

[32, 13, 8]) allows verification of general classes of computation.

Here also, verification is based on cryptographic step-by-step pro-

cessing of the entire computation, expressed by circuits or RAM-

based representations. Although special encoding techniques al-

low for constant-size proofs and low verification costs, this ap-

proach cannot yet provide practical solutions for pattern matching,

as circuit-based schemes inherently require complex encodings of

all database searches, and RAM-based schemes result in very high

proof generation costs. Indeed, costly proof generation comprises

the main bottleneck in all existing such implementations.

Our goal. We wish to design schemes that offer an efficient answer-

verification process for authenticated pattern matching. That is, an-

swer correctness is based on a proof that is succinct, having size

independent of the database size and the query description, and

that can be quickly generated and verified. We emphasize that our

requirement to support pattern matching verification with easy-to-

compute constant-size proofs is in practice a highly desired prop-

erty. First, it contributes to high scalability in query-intensive ap-

plications in settings where the server that provides querying ser-

vice for outsourced databases receives incoming requests by sev-

eral clients at high rates; then obviously, faster proof generation

and transmission of constant-size proofs result in faster response

750

space setup proof size query time verification time assumption

[23] n n m log Σ m log Σ + κ m log Σ + κ collision resistance

this work n n 1 m+ κ m logm+ κ ℓ-strong DH

[10, 16] (any path) n n n, d n, d n, d collision resistance

this work (exact path) n n 1 m m logm+ s ℓ-strong DH

Table 1: Asymptotic complexities of our scheme for text pattern matching and XML exact path queries: n is the size of the document,

m the pattern length, κ the number of occurrences, Σ the alphabet size, s the answer size, and d the number of valid paths.

times and higher throughputs. But it also promotes storage effi-

ciency in data-intensive applications in settings where the proof for

a (mis)match of any pattern query over a database must be persis-

tently retained in storage for a long or even unlimited time duration;

then, minimal-size proofs result in the minimum possible storage

requirements, a very useful feature in big-data environments.

An example of a data-intensive application where pattern match-

ing proofs might be permanently stored, is the problem of securing

the chain of custody in forensic and intrusion detection systems

used by enterprises today. Such systems often apply big-data se-

curity analytics (e.g., [41]) over terabytes of log or network-traffic

data (collected from host machines, firewalls, proxy servers, etc.)

for analysis and detection of impending attacks. Since any data-

analytics tool is only as useful as the quality (and integrity) of its

data, recent works (e.g., [40, 12]) focus on the integrity of the data

consumed by such tools, so that any produced security alert carries

a cryptographic proof of correctness. To support a verifiable chain

of custody,1 these proofs must be retained for long periods of time.

As big-data security analytics grow in sophistication, authenticated

pattern matching queries will be crucial for effective analytics (e.g.,

to match collected log data against known high-risk signatures of

attacks), hence storing only constant-size associated proofs will be

important in the fast-moving area of information-based security.

Contributions. We present the first authentication schemes for pat-

tern matching over textual databases that achieve the desired prop-

erties explained above. Our schemes employ a novel authenticated

version of the suffix tree data structure [18] that can provide pre-

computed (thus, fast to retrieve), constant-size proofs for any basic-

form pattern matching query, at no asymptotic increase of storage.

Our first contribution is the design and implementation of an au-

thentication scheme for pattern matching such that:

• The size of the proof is O(1); specifically, it always contains

at most 10 bilinear group elements (described in Section 2).

• The time to generate the proof that a query pattern of size m
is found in κ occurrences is O(m+κ), and very short in prac-

tice, as it involves no cryptographic operations but only as-

sembling of precomputed parts—e.g., it takes less than 90µs

to respond to a query of size 100 characters: 80µs to simply

find the (mis)match and less than 10µs to assemble the proof.

We extend our scheme to also support regular expressions with a

constant number of wildcards. Our second contribution is the ap-

plication of our main scheme above to the authentication of pat-

tern matching queries over collections of text documents (return-

ing the indices of documents with positive occurrences), and exact

path queries over XML documents. By design, these schemes also

achieve optimal communication overhead: On top of the requested

answer, the server provides only a constant number of bits (modulo

the security parameter)—e.g., for XML search and 128-bit security

1
Informally, any security alert—carrying important forensic value—can be

publicly and with non-repudiation verified—thus, carrying also legal value
when brought as evidence to court months, or even years, after the fact.

level, proofs can be made as small as ∼178 bytes. Unlike exist-

ing hash-based authentication schemes [10, 16, 23], our authen-

tication schemes support fully parallelizable set-up: They can be

constructed in O(log n) parallel time on O(n/ log n) processors

in the EREW model, thus maintaining the benefits of known paral-

lel algorithms for (non-authenticated) suffix trees [19, 22]. While

the use of precomputed proofs best matches static text databases,

we also present efficient fully or semi-dynamic extensions of our

schemes. Our last contribution is the implementation of our schemes

for authenticated pattern matching search on text and XML doc-

uments along with an experimental evaluation of our verification

techniques that validates their efficacy and practicality.

Construction overview. Our solution is designed in the model of

authenticated data structures (ADS) [34], which has a prominent

role in the literature due to its generality, expressive power and rele-

vance to practice. An ADS is best described in the following three-

party setting: A data set (the text in our case) that originates at a

trusted owner is outsourced to an untrusted server which is respon-

sible for answering queries coming from clients. Along with an

answer to a query returned by the server, a client is provided with

a proof that can be used to verify, in a cryptographic sense, the an-

swer correctness, using a public key issued by the owner. That is,

subject to some cryptographic hardness assumption, verifying the

proof is a reliable attestation that the answer is correct.

We follow the framework of [35]: Our schemes first define and

encode answer-specific relations that are sufficient for certifying

(unconditionally) that an answer is correct and, then, cryptograph-

ically authenticate these relations using optimal-size proofs. We

achieve this by employing in a novel way the bilinear-map (BM)

accumulator [27],2 over a special encoding of the database with

respect to a suffix tree, used to find the pattern (mis)match. The en-

coding effectively takes advantage of the suffix tree where patterns

in the database share common prefixes, which in turn can be suc-

cinctly represented by an accumulator. For the XML query appli-

cation, we use the same approach, this time over a trie defined over

all possible paths in the document, and we link each path with the

respective XML query answer (i.e., all reachable XML elements).

Related work. Table 1 summarizes our work as compared to [10,

16, 23].3 In [23] a general technique is applied to the suffix tree,

that authenticates every step of the search algorithm, thus obtaining

proof size proportional to the length of the pattern, which is not op-

timal. Moreover, due to the use of sequential hashing, this solution

is inherently not parallelizable. The authors of [16] authenticate

XPath queries over a simplified version of XML documents by re-

lying on the existence of a document type definition (DTD) and

applying cryptographic hashing over a trie of all possible seman-

tically distinct path queries in the XML document. An alternative

2
An accumulator [9] is a cryptographic primitive for securely proving set-

inclusion relations optimally via O(1)-size proofs verifiable in O(1) time.
3
We note that our ADS schemes operate with any accumulator, not just the

BM accumulator. In fact, using the RSA accumulator [14] reduces verifi-
cation cost to O(m). However, a recent experimental comparison demon-
strates that the BM accumulator is more efficient in practice [37].

751

approach is taken in [10], where similar XML queries are authenti-

cated by applying cryptographic hashing over the XML tree struc-

ture. As discussed above, both these approaches suffer from very

bad worst-case performance, e.g., yielding verification proofs/costs

that are proportional to the size of the XML tree. However, these

works are designed to support general path queries, not only exact,

as our works does. Recently, the authors of [17] presented a pro-

tocol for verifiable pattern matching that achieves security and se-

crecy in a very strong model, hiding the text even from the respond-

ing server. While that work offers security in a much more general

model than ours, it has the downside that the owner that outsourced

the text is actively involved in query responding and that it makes

use of heavy cryptographic primitives, the practicality of which re-

mains to determined. There is a large number of ADS schemes

in the database and cryptography literature for various classes of

queries (e.g., [24, 15, 21]). Also related to our problem is key-

word search authentication, which has been achieved efficiently,

e.g., in [29, 39, 30]. As previously discussed, verifiable computa-

tion systems such as [32, 13] can be used for the verification of pat-

tern matching; although optimized to provide constant-size proofs

these constructions remain far from practical. Finally, parallel algo-

rithms in the context of verifiable computation have only recently

been considered. In [36, 33] parallel algorithms are devised for

constructing a proof for arithmetic-circuit computations.

2. CRYPTOGRAPHIC TOOLS
We review some known cryptographic primitives that we use as

building blocks.

Bilinear-map (BM) accumulator [27]. A BM accumulator suc-

cinctly and securely represents a set of elements from Zp, operat-

ing in the following setting of bilinear groups. Let G be a cyclic

multiplicative group of prime order p, generated by g. Let also

GT be a cyclic multiplicative group with the same order p and

e : G × G → GT be a bilinear pairing (or mapping) such that:

(1) e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp (bi-

linearity); (2) e(g, g) 6= 1 (non-degeneracy); (3) e(P,Q) is effi-

ciently computable for all P,Q ∈ G (computability). Let also

(p,G,GT , e, g) be a tuple of public bilinear parameters as above,

selected uniformly at random. The BM accumulator represents any

set A of n elements from Zp by its accumulation value, namely

acc(A) = g
∏

a∈A(s+a) ∈ G ,

i.e., a single element in G, where s ∈ Zp is trapdoor informa-

tion that is kept secret. Note that given values g, gs, . . . , gs
n

(and

without revealing the trapdoor s), acc(A) can be computed in time

O(n log n) with polynomial interpolation using FFT techniques.

The ℓ-strong DH or, here, ℓ-sDH assumption for bilinear groups

is a variant of the well-known computational Diffie-Hellman as-

sumption applied to bilinear groups. The ℓ-sDH assumption was

introduced in [11] and has since been widely used in the crypto-

graphic literature as a standard assumption. Under the ℓ-sDH as-

sumption, the BM accumulator is shown to provide two security

properties: (1) The accumulation function acc(·) is collision resis-

tant [31] (i.e., it is computationally hard to find unequal sets with

equal accumulation values); and (2) It allows for reliable verifica-

tion of subset containment [30] using short, size optimal, compu-

tational proofs; namely, subject to acc(A), the proof for relation

B ⊆ A is defined as the subset witness WB,A = g
∏

a∈A−B(s+a)

(i.e., B ⊆ A can be efficiently validated via checking the equality

e(WB,A, g
∏

b∈B(s+b))
?
= e(acc(A), g) given accumulation value

acc(A), set B and public values g, gs, . . . , gs
ℓ

, where ℓ is an upper

bound on A’s size n; but it is computationally hard to produce a

fake subset witness that is verifiable when B ⊆ A is false).

Authenticated data structure scheme. We use the model of au-

thenticated data structures (ADS). This model assumes three par-

ties: an owner holding a data structure D who wishes to outsource

it to a server who is, in turn, responsible for answering queries

issued by multiple clients. The owner preprocesses D, produc-

ing some cryptographic authentication information auth(D) and

a succinct digest d of D, and signs d. The server is untrusted, i.e.,

it may modify the returned answer, hence it is required to provide

a proof of the answer, generated using auth(D), and the signed

digest d. A client with access to the public key of the owner can

subsequently check the proof and verify the integrity of the answer.

DEFINITION 1 (ADS [30]). An ADS scheme A is a collec-

tion of four algorithms as follows: (i) {sk, pk} ← genkey(1k)
outputs secret and public keys sk and pk, given the security pa-

rameter k; (ii) {auth(D), d} ← setup(D, sk, pk) computes the

authenticated structure auth(D) and its respective digest d, given

a plain data structure D, the secret and public keys sk, pk; (iii)

{Π(q), α(q)} ← query(q,D, auth(D), pk) returns an answer α(q),
along with a proof Π(q), given a query q on data structure D and

the authenticated data structure auth(D); (iv) {accept, reject} ←
verify(q, α,Π, d, pk) outputs either accept or reject, on input a

query q, an answer α, a proof Π, a digest d and public key pk.

Like a signature scheme, an authenticated data structure scheme

must satisfy correctness and security properties. Namely, (i) as long

as the adversary does not tamper with the data and the algorithms of

the scheme (therefore correct answers are returned), verification al-

gorithms always accept; (ii) a computationally-bounded adversary

cannot persuade a verifier for the validity of an incorrect answer.

Accumulation trees. The accumulation tree is an ADS scheme

introduced in [31] that supports set membership queries. It can

be viewed as an alternative to a Merkle hash tree [24]. The main

differences are that proofs have constant size (instead of logarith-

mic in the set size), internal nodes have larger degrees (making

the trees “flat”), and they rely on different cryptographic primitives

(accumulators versus hash functions). During setup, a parameter

0 < ǫ ≤ 1 is chosen that dictates the degree of inner nodes. E.g.,

an accumulation tree with ǫ = 1/2 has 2 levels and each internal

node has degree O(
√
n). Accumulation trees build upon BM ac-

cumulators, storing at each internal node the accumulation value of

its children (appropriately encoded as elements of Zp). As shown

in [31], an accumulation tree AT for a set of n elements can be

built in time O(n) and yields proofs of O(1) group elements, ver-

ifiable with O(1) group operations. If the tree has height 1, proofs

are computed in time O(1), otherwise in time O(nǫ log n). Finally,

insertions to and deletions from the set take O(nǫ) time.

3. PATTERN MATCHING QUERIES
The problem of pattern matching involves determining whether

a pattern appears within a given text. In its basic form, assuming

an alphabet Σ of size |Σ| = σ, a n-character text T ∈ Σn and

a pattern p ∈ Σm of length m, the problem is expressed as “is

there position 1 < i ≤ n −m + 1 such that T [i + j] = p[j] for

j = 0, . . .m− 1?”, where T [i] is the character at the i-th position

in the text, and likewise for pattern p. If there exists such i, the

answer is “match at i”, otherwise “mismatch”.

Answering pattern matching queries is an arduous task, if done

naively. For instance, to check the occurrence of p in T , one could

sequentially test if p at any position i (i.e., if it is a prefix of some

suffix of T), for all positions in T . Such a successful test would

752

Figure 1: Suffix tree for minimize storing suffixes minimize,

inimize, nimize, imize, mize, ize, ze, e as eight overlapping paths.

imply a match but would require O(n) work. However, with some

preprocessing of O(n) work, one can organize patterns in a suffix

tree [38], reducing the complexity of pattern matching query from

O(n) to O(m). A suffix tree is a data structure storing all the

suffixes of T in a way such that any repeating patterns (common

prefixes) of these suffixes are stored once and in an hierarchical

way, so that every leaf of the suffix tree corresponds to a suffix

of the text T . This allows for (reduced) O(m) search time while

maintaining (linear) O(n) space usage. We provide next a more

detailed description of the suffix tree data structure, represented as

a directed tree G = (V,E, T ,Σ). We refer to the example of

Figure 1 depicting the suffix tree for the word minimize.

Each leaf of G corresponds to a distinct suffix of T , thus G has

exactly n leaves. We denote with S[i] the i-th suffix of T , that is,

S[i] = T [i] . . . T [n], for i = 1, . . . , n. Internal tree nodes store

common prefixes of these n suffixes S[1], S[2], . . . , S[n], where

the leaves themselves store any “remainder” non-overlapping pre-

fixes of T ’s suffixes. If leaf vi corresponds to suffix S[i], then

S[i] is formed by the concatenation of the contents of all nodes in

the root-to-leaf path defined by vi, where the root conventionally

stores the empty string. For instance, in Figure 1, S[4] = imize

and S[6] = ize, respectively associated with the paths defined by

the second and fourth most left leaves, labelled by mize and ze

(having as common parent the node labelled by i).

Additionally, every node v ∈ V stores the following informa-

tion that will be useful in the case of the mismatch: (a) the range

rv = (sv, ev) of v, which corresponds to the start (sv) and end

(ev) position of the string stored in v in the text (we pick an arbi-

trary range if v is associated with multiple ranges); (b) the depth dv
of v, which corresponds to the number of characters from the root

to v, i.e., the number of characters that are contained in the path in

G that consists of the ancestors of v; (c) the sequel Cv of v, which

corresponds to the set of initial characters of the children of v. For

example in Figure 1, for the node v labelled mi, it is sv = 1 and

ev = 2 (or sv = 5 and ev = 6), dv = 0, Cv = {n, z}.
Traversing a suffix tree. Since all matching patterns must be a

prefix of some suffix, the search algorithm beings from the root and

traverses down the tree incrementally matching pattern p with the

node labels, until it reaches some node v where either a mismatch

or a complete match is found. We model this search on suffix tree

G = (V,E, T ,Σ) by algorithm (v, k, t) ← suffixQuery(p,G),
returning: (1) the matching node v, i.e., the node of G at which

the algorithm stopped with a match or mismatch, (2) the matching

index k, sv ≤ k ≤ ev , i.e., the index (with reference to the spe-

cific range (sv, ev)) where the last matching character occurs (for

successful matching searches, k coincides with the index of the last

character of p within v), and (3) the prefix size t ≤ m, i.e., the

length of maximum matching prefix of p (m in case of a match).

Figure 2 shows the relation of variables k and t for both cases.

Characterization of pattern matching queries. The following

lemmas characterize the correct execution of algorithm suffixQuery,

by providing necessary and sufficient conditions for checking the

consistency of a match or mismatch of p in T with the output

(v, k, t) produced by suffixQuery. In the next section, we will

base the security of our construction on proving, in a cryptographic

manner, that these conditions hold for a given query-answer pair.

Namely, the structure of these relations allows us to generate suc-

cinct and efficiently verifiable proofs. In the following we denote

with xy the concatenation of two strings x, y (order is important).

LEMMA 1 (PATTERN MATCH). There is a match of p in T if

and only if there exist two suffixes of T , S[i] and S[j], with i ≤ j,

such that S[i] = pS[j].

LEMMA 2 (PATTERN MISMATCH). There is a mismatch of p
in T if and only if there exist a node v ∈ G, an integer k ∈ [sv, ev]
and an integer t < m such that S[sv − dv] = p1p2 . . . ptS[k + 1]
and pt+1 6= T [k + 1], if k < ev , or pt+1 /∈ cv if k = ev .

With reference to Figure 1, the match of the pattern p = inim,

can be shown by employing the suffixes S[2] = inimize and S[6] =
ize. Note that indeed S[2] = pS[6]. This is a match (as in Lemma 1).

More interestingly, observe the case of mismatch for the string

p = minia. For this input, algorithm suffixQuery returns the node

v labelled by nimize where the mismatch happens, matching in-

dex k = 4 and prefix size t = 4. For node v, we have sv = 3
and ev = 8 and also dv = 2. To demonstrate the mismatch, it

suffices to employ suffixes S[sv − dv] = S[1] = minimize and

S[k + 1] = S[5] = mize as well as symbols pt+1 and T [k + 1].
The concatenation of the prefix mini of p (of size t = 4) with the

suffix S[5] is S[1], and also pt+1 = a 6= T [k + 1] = m. This is a

mismatch (as the first case considered in Lemma 2, since k < ev).

Finally, to demonstrate the mismatch of the string p = mia we pro-

ceed as follows. Algorithm suffixQuery returns the node v labelled

by mi where the mismatch happens, matching index k = 6 and

prefix size t = 2. For node v, we have sv = 5 and ev = 6 (alter-

natively we can also have sv = 1 and ev = 2) and also dv = 0.

It suffices to employ suffixes S[sv − dv] = S[5] = mize and

S[k + 1] = S[7] = ze as well as symbol pt+1 and sequel (set)

cv . Note that indeed the concatenation of the prefix mi of p (of size

t = 2) with the suffix S[7] is S[5], and that also pt+1 = a /∈ cv =
{n, z}. This is a mismatch (as in Lemma 2, since k = ev).

4. MAIN CONSTRUCTION
We now present our main ADS scheme for verifying answers to

pattern matching queries. Our construction is based on building a

suffix tree over the outsourced text and proving in a secure way the

conditions specified in Lemmas 1 and 2 for the cases of match and

mismatch respectively. The main cryptogaphic tool employed is

the BM accumulator, which will be use to authenticate the contents

of a suffix tree in a structured way, allowing the server to prove the

existence of appropriate suffixes in the text and values in the tree

that satisfy the conditions in the two lemmas. Moreover, due to

the properties of the BM accumulator, the produced proofs will be

independent of the size of the text and the pattern, consisting only

of a constant number of bilinear group elements.

Key generation. The text owner first computes public bilinear

parameters pub = (p,G,GT , e, g) for security parameter 1k. He

then picks a random s ∈ Zp and computes g = [g, gs, . . . , gs
ℓ

].
Finally, the key pair is defined as sk = s, pk = (pub, g).

Setup. The setup process is described in pseudo-code in Algo-

rithm 1 and we provide a detailed explanation of each step here.

The owner first computes a suffix accumulation for each suffix in

the text with a linear pass. This value encodes information about

the text contents of the suffix, its starting position and its leading

character. In particular, acc(S[i]) is denoted as acci := acc(Xi1 ∪

753

Figure 2: (Left) Pattern matching in our scheme for pattern p (|p| = m), using suffixes S[i] and S[j], where S[i] = pS[j]. (Right)

Pattern mismatch in our scheme, using suffixes S[i] and S[j], where S[i] = p1p2 . . . ptS[j] and t < m.

Xi2 ∪ Xi3), where (a) Xi1 is the set of position-character pairs

in suffix S[i], i.e., Xi1 = {(pos, i, T [i]), . . . , (pos, n, T [n])} ; (b)

Xi2 is the first character of S[i], i.e., Xi2 = {(first, T [i])}; and (c)

Xi3 is the index of S[i], i.e.,Xi3 = {(index, i)}. Also, for each suf-

fix S[i] he computes a suffix structure accumulation ti = acc(Xi1),
i.e. it contains only the position-character pairs in the suffix and

its use will be discussed when we explain the verification process

of our scheme. Structure accumulations are a very important part

for the security of our construction. Observe that the suffix struc-

ture accumulation ti encompasses only a subset of the information

encompassed in acci. As shown in Section 2, the security of the

BM accumulator makes proving a false subset relation impossible,

hence no efficient adversary can link ti with accj for j 6= i.
Following this, the owner builds a suffix tree G = (V,E, T ,Σ)

over the text and computes a node accumulation for each v ∈ G.

This value encodes all the information regarding this node in G,

i.e., the range of T it encompasses, its depth in the tree and the

leading characters of all its children nodes (taken in consecutive

pairs). More formally, for a node v with values (sv, ev), dv, cv ,

its accumulation is defined as accv := acc(Yv1 ∪ Yv2 ∪ Yv3),
where: (a) Yv1 is the range of v , i.e., Yv1 = {(range, sv, ev)};
(b) Yv2 is the depth of v, i.e., Yv2 = {(depth, dv)}; and (c) Yv3

is the sequel of v defined as the set of consecutive pairs Yv3 =
{(sequel, ci, ci+1)|i = 1, . . . , ℓ−1}where Cv) = {c1, c2, . . . , cℓ}
is the alphabetic ordering of the first characters of v’s children. He

also computes a node structure accumulator tv = acc(Yv3) (sim-

ilar to what we explained for suffixes). Finally, for each sequel

ci, ci+1, compute a subset witness WP,Y (as defined in Section 2)

where P = {(sequel, cj , cj+1)} and Y = Yv1 ∪ Yv2 ∪ Yv3. This

will serve to prove that the given sequel of characters are leading

characters of consecutive children of v.

Note that, the keywords pos, first, index, range, depth and sequel

are used as descriptors of the value that is accumulated. With-

out loss of generality one can view the elements of sets Xij , Yij ,

j ∈ {1, 2, 3} as distinct k-bit strings (each less than the group’s

prime order p ∈ O(2k)), simply by applying an appropriate de-

terministic encoding scheme r(·). Therefore, when we accumulate

the elements of these sets, we are in fact accumulating their numer-

ical representation under encoding r. This allows us to represent

all accumulated values as distinct elements of Zp, achieving the

necessary domain homogeneity required by the BM accumulator.

At the end of this procedure, each suffix S[i] has its suffix accu-

mulation acci and its suffix structure accumulation ti. Also, each

node v ∈ G is associated with its node accumulation accv , its node

structure accumulation tv and one subset witness WP,C for each

consecutive pair of its children. We denote with V,S the sets of

node and suffix accumulations accv and acci, respectively. As a

final step, the owner builds two accumulation trees AT V ,AT S ,

using the BM accumulator described by the key pair. Let dV , dS
be their respective digests. He sends to the server the text T , as

well as authentication information auth(T) consisting of the suf-

fix tree G, the two accumulation trees AT V ,AT S and all values

acci, accv, ti, tv,WP,C , and publishes pk, dV , dS .

Algorithm 1: setup(T , pk, sk)
1. For suffix i = 1, . . . , n
2. Compute suffix structure accumulation ti
3. Compute suffix accumulation acci
4. Build suffix tree G = (V,E, T ,Σ)
5. For each node v ∈ G
6. Compute node structure accumulation tv
7. Compute node accumulation accv
8. For each consecutive pair of children of v
9. Compute subset witness WP,C

10. Build accumulation trees AT V ,AT S

11. Send T , auth(T) to the server and publish pk, dV , dS

Proof generation. We next describe proof generation for pattern

matching queries, i.e., matches and mismatches. The process varies

greatly for the two cases as can be seen in Algorithm 2 below. The

role of each proof component will become evident when we discuss

the verification process in the next paragraph. In both cases, let

(v, k, t) be the matching node in G, the matching index and the

prefix size returned by algorithm (v, k, t) ← suffixQuery(p,G)
(as described in Section 3 and Figure 2).

Proving a match. In this case the answer is α(q) = “match at i”.

Let p = p1p2 . . . pm be the queried pattern. The server computes

i = sv − dv and j = i + m. By Lemma 1, suffixes S[i] and

S[j] are such that S[i] = pS[j] and i ≤ j. The corresponding in-

dexes are easily computable by traversing the suffix tree for p. The

server returns i, j along with characters T [i], T [j] as well as suffix

structure and suffix accumulations acci, accj , ti, tj . Finally, using

accumulation tree AT S , he computes proofs πi, πj for validating

that acci, accj ∈ S.

Proving a mismatch. In this case the answer to the query q is

α(q) = “mismatch”. Let (sv, ev), dv and cv be the range, depth

and sequel of v. The server computes i = sv − dv and j =
i+ k+ 1 and returns sv, ev, dv, k, t, i, j, T [i], T [j] along with ac-

cumulations accv, acci, accj with proofs πv, πi, πj and structure

accumulation values tv, ti, tj . Finally, if k = ev he also returns

WP,C where P contains sequel c, c′ such that c < pt+1 < c′.

Verification. Here we describe the verification algorithm of our

scheme. Below we provide the pseudo-code in Algorithm 3 and an

intuitive explanation for the role of each component of the proof. In

both cases, the verification serves to check the conditions stated in

Lemmas 1, 2, which suffices to validate that the answer is correct.

754

Algorithm 2: query(q, T , auth(T), pk)
1. Call suffixQuery(p,G) to receive (v, k, t)
2. Set i = sv − dv
3. If t = m Then
4. Set a(q) = “match at i” and j = i+m
5. Lookup acci, accj , ti, tj in auth(T)
6. Compute AT S proofs πi, πj for acci, accj
7. Set Π(q) = (j, T [i], T [j], acci, accj , ti, tj , πi, πj)
8. Else
9. Set a(q) = “mismatch” and j = i+ k + 1
10. Lookup accv , acci, accj , tv , ti, tj in auth(T)
11. Compute AT S proofs πi, πj for acci, accj
12. Compute AT V proof πv for accv
13. Set aux = (sv , ev , dv , i, j, k, t)
14. Set Π(q) = (aux, T [i], T [j], accv , acci, accj , tv , ti, tj , πv , πi, πj)
15. If k = ev Then
16. Traverse the sequels of v to find pair c, c′ s.t. c < pt+1 < c′

17. Let P = {(sequel, c, c′)}
18. Lookup subset witness WP,C

19. Set Π(q) ∪ {P,WP,C}
20. Output a(q),Π(q)

Verifying a match. Recall that, by Lemma 1, it suffices to vali-

date that there exist suffixes S[i], S[j] in the text, such that S[j] =
pS[i]. First the client verifies that acci, accj ∈ Π(q) are indeed

the suffix accumulations of two suffixes of T using proofs πi, πj

(Line 1). Then, it checks that the corresponding structure accu-

mulations are indeed ti, tj (Lines 2-4). It remains to check that

the “difference” between them is p (Lines 6-7), by first computing

the pattern accumulation value gp) for p =
∏m

l=1(s + r(pos, i +
l − 1, pl)). A careful observation shows that this is indeed the

“missing” value between the honestly computed structure accumu-

lations ti, tj . This can be cryptographically checked by a single

bilinear equality testing e(ti, g) = e(tj , g
p). This last step can be

viewed as an accumulator-based alternative to chain-hashing using

a collision-resistant hash function. It follows from the above that,

if all these checks succeed, the conditions of Lemma 1 are met.

Verifying a mismatch. The case of a mismatch is initially similar

to that of a match, however it eventually gets more complicated.

The client begins by verifying the same relations as for the case of

a match for two indices i, j (Lines 1-4). In this case, these posi-

tions correspond to two suffixes S[i], S[j] such that S[j] = p′S[i],
where p′ is a prefix of p, i.e., their difference is a beginning part

of the pattern (Lines 9-10). Unfortunately, this is not enough to

validate the integrity of the answer. For example, a cheating adver-

sary can locate the occurrence of such a prefix of p in the text, and

falsely report its position, ignoring that the entire p appears in T as

well. We therefore need to prove that p′ is the maximal prefix of p
appearing in the text and here is where the properties of the suffix

tree become useful. In particular, if two characters appear consec-

utively within the same node of G, it must be that every occurrence

of the first one in T is followed by the second one. Hence, if the

server can prove that the part of T corresponding to the final part

of p′ as well as the consequent character, both fall within the same

node and said consequent character is not the one dictated by p, it

must be that p′ truly is the maximal prefix of p ∈ T . This is done

by checking the relation between the node accumulation and the

node structure accumulation of the returned node v (Lines 11-15).

This however does not cover the case where the consequent char-

acter, after p′, falls within the a child node of v (i.e., the part of T
corresponding to p′, ends at the end of the range of v). To accom-

modate for this case, the server needs to prove that the next charac-

ter in p, does not appear as the leading character of any of v’s chil-

dren. Since, all these characters have been alphabetically ordered

and accumulated in consecutive pairs, it suffices to return the corre-

Algorithm 3: verify(q, α(q),Π(q), d, pk)
1. Verify acci, accv with respect to dS , with πi, πj

2. Compute gx for x = (s+ r(first, T [i]))(s+ r(index, i))
3. Compute gy for y = (s+ r(first, T [j]))(s+ r(index, j))
4. Verify that e(ti, g

x) = e(acci, g) and e(tj , g
y) = e(accj , g)

5. If α(q) = “match at i” Then
6. Compute gp for p =

∏m
l=1(s+ r(pos, i+ l − 1, pl))

7. Verify that e(ti, g) = e(tj , g
p)

8. Else

9. Compute gp for p =
∏t

l=1(s+ r(pos, i+ l − 1, pl))
10. Verify that e(ti, g

p) = e(tj , g)
11. Verify that i = sv − dv and sv ≤ k ≤ ev and j = i+ k + 1
12. Verify accv , with respect to dV , with πv

13. Compute gz for z = (s+ r(range, sv , ev))(s+ r(depth, dv))
14. Verify that e(tv , gz) = e(accv , g)
15. If k < ev Then verify that pt+1 6= T [j]
16. Else
17. Verify that c < pt+1 < c′ (alphabetically)
18. Compute gw for w = s+ r(sequel, c, c′)
19. Verify that e(WP,C , g

w) = e(accv , g)
20. If any check fails Then output reject, Else accept

sponding pairP that “covers” this consequent character. The valid-

ity of this pair is guaranteed by providing the related pre-computed

witness, the relation of which to node v is tested by checking a

bilinear equality (Lines 17-19).

We can now state our main result (proof is included in the full

version of our paper).

THEOREM 1. The algorithms {genkey, setup, query, verify}
are a correct ADS scheme for pattern matching queries that is se-

cure under the ℓ-sDH assumption.

Complexity analysis. The running time of algorithm setup is O(n).
This follows immediately from the following: (i) the construction

of G takes O(n) and the produced tree contains O(n) nodes, (ii) all

suffix and suffix structure accumulations can be computed with a

single pass over T , (iii) node and node structure accumulation val-

ues can be computed in time linear to the number of the node’s chil-

dren (using sk); since each node has a unique parent node, all node

accumulations are also computable in time O(n), and (iv) an ac-

cumulation tree over n elements can be constructed in time O(n).
The running time of algorithm query is O(m), because all proof

components in Π(q) are pre-computed (includingAT proofs if the

accumulation trees are of height 1), hence the only costly compo-

nent is the suffix tree traversal which takes O(m). For algorithm

verify the runtime is O(m logm). This holds because verification

of AT proofs can be done with O(1) operations, accumulating a

set of m elements, with pk alone, takes O(m logm) operations and

only a constant number of checks is made. The proof consists of

a constant number of bilinear group elements (at most ten, corre-

sponding to the case of a mismatch at the end of a node). Finally

the overall storage space for auth(T) is O(n).

Handling wildcards. Our construction can be easily extended to

support pattern matching queries expressed as limited regular ex-

pressions. In particular, it can accommodate queries with patterns

containing a constant number of “wildcards” (e.g., ∗ or ?). To

achieve this we proceed as follows. Partition p into segments as-

sociated with simple patterns, with the wildcards falling between

them. Proceed to run proof generation and verification for each seg-

ment individually. For the mismatch case, it suffices for the server

to demonstrate that just one of these segments does not appear in

T . For the match case, the server proves existence for all segments

and the clients verifies each one separately. He then checks that

the positions of occurrence (expressed as the i, j indices of each

755

segment) are “consistent”, i.e., they fall in the correct order within

the text (or they have the specified distance in case there is a corre-

sponding restriction in the query specification).

Parallel setup. We also show how to derive parallel implementa-

tions for the setup algorithm, assuming O(n/ log n) processors in

the exclusive-read-exclusive-write (EREW) model [19].

BM accumulator setup. Given the trapdoor information s, the accu-

mulation acc(X) of a setX of size n, can be computed in O(log n)
parallel time. This is achieved with an algorithm for summing n
terms in parallel (where sum is replaced with multiplication) [19].

Suffix products. Suffix accumulations can be computed by simply

using a parallel prefix sums algorithm, in O(log n) parallel time.

Accumulation trees. Accumulation trees on a set of n elements, can

also be constructed in parallel. First, partition the elements of the

set in O(n/ log n) buckets of size O(log n) and then compute the

accumulations of the buckets in O(log n) parallel time. Next, for

a fixed ǫ, build the accumulation tree on top of the B = n/ log n
buckets. Specifically, the accumulations (O(B1−ǫ) in total) of all

internal nodes (of degree O(Bǫ)) at a specific level can be com-

puted independently from one another. Therefore, by the parallel

accumulation setup algorithm (presented in the beginning of this

section), the accumulation tree can be computed in O(logBǫ) =
O(log n) parallel time using O(B1−ǫBǫ/ logB) = O(n/ log n)
processors, similarly with a Merkle tree. It follows that setup takes

O(log n) parallel time with O(n/ log n) processors.

5. APPLICATIONS
In this section we discuss two practical applications of our con-

struction. We first show how our scheme can be used to accommo-

date pattern matching queries over a collection of documents and

then explain how our BM authentication technique can be modi-

fied to support a class of queries over semi-structured data, namely

XML documents. Finally, we discuss how our construction can be

extended to efficiently handle modifications in the dataset.

5.1 Search on collection of text documents
We generalize our main construction to handle queries over mul-

tiple documents. By adding some modifications in the suffix tree

authentication mechanism, we build a scheme that supports queries

of the form “return all documents that contain pattern p”. This

enhancement yields a construction that is closer to real-world ap-

plications involving querying a corpus of textual documents.

Let T1, . . . , Tτ be a collection of τ documents, with content from

the same alphabet Σ. Without loss of generality, assume each of

them has length n, and let N be the sum of the lengths of all Ti, i.e.,

N = τn. We assume a data structure that upon input a query q, ex-

pressed as string pattern p from Σ, returns the index set I := {i|p
appears in Ti}, i.e., the indices of all documents that contain the

pattern. Using our construction as a starting point, one straight-

forward solution for authenticating this data structure is to handle

each Ti separately, building and authenticating a corresponding suf-

fix tree. Consequently, in order to prove the integrity of his answer,

the server replies with τ separate proofs of our main construction

(one for each document) which are separately verified by the client.

This approach is clearly not efficient since τ can be very large in

practice; shorter proofs are not possible, since a server can cheat

simply by omitting the answer for some documents and the client

has no way to capture this unless he receives a proof for all of them.

Main idea. We handle all documents as a single document T =
T1 ∗ T2 ∗ . . . ∗ Tτ expressed as their concatenation, where ∗ is a

special character 6∈ Σ marking the end of a document. We define

extended alphabet Σ∗ = Σ ∪ {∗} and build a single authenticated

suffix tree G = (V,E, T ,Σ∗) as in our main construction. Ob-

serve now that the query can be reduced to answering a single pat-

tern matching query for p in T , asking for all its occurrences (as

opposed to our main scheme where we were interested with a sin-

gle occurrence). This can be easily achieved with the following

observation about suffix trees: for a pattern p for which suffixTree

outputs node v ∈ G, the number of occurrences of p ∈ T , is the

number of children of G. For example, in Figure 1, the pattern i

appears three times in the text, and the pattern mi appears twice.

Construction overview. The above relation can be incorporated

in our main construction, by encoding in each node v not a sin-

gle range (sv, ev) but the indices of all these ranges (svu, e
v
u), one

for each child node u of v. In fact, the information will consist

of triples (i, svu, e
v
u) where i is the index of the document Ti within

which sv falls. This can performed in time O(n) in three steps. Ini-

tially, the owner sets up an efficient dictionary structure with key-

value pairs formed by document indices and corresponding starting

positions. Then he sets up a suffix tree G for T and with a post-

order traversal computes all ranges for each node (with lookups to

the dictionary). He finally runs the setup for our main construction

with the modified node information explained above.

Regarding proof generation and verification, we distinguish be-

tween the two cases. If p does not appear in T , then the proof is

same as in our basic scheme and the same holds for verification4.

For the case of positive response, the server must return a proof

that consists of three parts: (i) a match proof exactly as in our main

construction, with boundaries i, j; (ii) a node accumulation accv
(with its accumulation tree proof and structure accumulation) for

the node v corresponding to p and all its ranges; (iii) the indices of

all documents where p appears. With access to all this information,

the client verifies that p indeed appears in T , it corresponds to v
(because there must exist one range of v that covers position j) and

that the returned indices correspond exactly to all documents con-

taining p. Observe that the special character ∗ makes it impossible

for an adversary to cheat by finding two consecutive documents,

the first of which ends with a prefix of p and the second of which

begins with the corresponding suffix (as long as {∗} 6∈ p).

5.2 Search on XML documents
We now turn our attention to queries over XML documents. We

consider the standard tree-based representation of XML data: An

XML document X consists of n elements e1, . . . , en organized in

a hierarchical structure, via sub-element relations, which, in turn,

imposes a well-defined representation of X as a treeXT having ele-

ments as nodes and sub-element relations expressed by edges. Each

element has a label that distinguishes its data type, attributes and

corresponding attribute values and actual textual content (which

can be viewed as an additional attribute).5 We also assume that

each element of XT is associated with a unique numerical iden-

tifier stored as an element attribute. Figure 3 provides one such

simplified tree-based representation.

Each node e in XT is defined (or reachable) by a single label

path that is the concatenation of the labels of e’s ancestor nodes

in the order that they must be traversed starting from the root of

XT in order to reach e. In general, many elements may share the

same label path. We abstract away the details of the (often elabo-

rate) querying process of an XML document by considering generic

path queries that return a subset of the elements of XT (in fact,

4
The node accumulations must include separately a single range for v (ran-

domly chosen in the case of multiple occurrences) and the collection of all
ranges described above.
5
We do not consider reference attributes relating elements to arbitrary

nodes in XT) or processing instructions.

756

bookstore	

name	

name	 name	
name	

department	 employee	 employee	

salary	 salary	

book	 book	

0tle	 author	 YoP	

X
T bookstore	

department	 name	 employee	

name	 salary	 name	

book	

0tle	 YoP	 author	

X
L

name	

book	

…

… …

department	

0tle	 author	 YoP	

book	

Figure 3: (Left) Tree XT containing all the elements of XML document X . Element attributes can be included as a different type of

node, directly below the corresponding element. (Right) Trie XL containing all the distinct label paths that appear at X .

a forest of subtrees in XT). A path query is generally a regular

expression over the alphabet L of valid labels returning all nodes

reachable by those label paths conforming to the query, along with

the subtrees in XT rooted at these nodes. An exact path query is

related to a label path L of length m, i.e., L ∈ Lm, returning the

subtrees reachable in XT by L. This abstraction fully captures the

basic notion of path query as identified in various XML query lan-

guages, e.g., XPath, XML-QL. As an example a query of the form

\bookstore\department\book will return all the books that ap-

pear in XT as shown in Figure 3 with the corresponding subtree of

each book element (i.e., nodes title, author,YoP).

Main idea. Similar to the case of text pattern matching, our goal

is to identify the relations among the elements of XML document

that are sufficient to succinctly certify the correctness of exact-

path XML queries. Our main approach is to decouple locating the

queried elements from validating their contents. We achieve this

through a direct reduction to our (authenticated) suffix tree con-

struction from the previous section: Given an XML document X
in its tree-like representation XT , we construct a trie XL that stores

all the distinct label paths that appear in XT . Compared to our

main scheme, XL can be viewed as an uncompressed suffix tree

(trie) with the alphabet being the element label space L associ-

ated with X and the “text” over which it is defined being all label

paths in XT . Each node in XL is associated with a valid label

path according to XT and also with the set of elements in XT that

are reachable by this label path, through back pointers. For ex-

ample, the query \bookstore\department\book in Figure 3 will

reach one node in XL which points back to the elements reachable

by the queried path. We define, encode and authenticate three types

of certification relations (corresponding to edges in Figure 3):

1. Subtree contents: This relation maps nodes in XT with the

elements (and their attributes) in XT that belong in the sub-

trees in XT defined by these nodes.

2. Label paths: This relation maps nodes inXL with their corre-

sponding label paths. Here, we make direct use of our results

from Section 4; however, since we no longer have a tree de-

fined over all possible suffixes of a text, suffix accumulations

are no longer relevant (instead, we use node accumulations).

3. Element mappings: This relation maps nodes in XL with the

corresponding elements inXT that are reachable by the same

label path (associated with these nodes).

We next describe how to cryptographically encode the above re-

lations by carefully computing accumulations or hash values over

sets of data objects related to the nodes in XL and XT .

Notation. We denote by eid the identifier, by Ae = {(ai, βi)|i =
1, . . . , |Ae|} the attribute values, by lb(e) the label, and by Ce =
{ci|i = 1, . . . , |Ce|} the children of element e in XT . Also, for

node v ∈ XL, we denote by Lv , lb(v), Cv , and Ev its label path,

label, children set, and respectively the set of elements ei in XT

that are reachable by Lv . Finally, let d be the height of XT .

Subtree labels. Subtree contents in XT are encoded using a spe-

cial type of node-specific values. If h is a cryptographic collision-

resistant hash function, then for any e ∈ XT we let he denote

the hash content of e he = h(eid‖(a1, β1)‖ . . . ‖(a|Ae|, β|Ae|)).
Then, for e ∈ XT we define two different ways for recursively

computing node-specific subtree labels sl(e) that aggregate the hash

labels of all the descendant nodes of e in XT :

1) Hash based: If e is leaf in XT then sl1(e) = he, otherwise

sl1(e) = h(he‖sl1(c1) . . . ‖sl1(c|Ce|));

2) Accumulation based: sl2 = acc(Ze) where if e is leaf then

Ze = he, otherwise Ze = {he,Zc1 , . . . ,Zc|Ce|
};

Node accumulations. Label paths and element mappings in XL

are encoded using node accumulations. We associate with v ∈
XL three sets of data objects: (a) The label path Lv of v; let

Yv1 = {(label, i, li) : i = 1, . . . , |Lv|}; (b) The label sequels

of v is lb(c1), . . . , lb(c|Cv|), the sequence of the alphabetically or-

dered labels of v’s children; let Yv2 = {(sequel, lb(ci), lb(ci+1)) :
i = 1, . . . , |Cv| − 1}; and (c) The XML elements hash is the hash

value of the set Ev of elements of XT that correspond to Lv; let

Yv3 = {(hash, h(sl(e1), . . . , sl(e|Ev|)} (alternatively, this hash

can be computed as the accumulation of values sl(ei) using a BM

accumulator). Then the node accumulation for node v ∈ XL is

defined as acc(Yv1 ∪ Yv2 ∪ Yv3).

Construction overview. Here we discuss the operation of the al-

gorithms of our scheme. A more detailed description can be found

at the full version of our paper. The genkey algorithm is exactly

the same as the one for our main construction (plus generating a

collision resistant hash function if sl1 is chosen for subtree labels).

For setup, the owner first builds XL, the trie containing all distinct

paths appearing in the XT . He then computes subtree labels sl(e)
for each element e ∈ XT in a bottom up way starting from the

leaves and node accumulations accv for each node v ∈ XL. He

also computes for v, two structure accumulations tv, sv , the first of

which contains only information regarding the labels of its children

nodes and the second contains all the node information except for

the label path Lv . Moreover, he computes a subset witness for each

consecutive pair of children of v (ordered alphabetically based on

their label), exactly as in the main scheme. He finally builds a sin-

gle accumulation tree over the set V of node accumulations accv
and sends all components to the server.

757

With respect to query we again distinguish the two cases. If the

queried path L does not appear in XT , proof generation is identical

to the mismatch case of our main construction. The server simply

needs to prove the existence of a prefix of L, and that none of the

children of the node v in XL corresponding to this prefix has the

necessary next label. This is achieved by providing the length of the

prefix, the corresponding accv (with its accumulation proof), the

structure accumulation sv , and the corresponding pair of children

labels with its subset witness. The client, first checks the validity of

accv , then verifies it corresponds to the given prefix of L using the

structure accumulation and, finally checks whether the next label

in L is covered by the given label pair, as well as the fact that it is a

well-formed pair using the given witness. Observe that, in contrast

to our main construction, since XL is uncompressed, the mismatch

will always happen “at the end” of a node.

If L appears in XT , the answer consists of all elements ei in

the document that have label paths corresponding to L as well as

the subtrees of XT that have ei as roots. Note that, since the re-

sult consists of a forest of subtrees, their structure (i.e., the parent-

children relations of elements) is also explicitly part of the answer.

Proof generation proceeds as follows. If v is the node in XL that

corresponds to L, the server only needs to provide accv (with its

accumulation proof) and the structure accumulation tv . The client

first validates that accv is a correct node accumulation and then

checks that it corresponds to L and all provided elements ei using

the structure accumulation tv . To achieve the latter, he first com-

putes subset label sl(ei) for each element in the answer Ev and their

hash value η = h(sl(e1), . . . , sl(e|Ev|)). He then computes gx for

x = (s + r(hash, η))
∏|Lv|

i=1 (s + r(label, i, li)) and finally checks

whether e(gx, tv) = e(accv, g). This simultaneously validates that

v corresponds to L and that all elements ofXT (including subtrees)

have been returned. For the latter, observe that sl is a secure cryp-

tographic representation, hence no elements may be omitted.

Parallel setup. Our XML construction also supports parallelizable

setup, in O(log n) parallel time using O(n/ log n) processors.

Label paths. For a node v of a rooted tree T of size n, let xv denote

the information stored at v and path(v) denote the path between v
and the root. Let prefix accumulations of tree T , be computed as

accPv(T) = g
∏

u∈path(v) (s+xu)
for v ∈ T . These can be computed

in O(log n) parallel time, by computing a suffix accumulation over

the Euler tour of T (using our approach for text pattern matching),

that is appropriately refined to accumulate (s+xv) modulo p in the

exponent when the tour encounters the left side of v and (s+xv)
−1

modulo p when the tour encounters the right side of v.

Subtree labels. If the labels are accumulation-based, they can be

modeled as accSv(T) = g
∏

w∈subtree(v)(s+xw)
for v ∈ T , where

subtree(v) is the set of nodes contained in the subtree rooted on

node v. Note that in order to compute accSv(T) for all v ∈ T ,

it suffices to compute the products
∏

w∈subtree(v)(s + xw) for all

v ∈ T . Such a parallel algorithm running in O(log n) parallel time

was originally presented as an application of tree contraction [25].

5.3 Dynamic datasets
So far we have only dealt with the case of static datasets, where

the data owner outsources the data once, with no further changes.

However, in many cases the owner may wish to update the dataset

by inserting or removing data. When this occurs, the owner can of

course run the entire setup process again, but here we investigate

more efficient updates for the two applications presented above.

Collection of text documents. For our scheme we build a single

suffix tree on the collection, hence our update efficiency will cru-

cially depend on this data structure’s behavior. In practice, a single

modification in any of the documents may change the suffix tree

entirely and the best we can do for updates is to re-run setup, in

time O(nτ). One way to accommodate updates more efficiently

is the following. We first split the documents in
√
τ groups, each

with
√
τ documents, and then run our scheme separately for each

group. A given query now decomposes into a separate query for

each group. In this setting, an update –in the form of a document

insertion or removal– will only cause the re-computation of one of

the suffix trees (and the corresponding ADS) in time O(n
√
τ) in-

stead of O(nτ). On the other hand, this increases the cost for proof

generation/verification and size by a multiplicative
√
τ factor, but

in settings with frequent updates, this trade-off may be favorable.

XML documents. In this setting, we discuss updates in the form

of element insertion or removal from the document, that do not

change the structure of the label trie XL (i.e. they do not introduce

a new label path in the document). Otherwise, we face the same

difficulties as in the previous application. We focus on leaf ele-

ment insertions; in order to insert more than one element (building

a new subtree in XT) the process is repeated accordingly. Updates

of this form can be efficiently handled as follows: First, the new

element’s subtree label is computed and the subtree labels of all its

ancestors in XT are re-computed. Second, the node accumulation

value of the corresponding node v ∈ XL is updated by inserting the

subtree label of the new element in the XML elements hash. Then,

the second structure accumulation and children witnesses for v are

updated, and the accumulation tree is updated accordingly.

Let us now calculate the efficiency of the above process. Com-

puting the subtree labels takes O(d) operations and recomputing

the node and structure accumulations and children witnesses re-

quires O(|Cv|) exponentiations (assuming the XML elements hash

is computed with a BM accumulator). We stress that |Cv| is the

number of distinct labels the siblings of the inserted element have,

and not the number of its XML element siblings; for all practical

purposes |Cv| can be viewed as a constant. Finally, by the prop-

erties of the accumulation tree, the last step can be run in time

O(|XL|ǫ), where ǫ ∈ (0, 1] is a chosen parameter. The same holds

for the case of element removal. Hence the overall update cost is

O(d+ |Cv|+ |XL|ǫ), which is much less than the setup cost.

6. PERFORMANCE EVALUATION
In this section, we present an experimental evaluation of our two

authenticated pattern matching applications from Section 5. All

scheme components were written in C++, by building on a core BM

accumulator implementation [37] developed by Edward Tremel,

as well as using library DCLXVI [2] for bilinear pairings, library

FLINT [3] for modular arithmetic, Crypto++ [1] for implementing

SHA-2, and the pugiXML [4] XML parser. The code was compiled

using g++ version 4.7.3 in C++11 mode. Our goal is to measure

important quantities related to the execution of our scheme: veri-

fication time for the clients, proof generation time for the server,

setup time for the data owner, and the size of the produced proof.

Experimental setup. For our collection of documents application,

we used the Enron e-mail dataset [20] to build collections of e-

mail documents (including headers) with total size varying between

10,000 and 1,000,000 characters. We set the public key size to be

equal to 10% of the text size at all times (this can be seen as an

upper bound on the size of patterns that can be verified). For the

exact path XML application, we experimented with five XML doc-

uments of various sizes from the University of Washington XML

repository [5], as well as a large synthetic XML document gener-

ated using the XMark benchmark tool [6]. A list of the documents

and their sizes can be found in Table 2. Special characters were

758

XML document size (MB) # of elements # of paths setup (sec)

SIGMOD 0.5 11,526 11 0.4

Mondial 1 22,423 33 0.7

NASA 23 476,646 95 8.9

XMark 100 2,840,047 514 35.2

DBLP 127 3,332,130 125 68.9

Protein sequence 683 21,305,818 85 381.5

Table 2: XML documents used for experiments and setup time.

text size setup (sec)

100 1.4

1,000 10.7

10,000 99.6

100,000 976.5

1,000,000 10,455

(a) setup time

proof type proof (KB) optimal (B)

positive 3.4 435

negative 3.4 435

neg. end node 4 500

xml positive 1.2 178

xml negative 1.7 243

(b) proof size

Table 3: Setup cost for text documents and size of proofs.

escaped both in the e-mail documents and the text content within

XML elements. For computing subset labels and XML elements

hashes within trie nodes, we used the hash-based approach with

SHA-2. In both cases we constructed accumulation trees of height

1 for the authentication of suffix and node accumulations. All quan-

tities were measured ten times and the average is reported.

Working with pairings over elliptic curves. As mentioned in Sec-

tion 2 the BM accumulator employs a pairing e defined over two

bilinear groups. For simplicity of presentation, we previously de-

fined e : G × G → GT , i.e., both its inputs come from the same

group (known in the literature as an symmetric pairing). In practice

however, asymmetric pairings of the form e : G1 × G2 → GT ,

where G1,G2 are groups of the same prime order but G1 6= G2,

are significantly faster. The DCLXVI library we use here, makes

use of such a pairing over an elliptic curve of 256 bits, and offering

bit-level security of 128 bits (corresponding to the strong level of

3072-bit RSA signatures according to NIST [7]). Elements of G2

(corresponding to witnesses in our scheme) are defined over an ex-

tension of the field corresponding to elements of G1(resp. accumu-

lations). The former are twice as large as the latter and arithmetic

operations in G2 are roughly 2-3 times slower.

Setup cost. Table 3(a) shows the setup time versus the total length

of the documents and depicts a strong linear relation between them.

This is expected because of the suffix accumulation computations

and the fact that the suffix tree has linearly many nodes. The prac-

tical cost is quite large (e.g., roughly 3 hours for a text of 1,000,000

characters). However, this operation only occurs once when the

outsourcing takes place. For the XML case, Table 2 contains the

necessary setup time for the documents we tested. The time grows

with the size of the document but is quite small in practice, even for

very large documents (e.g., a little above 6 minutes for a document

of size 683MB). This happens because the crucial quantity is the

number of distinct paths in the document (that will form the nodes

of XL), and not the number of elements in the document itself.

Query time. Figures 4(a), (b) and (c) show the server’s overhead

for answer computation and proof generation, for text and XML

pattern matching. For text pattern matching we experimented with

pattern lengths of 10 to 1,000 characters at a text of 1,000,000 char-

acters. To test the query time at the server, we focused on queries

with negative answers and prefix matches finishing at the end of

a node, which is the most demanding scenario (e.g., a pattern that

starts with a letter that does not even appear in the text is answered

by simply looking at the children of the root node of the suffix

tree). To produce such queries, we identified matches at ends of

various nodes, and “built” progressively larger patterns that ended

with them. We plot the overall time for query evaluation and proof

generation versus the size of the found prefix. As can be seen, the

cost is in the order of a few microseconds (µs) at all times. In the

case of XML queries, we present findings both for the positive and

negative case in Figures 4(b) and (c) respectively, for the NASA,

XMark and DBLP datasets (note the different y-axis scales). For

queries with positive answers, we tested on all existing label paths,

whereas for negative ones we inserted a “junk” label at a random

point along a valid path. In the first case the plot is versus the size

of the answer; for the second case where the answer size is zero, we

plotted the times across the x-axis by simply assigning an arbitrary

id (1-742) to each query. The overhead is again very low, less than

1 millisecond for most instances in the positive case and less than

20µs in the negative. This discrepancy occurs because the server

must compile the answer subtrees into a new pugiXML document

(that will be sent to the client) for a positive answer –which does

not entail any cryptographic operations. Finally, in both applica-

tions the plots are quite noisy. This follows because the answer

computation time varies greatly with the topology of the trees (in

both cases) and the size of node contents (for the XML case).

Comparison with query-evaluation time. In both cases the server’s

overhead for proof generation is very low in our scheme since, once

the answer is computed, he simply performs a constant number of

lookups in his local database to find the corresponding accumula-

tions and witnesses. This is highlighted in Figure 4(a) where the

lower data series corresponds to the time it takes to simply evaluate

the query (without any proof of integrity). As can be inferred, the

pure cost for proof generation is less than 10µs at all times. This is

also true for the XML case, but due to the different plot type, it was

not easy to depict in a figure. In essence, in our scheme the server

only performs exactly the same operations as if there was no au-

thentication plus a constant number of memory look-ups, for both

applications which makes it ideal for scenarios where a dedicated

server needs to handle great workload at line-speed.

Verification time. In Figures 4(d),(e) and (f) we demonstrate the

verification cost for clients for the text and XML pattern matching

applications. In the first case the time is measured as a function

of the queried pattern length (or matching prefix in the case of a

negative answer) and in the second as a function of the answer size

(as before, for negative responses we plot versus an arbitrary id).

To test the verification time for our text application, we report

findings for all three possible cases (match, mismatch and mis-

match at end of node). We observe a strong linear correlation be-

tween the verification time and the length of the matched pattern.

This follows because the main component of the verification algo-

rithm is computing the term gz. Observe that verification for the

positive case of a match is slightly faster, which corresponds to our

protocol description. In that case, the client needs to perform op-

erations over accumulations and witnesses related only to suffixes,

without getting involved with suffix tree nodes. On the other hand,

the case where a mismatch occurs at the end of a suffix tree node is

slightly more costly than that of a simple mismatch since the client

needs to also verify a received sequel with a corresponding witness.

The verification overhead remains below 300ms even for arguably

large pattern sizes consisting of up to 1,000 characters.

For XML path matching, we report findings for answer sizes of

up to 50,000 elements. Observe again the strong linear correlation

between the answer size and the verification time, for positive an-

swers. This follows from the fact that the client performs one hash

operation per element in the answer, followed by a constant num-

ber of bilinear pairings. The total overhead is very small, less than

half a second even for large answer sizes. If the answer is negative

759

(a) Text query time vs matched pattern size (b) XML query time vs answer size (positive) (c) XML query time by query id (negative)

(d) Text verif. time vs matched pattern size (e) XML verif. time vs answer size (positive) (f) XML verif. time by query id (negative)

Figure 4: Query (top) and verification (bottom) time for text and XML pattern matching.

(again, note the different y-axis scale) the overhead comes mostly

from the fixed number of pairings and is much smaller.

Proof size and optimizations. With the DCLXVI library, bilin-

ear group elements are represented by their Jacobian coordinates,

i.e., three values per element. As described in [26], each coordi-

nate of an element in G1 is represented by a number of double-

precision floating-point variables. The total representation size is

2304 bits for elements of G1 and 4608 bits for elements of G2.

In our scheme, proofs also contain additional structural informa-

tion (e.g., position of match/mismatch in text, depth of edge, etc.)

which was less than 50 bytes for all tested configurations.

Table 3(b) contains the proof sizes produced by our scheme for

both applications. Recall that these numbers are independent of

dataset, pattern, or answer size. At all times the proof size is be-

low 4Kb and as low as 1.2Kb for positive XML proofs. While

these sizes are very attractive for most applications, further im-

provements (not implemented here) are possible. Elements can be

instead represented by their two affine coordinates (x, y). More-

over, there is no need to transmit y-coordinates as all elements lie

on the curve with equation y2 = x3+3, which is part of the public

parameters of the scheme. Given x, the y-coordinate can be in-

ferred by a single bit indicating which square root of x3 + 3 it cor-

responds to. The result of these optimizations can be seen on the

third column of the table. The proof size is as low as 435 bytes for

text pattern matching and 178 bytes for XML path search. On the

other hand, these techniques introduce a small additional overhead

at the client (for computing y and transforming to Jacobian coordi-

nates again). When reduced communication bandwidth is essential

or proof caching occurs, this extra cost may be acceptable.

Discussion and comparison with alternative schemes. The above

results highlight the practicality of our constructions. In particu-

lar for the server, who would have to handle the largest workload,

the fact that all proof components are pre-computed implies only

a small fixed overhead between simply evaluating a query and au-

thenticating the answer with a proof on top of that. Verification

time is also appealing for most real-world scenarios making our

scheme ideal for settings with “thin” clients or even mobile devices.

One component of our scheme that can be improved significantly is

the one-time setup operation; pre-computing all proof components

takes its toll, especially for the text pattern matching application.

Finally, while proofs are arguably very short, they can be further

compressed by the optimization discussed above.

To the best of our knowledge, the only other known construc-

tions to achieve constant-size proofs rely on general verifiable com-

putation schemes. As discussed previously, state-of-the-art imple-

mentations fall under two categories: circuit or RAM-based. For

the former, (e.g., [32]) the proof generation cost is always at least

as large as parsing a circuit that has the entire document as input.

The latter are asymptotically better than the former, but still incur

prohibitive costs for the server. In particular, as shown in [42], per-

forming a BFS over a graph of roughly 9,000 edges takes 270 hours

with [13] and 50 hours with [8] for proof generation. For compari-

son, in our text pattern matching experiment, we tested patterns of

up to 1,000 elements and an alphabet of 256 characters. Assuming

a binary search tree at each node for finding children nodes match-

ing the pattern, this corresponds to 8,000 memory reads in the worst

case, and proof generation took less than 10µs. A different line of

work for authenticated pattern matching is based entirely on crypto-

graphic hashes (e.g, [16, 23, 10]). There is no existing built system

for concrete comparison but, due to the different nature of oper-

ations, we expect these schemes to have faster setup and slightly

better verification time than ours. However, the proofs grow with

the pattern size for text pattern matching, and with the size of the

entire document (in the worst case) for XML queries.

760

7. CONCLUSION
We presented a novel approach for verifying pattern matching

queries on text and XML documents that yields constant-size proofs,

using careful encoding of answer-specific certification relations with

cryptographic accumulators. We demonstrated the practicality of

our schemes by experimenting on real datasets. In this work we

focused on exact pattern matching, leaving for future work the au-

thentication of more general related query types, such as patterns

expressed by regular expressions or pattern matching on graphs.

Acknowledgments

We thank all the anonymous reviewers for their detailed comments

and suggestions. We also thank Edward Tremel for many insightful

discussions in early stages of our work and for making his BM

accumulator code [37] available to us, portions of which we used as

a library. Research supported in part by the U.S. National Science

Foundation under CNS grants 1012798, 1012910, and 1228485.

8. REFERENCES
[1] Crypto++ Library. http://www.cryptopp.com/.

[2] DCLXVI Library. http://cryptojedi.org/.

[3] FLINT Library. http://www.flintlib.org/.

[4] PugiXML. http://pugixml.org/.

[5] University of Washington XML data repository.

http://www.cs.washington.edu/research/

xmldatasets/.

[6] XMark. http://www.xml-benchmark.org/.

[7] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. NIST

recommendation for key management Part 1: General

(revision 3), July 2012.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and

M. Virza. Snarks for C: Verifying program executions

succinctly and in zero knowledge. In CRYPTO, 2013.

[9] J. C. Benaloh and M. de Mare. One-way accumulators: A

decentralized alternative to digital sginatures (extended

abstract). In EUROCRYPT, 1993.

[10] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and

A. Gupta. Selective and authentic third-party distribution of

XML documents. IEEE TKDE, 16(10):1263–1278, 2004.

[11] D. Boneh and X. Boyen. Short signatures without random

oracles and the SDH assumption in bilinear groups. Journal

of Cryptology, 21(2):149–177, 2008.

[12] K. D. Bowers, C. Hart, A. Juels, and N. Triandopoulos.

Pillarbox: Combating next-generation malware with fast

forward-secure logging. In RAID, 2014.

[13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,

and M. Walfish. Verifying computations with state. In SOSP,

2013.

[14] J. Camenisch and A. Lysyanskaya. Dynamic accumulators

and application to efficient revocation of anonymous

credentials. In CRYPTO, 2002.

[15] R. Canetti, O. Paneth, D. Papadopoulos, and

N. Triandopoulos. Verifiable set operations over outsourced

databases. In PKC, 2014.

[16] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,

and S. Stubblebine. Flexible authentication of XML

documents. Journal of Computer Security, 6:841–864, 2004.

[17] S. Faust, C. Hazay, and D. Venturi. Outsourced pattern

matching. In ICALP, 2013.

[18] M. T. Goodrich and R. Tamassia. Algorithm design -

foundations, analysis and internet examples. Wiley, 2002.

[19] J. JaJa. An Introduction to Parallel Algorithms. Addison

Wesley, 1997.

[20] B. Klimt and Y. Yang. The Enron corpus: A new dataset for

email classification research. In ECML, 2004.

[21] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.

Authenticated index structures for aggregation queries. ACM

TISSEC, 13(4):32, 2010.

[22] E. Mansour, A. Allam, S. Skiadopoulos, and P. Kalnis. ERA:

Efficient serial and parallel suffix tree construction for very

long strings. PVLDB, 5(1):49–60, 2011.

[23] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong,

and S. G. Stubblebine. A general model for authenticated

data structures. Algorithmica, 39(1):21–41, 2004.

[24] R. Merkle. A certified digital signature. In CRYPTO, 1989.

[25] G. L. Miller and J. H. Reif. Parallel tree contraction, part 2:

Further applications. SICOMP, 20(6):1128–1147, 1991.

[26] M. Naehrig, R. Niederhagen, and P. Schwabe. New software

speed records for cryptographic pairings. In LATINCRYPT,

2010.

[27] L. Nguyen. Accumulators from bilinear pairings and

applications. In CT-RSA, 2005.

[28] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient

consistency proofs for generalized queries on a committed

database. In ICALP, 2004.

[29] H. Pang and K. Mouratidis. Authenticating the query results

of text search engines. PVLDB, 1:126–137, 2008.

[30] C. Papamanthou, R. Tamassia, and N. Triandopoulos.

Optimal verification of operations on dynamic sets. In

CRYPTO, 2011.

[31] C. Papamanthou, R. Tamassia, and N. Triandopoulos.

Authenticated hash tables based on cryptographic

accumulators. Algorithmica, pages 1–49, 2015.

[32] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio:

Nearly practical verifiable computation. In IEEE Symp. on

Security and Privacy, 2013.

[33] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and

M. Walfish. Resolving the conflict between generality and

plausibility in verified computation. In EuroSys, 2013.

[34] R. Tamassia. Authenticated data structures. In ESA, 2003.

[35] R. Tamassia and N. Triandopoulos. Certification and

authentication of data structures. In AMW, 2010.

[36] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.

Verifiable computation with massively parallel interactive

proofs. In USENIX HotCloud, 2012.

[37] E. Tremel. Real-world performance of cryptographic

accumulators. Undergraduate Honors Thesis, Brown

University, 2013.

[38] P. Weiner. Linear pattern matching algorithms. In IEEE

SWAT, 1973.

[39] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis.

Authenticated join processing in outsourced databases. In

SIGMOD, 2009.

[40] A. A. Yavuz, P. Ning, and M. K. Reiter. Efficient,

compromise resilient and append-only cryptographic

schemes for secure audit logging. In FC, 2012.

[41] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. K.

Robertson, A. Juels, and E. Kirda. Beehive: Large-scale log

analysis for detecting suspicious activity in enterprise

networks. In ACSAC, 2013.

[42] Y. Zhang, C. Papamanthou, and J. Katz. ALITHEIA:

Towards practical verifiable graph processing. In CCS, 2014.

761

http://www.cryptopp.com/
http://cryptojedi.org/
http://www.flintlib.org/
http://pugixml.org/
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.xml-benchmark.org/

	Introduction
	Cryptographic tools
	Pattern matching queries
	Main construction
	Applications
	Search on collection of text documents
	Search on XML documents
	Dynamic datasets

	Performance evaluation
	Conclusion
	References

