
Practical Automated Detection of Malicious npm Packages

Adriana Sejfia
sejfia@usc.edu

University of Southern California

Los Angeles, USA

Max Schäfer
max-schaefer@github.com

GitHub

Oxford, UK

ABSTRACT

The npm registry is one of the pillars of the JavaScript and Type-

Script ecosystems, hosting over 1.7 million packages ranging from

simple utility libraries to complex frameworks and entire applica-

tions. Each day, developers publish tens of thousands of updates

as well as hundreds of new packages. Due to the overwhelming

popularity of npm, it has become a prime target for malicious actors,

who publish new packages or compromise existing packages to

introduce malware that tampers with or exfiltrates sensitive data

from users who install either these packages or any package that

(transitively) depends on them. Defending against such attacks is

essential to maintaining the integrity of the software supply chain,

but the sheer volume of package updates makes comprehensive

manual review infeasible. We present Amalfi, a machine-learning

based approach for automatically detecting potentially malicious

packages comprised of three complementary techniques. We start

with classifiers trained on known examples of malicious and benign

packages. If a package is flagged as malicious by a classifier, we

then check whether it includes metadata about its source repos-

itory, and if so whether the package can be reproduced from its

source code. Packages that are reproducible from source are not

usually malicious, so this step allows us to weed out false positives.

Finally, we also employ a simple textual clone-detection technique

to identify copies of malicious packages that may have been missed

by the classifiers, reducing the number of false negatives. Amalfi

improves on the state of the art in that it is lightweight, requiring

only a few seconds per package to extract features and run the

classifiers, and gives good results in practice: running it on 96287

package versions published over the course of one week, we were

able to identify 95 previously unknown malware samples, with a

manageable number of false positives.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation.

KEYWORDS

supply chain security, malware detection

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510104

ACM Reference Format:

Adriana Sejfia and Max Schäfer. 2022. Practical Automated Detection of

Malicious npm Packages. In 44th International Conference on Software Engi-

neering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510104

1 INTRODUCTION

npm1 is a system for publishing and consuming software packages

for JavaScript and TypeScript. While initially closely associated

with the Node.js platform2 and back-end JavaScript applications, it

is not architecturally tied to Node.js, and has also found widespread

use with web applications and on other platforms.

The core concept of npm is the package registry, which is a

database of JavaScript packages with associated metadata. While

some organizations and enterprises host their own registries, by far

the best-known registry is the public npm registry, accessible via

the npm website, which also provides facilities for browsing and

searching for packages, as well as viewing their metadata. In this

paper, we exclusively concern ourselves with the public registry.

As of early September 2021, npm’s package registry hosts over

1.7 million packages. Some of these are private packages that are

only accessible to specific users or organizations, but most of them

are public, and it is these public packages that are our focus. Over

the course of a single week, developers publish around 100,000

public package versions, including both new packages and updated

versions of existing packages. Historic versions of a package remain

available on the registry unless they are explicitly removed either

by the package maintainer or by npm staff, allowing dependent

packages to rely on specific older versions of a package, for example

to make use of an API that has been removed in the latest version.

Most developers interact with the registry through a command-

line interface such as the npm CLI3 or yarn,4 which can be used to

download a particular version of an existing package and install it

locally, or to publish a new package or a new version of an existing

package to the registry. When installing a package version, the

package manager will first recursively install the dependencies

of that package (unless they are already installed); download the

tarball containing the package from the registry; unpack the tarball

in the installation directory; and finally run any installation scripts

specified by the package. These scripts are free-form shell scripts

that typically perform setup tasks such as downloading additional

artifacts not bundled with the package itself. Due to the transitive

nature of package installation, popular packages are downloaded

very frequently; for example, the chalk package5 (which offers

1https://npmjs.com
2https://nodejs.org
3https://www.npmjs.com/package/npm
4https://www.npmjs.com/package/yarn
5https://www.npmjs.com/package/chalk

1681

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510104&domain=pdf&date_stamp=2022-07-05

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

support for coloring terminal output) was downloaded almost 89

million times a week at the time of writing.

Publishing a new package or package version is the dual to this

process: anyone authenticated through the npm website can create

a new package, thereby becoming its maintainer, and maintainers

can publish new versions at any time by simply uploading a tarball

to the registry. While packages can indicate a repository hosting

their source code, this information is optional. It is the maintainer’s

responsibility to run any necessary build steps (such as compiling

TypeScript to JavaScript, bundling and minifying, etc.) before pub-

lishing; the registry simply hosts the tarball and is largely agnostic

to its content.

The overwhelming popularity of npm and the central role it plays

in the software supply chain for JavaScript and TypeScript (which,

in turn, are among the most widely-used programming languages at

present) has long made it a favorite target for attackers attempting

to publish malicious package versions that tamper with or exfiltrate

data from the machines they are installed on, perform parasitical

computations such as Bitcoin mining, or other malicious activities.

Recent examples include high-profile incidents such as the

eslint-scope compromise,6 where attackers managed to steal

the credentials of a maintainer of a popular package, allowing them

to publish a new malicious version of the package that uploaded

user credentials to a server upon installation; the event-stream
backdoor,7 where social-engineering techniques were used to gain

maintainer status and then launch a similar attack; and a steady

stream of smaller incidents since then.

The malicious package versions were quickly removed by

npm staff from the registry upon detection, but, in the case of

eslint-scope and event-stream, not before being installed sev-

eral million times. While the number of affected users is much

smaller in most cases, the frequency with which such incidents

occur still poses a significant danger to the software supply chain,

both in terms of concrete damage to its users, and in terms of repu-

tational damage that could potentially impede the flourishing not

just of npm but also the wider open-source ecosystem.

Addressing this problem at a fundamental level would arguably

require significant changes to npm, perhaps including a more se-

cure package-publishing model to prevent malicious packages from

reaching the registry in the first place, and/or the Node.js platform,

perhaps with access-control enforcement to limit the damage a

malicious package can do when it is installed.

Our aim in this paper is more modest: without making any

changes to the fundamentals of npm, we want to detect potentially

malicious package versions as quickly as possible, and report them

to a human auditor for take-down.

To be practically useful, then, our approach has to satisfy at least

three requirements: it has to be automated, since the sheer number

of packages renders manual audits infeasible; efficient to keep up

with the speed at which new versions are published; and accurate

to avoid flagging benign packages or missing malicious ones.

We achieve this by combining three complementary techniques

into one system, which we call Amalfi:8

6https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
7https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor
8Short for “”Automatedmalicious package finder”.

(1) machine-learning classifiers trained on labelled examples of

malicious and benign packages, utilizing features that record

changes in the APIs the package uses as well as package

metadata extracted using a lightweight syntactic scan;

(2) a reproducer that rebuilds a package from source and com-

pares the result with the version published in the registry;

(3) a clone detector that finds (near-)verbatim copies of known

malicious packages.

Our feature selection, discussed in more detail below, is moti-

vated by the observation (borrowed from Garrett et al. [10]) that

malicious packages tend to make use of distinctive capabilities of

the JavaScript language (such as runtime code generation), the un-

derlying platform (such as access to the file system or the network),

and the npm package manager (such as install scripts). While none

of these features are dead giveaways by themselves, in combina-

tion they are worthy of closer inspection, especially if a package

suddenly starts using capabilities it has never used before. For ex-

ample, the above-mentioned eslint-scope package uses runtime

code generation and an install script in its (malicious) version 3.7.2,

capabilities it had never used before.

By training on a corpus of malicious and benign packages pro-

vided to us by npm, our classifiers learn to distinguish typical (and

therefore most likely harmless) feature changes from atypical (and

therefore suspicious) ones. The choice of classifiers is constrained

by the small size of the corpus, which contains fewer than 2000

samples; we experimented with three different techniques: decision

trees, Naive Bayesian classifiers, and one-class SVMs.

To eliminate false positives, we borrow another insight from the

literature [13, 28, 30]: malicious package versions tend not to have

their source code publicly available, in order to avoid detection.9

Consequently, being able to reproduce a package version from

its source code is a good indicator that it is benign. As has been

noted previously [13], even perfectly benign packages may fail to

reproduce for a variety of reasons, but this is acceptable in our case

since we are only using this criterion to filter out benign packages

erroneously flagged as malicious, not to detect new ones.

Finally, we note that attackers often publish multiple textually

identical copies of one and the same malicious package under dif-

ferent names. However, since package metadata may be different,

our classifiers sometimes fail to spot these copies. We use a simple

clone detector that hashes the contents of a package (minus the

package name and version, which are always unique) to eliminate

this source of false negatives.

An overview of how these different components work together

can be seen in Figure 1.

To motivate our approach more carefully, we show two typical

examples of malicious packages in Section 2 and discuss how we

detect them. Section 3 provides details on feature selection and

extraction for the classifier, as well as an overview of the reproducer

and clone detector. We evaluate Amalfi in Section 4 in a large-scale

experiment on newly published npm packages to demonstrate its

ability to find previously unknown malicious packages, and in a

cross-validation experiment to evaluate precision and recall. We

discuss the results in Section 5, survey related work in Section 6,

and outline conclusions and future directions in Section 7.

9In fact, we are not aware of a single counterexample to this rule.

1682

Practical Automated Detection of Malicious npm Packages ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 1: Overview of Amalfi

In summary, the significance of our contributions is as follows:

• We present Amalfi, an automated approach for detecting

malicious npm packages that uses a novel combination of

techniques and shows solid results in practice, identifying 95

previously unknown malicious packages. Among the three

different classifiers we consider, the decision tree performs

best, though the others also contribute findings.

• Amalfi is efficient, usually taking only a few seconds per

package to extract features and run the classifier. We also

show that retraining the classifiers is cheap, thus allowing

continuous improvements to be made as more and more

results are triaged.

• The false-positive rate, while initially quite high, drops sig-

nificantly as the classifiers are retrained on more data, with

fewer than one in a thousand packages being flagged spuri-

ously. A cross-validation experiment on our training set also

shows that the decision tree achieves over 40% recall, suggest-

ing that its false-negative rate is reasonable. Supplementary

materials including experimental data and results are pub-

licly available at https://doi.org/10.5281/zenodo.5908852 and

https://github.com/githubnext/amalfi-artifact.

While the building blocks we use have been proposed before,

the novelty of our approach lies in their combination, and a more

thorough exploration and evaluation of the design space.

2 BACKGROUND

To set the scene, we discuss two representative examples of real-

world malicious package versions that were (manually) detected

and removed from the registry, and then explain how we could

have identified them automatically.

For the purposes of this paper, we define amalicious package ver-

sion to be a specific version of an npm package that contains code

that implements malicious behavior including (but not limited to)

exfiltrating sensitive or personal data, tampering with or destroying

data, or performing long-running or expensive computations that

are not explicitly documented. In particular, we consider a package

version to be malicious even if the malicious code it contains is

disabled or broken. Moreover, in line with npm’s Acceptable Con-

tent Policy10 we include in our definition malicious behavior that is

ostensibly done for research purposes. For brevity, we will often use

the term “malicious package”, the “version” part being understood.

10https://docs.npmjs.com/policies/open-source-terms#acceptable-content

From an attacker’s perspective, there are three steps to delivering

malware through npm: (1) publish a malicious package version; (2)

get users to install it; and (3) get them to run the malicious code.

The easiest way to go about (1) is to publish a completely new

package. A classic way of achieving (2) in this scenario is typosquat-

ting [27] whereby the name chosen for the new package is very

similar to the name of a popular existing package; a user who acci-

dentally misspells the name of the popular package will then end

up inadvertently installing the malicious package instead. A more

sophisticated approach is dependency confusion [5]: the attacker

identifies dependencies on a package hosted in a private registry,

and then publishes a malicious package with the same name and a

higher version number on the public npm registry; clients of the

private package may then end up installing the malicious package

instead. Finally, there have been cases of attackers publishing an

initially benign and useful package, getting it added as a depen-

dency to a popular target package, and then publishing a malicious

version [4].

An alternative, more laborious strategy to achieve (1) is for the

attacker to compromise an existing popular package by gaining

maintainer access (for example by stealingmaintainer credentials or

by social engineering as described in Section 1), and then publishing

a new, malicious version of that package. In this case, (2) is easy

since the package already has many users who will (either explicitly

or implicitly) upgrade to the malicious version.

Finally, a common tactic to achieve (3) in either scenario is to

use installation scripts which (as explained above) are run during

installation and can execute arbitrary code. However, the commands

run by installation scripts are by default logged to the console,

increasing the risk of detection. Hence a more careful attacker may

instead choose to hide their malicious code in some frequently

executed bit of functionality in the main body of the package.

A typical example of a package employing typosquatting is

mogodb, a putative typo for the highly popular mongodb package,

which is currently seeing around two million installations per week.

Two versions of mogodb, numbered 3.1.8 and 3.1.9, were published

within less than a millisecond of each other on 1 August 2019, and

identified as malicious and taken down a few minutes later.

As shown in Figure 2 (a), the package.json manifest file of the

package registers a postinstall script to be run after package

installation, which executes the test.js script included in the

package. That script, shown in Figure 2 (b), harvests the hostname of

themachine onwhich the package was installed, and sends it off to a

remote host controlled by the attacker. While the information being

stolen in this case is not highly sensitive, this is clearly malicious

behavior.

Even before studying the package implementation in detail, a

human auditor might notice features of the package that make it

seem worthy of closer scrutiny, such as the presence of a postinstall

script, the usage of the packages os and request, and most of all

the extremely short time span between the publication of the two

versions. While the former two features are not by themselves

suspicious, their combination with each other and with the third

feature strongly suggests a malicious package.

A typical example of a compromised package is jasmin, a web

framework that was moderately popular at one point but has not

seen active development in a number of years. Versions 0.0.1 and

1683

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

1 {

2 "name": "mogodb",

3 "version": "3.1.9",

4 "scripts": {

5 "postinstall": "node␣test.js",

6 ...

7 },

8 ...

9 }

(a) package.json

1 var remote = "https :// attacker.controlled.host/";

2 var host = require("os"). hostname ();

3 require("request")(remote + "?h=" + host , function () {});

(b) test.js

Figure 2: Malicious code in mogodb@3.1.9 (simplified)

1 var remote = "https :// another.attacker.controlled.host/";

2 for (var form of document.forms) {

3 for (var element of form.elements) {

4 if (element.type == "password") {

5 form.addEventListener('submit ', function () {

6 var data = [... this.elements].map(function(elt) {

7 return elt.name + ":" + elt.value;

8 }). join() + "|" + document.cookie;

9 var enc = encodeURIComponent(btoa(data));

10 this.action = remote + "?data=" + enc;

11 });

12 break;
13 }

14 }

15 }

Figure 3: Malicious code inserted into file component.js of
jasmin@0.0.3 (simplified)

0.0.2 of jasmin are benign, but version 0.0.3, presumably published

by a malicious actor, contains the code shown in Figure 3, which

traverses all forms contained in an HTML document looking for

password fields and overrides their submit handler to harvest the

content of these fields and send them to an attacker-controlled host.

In this case, there are no particularly suspicious features of the

package that might draw the attention of a human auditor: dealing

with password fields, encoding data using encodeURIComponent
for transmission, and accessing HTTP cookies are all relatively

innocent capabilities, and are often used together. What is immedi-

ately suspicious, however, is that none of these three capabilities

were used in the previous version of jasmin. Moreover, the upgrade

from 0.0.2 to 0.0.3 is a minor version upgrade, where one would not

expect major new features that might require such new capabilities

to be introduced.

These examples and others like them suggest that a machine-

learning based approach might be able to detect malicious packages

based on high-level features like usage of particular APIs, platform

capabilities and package metadata, and in particular how these

features change between versions, without the need for deep source-

code analysis.

3 OUR APPROACH

Having motivated what kind of features are interesting for auto-

mated classification, we now describe our feature set in more detail,

and then explain how to extract single-version features describing

one package version as well as change features capturing the dif-

ference in features between two versions. Next, we discuss our

choice of classifiers and their training regimen. Finally, we give

some more details about the other two components of our approach,

the reproducer and the clone detector.

3.1 Feature set

Based on manual inspection of known examples of malicious pack-

ages, we determined eleven features of interest. Nine of them are

single-version features that can be extracted from the contents of a

single package version, while the other two intrinsically involve

two versions of a package.

The single-version features are as follows, where we group re-

lated features into categories and provide examples of each:

(1) Access to personally-identifying information (PII): credit-

card numbers, passwords, and cookies

(2) Access to specific system resources

(a) File-system access: reading and writing files

(b) Process creation: spawning new processes

(c) Network access: sending or receiving data

(3) Use of specific APIs

(a) Cryptographic functionality

(b) Data encoding using encodeURIComponent etc.

(c) Dynamic code generation using eval, Function, etc.
(4) Use of package installation scripts

(5) Presence of minified code (to avoid detection) or binary files

(such as binary executables)

The remaining two features concern two versions of a package,

and are the time between publication of the two versions, and the

type of update in semantic-versioning terms (major, minor, patch,

build, or pre-release).

The motivation for considering time between updates is that

malicious package versions often exhibit unusual update patterns,

such as multiple versions published in very rapid succession (as

seen in the mogodb example in Section 2), or a new version be-

ing published after years of inactivity (which might suggest an

account takeover). The update type, on the other hand, can deter-

mine whether a change in some other feature is suspicious or not,

as explained above.

These two features, along with the changes in the values of the

nine single-valued features between one package version and the

previous version, constitute our feature set.

In order to accommodate the first version of a package as well, we

introduce a pseudo-update type representing first versions, consider

their time between updates to be zero, and take the values of the

single-version features to be the remaining change features. This

enables us to not only detect malicious updates, where a previously

benign package becomes malicious, but also packages that were

malicious from the start.

1684

Practical Automated Detection of Malicious npm Packages ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.2 Feature extraction

To compute the first four categories of single-version features, we

parse each JavaScript and TypeScript file in the package using Tree-

sitter.11 We then use Tree-sitter AST queries to look for syntactic

constructs corresponding to the features, such as string literals

containing the keyword password for PII access; imports of the fs
module for file-system access; and calls to eval and Function for

dynamic code generation.

Similarly, to check for the presence of installation scripts we

parse the package.json file and look for definitions of preinstall,
install, and postinstall properties.

Minified or binary files tend to have higher entropy than plain

source code, so we compute the Shannon entropy of all files con-

tained in the package and use the average and standard deviation

of the entropy across all files as features.

To compute change features, we use the publication timestamps

provided by the npm view time command to obtain the time

between updates in seconds. We rely on an off-the-shelf semantic-

versioning library to determine the update type and, for each given

version, determine the previous version in chronological order.

Finally, we simply subtract the values of the single-version features

across the two consecutive versions.

3.3 Classifier training

Our choice of classifiers is dictated by the corpus of labelled training

data we have available. Since malicious packages are taken down

by npm immediately upon discovery, most known examples of

malicious packages are no longer available for inspection. However,

npm kindly agreed to make their archive of 643 malicious package

versions detected up to 29 July 2021 available to us for the purposes

of this study. Out of these packages, 63 are malicious versions of

otherwise non-malicious packages, i.e., compromised packages. We

added to the original dataset the 1147 benign versions of the same

packages published by the same date, yielding a basic corpus of 1790

labelled samples of malicious and benign package versions. Since

the goal of Amalfi is to detect malicious packages, the basic corpus

oversamples malicious packages, i.e., it contains more malicious

packages than we would expect from a similarly-sized random

sample of npm packages. This is a common strategy in learning-

based approaches [18].

It is worth emphasizing that while compromised packages have

a much bigger potential impact on the npm ecosystem, they occur

so rarely that there simply is not enough data to make them the

sole focus of our study. Anecdotally, however, compromised and

malicious packages use similar techniques to carry out attacks,

meaning that they share features, which enables Amalfi to detect

both types of malicious packages.

Since the number of malicious samples is smaller compared to

the total number of package versions in our dataset and on npm,

we had to use learning algorithms that handle imbalanced data

well. Further, due to the novelty of the features in our approach, we

sought a learning algorithm that allowed us to analyze the impor-

tance of the features we selected. In the end, the learning algorithms

that satisfied the constraints were decision trees, Naive Bayesian

classifiers, and One-class Support Vector Machines (SVMs). We

11https://tree-sitter.github.io/tree-sitter/

picked the first one due to its ability to explain which features

impact the final decision, and the two latter ones because of their

versatility when dealing with imbalanced datasets as seen in anom-

aly detection work.

To train the classifiers, we use the sklearn library for Python.

For the decision tree, we use information gain as the split criterion.

For the Naive Bayesian classifiers, we use the Bernoulli variant

which can only deal with Boolean features, so we omit the discrete

features (entropy average and standard deviation as well as update

time), and collapse the others to a value of 1 if the feature is present,

and 0 otherwise. For the SVM, we choose a linear kernel and train

only on benign examples, since the task of this classifier is to detect

outlier versions that are noticeably different from the benign ones.

We determined the ν parameter of the SVM, which approximates

the number of expected outliers, by conducting a leave-one-out ex-

periment on our basic corpus. The experiment showed that optimal

precision and recall are attained for a ν value of 0.001, meaning that

the classifier expects about one in a thousand package versions to

be malicious.12

3.4 Reproducer and clone detector

As explained in Section 1, the reproducer takes a given package ver-

sion and then attempts to rebuild the package tarball from source.

This is a heuristic process that may fail for a variety of reasons:

while packages can specify the URL of their source repository in

their package.json file, this information is optional and many

packages do not provide it, or the repository is not publicly accessi-

ble. Package versions can also specify the git SHA of the commit

they were built from, but again this information is optional. While

there are popular conventions for creating branches or tags with

names reflecting the package version they correspond to, many

packages do not follow these conventions, making it impossible

to determine the correct commit. The build commands to run to

produce the package from its source are likewise not prescribed.

Finally, many packages neglect to specify the precise version of the

build tools (such as the TypeScript compiler) they rely on, leading

to seemingly random differences between the reproduced package

and the original. For all of these reasons, the success rate of the

reproducer is low in practice as we shall see, but it still serves a

useful purpose as an automated false-positive filter.

The third component of Amalfi is a simple clone detector that

computes an MD5 hash of the contents of a package tarball and

compares it to a list of hashes of known malicious packages. When

computing the hash, we ignore the package name and version spec-

ified in the package.json file, since these are always unique and

would cause spurious misses. No other attempt at fuzzy matching

is made, so only verbatim clones are detected.

4 EVALUATION

While motivating and presenting the details of our approach above,

we have informally argued that its design makes it practically use-

able and useful. We will now back up these claims with an experi-

mental study, which aims to answer the following three research

questions:

12The source code of our classifier-training scripts and the list of packages in the basic
corpus are included in the supplementary materials.

1685

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

Date # Versions Decision Tree Naive Bayes SVM Clones

TP # FP # TP # FP # TP # FP # TP

July 29 23,452 34+1 932-74 13+22 1453-107 20+5 102-11 0

July 30 13,849 2+0 22-1 0+0 6-0 0+0 14-3 0

July 31 7,042 17+0 16-1 0+0 1-0 18+9 4-0 0

August 1 6,050 1+0 6-2 1+0 3-2 0+0 13-0 0

August 2 13,562 2+1 17-0 4+1 12-1 0+0 10-0 1

August 3 15,269 6+0 15-2 1+0 9-1 0+0 41-3 0

August 4 17,063 16+2 9-1 1+0 9-1 1+0 10-1 17

Table 1: Results from Experiment 1; +n denotes TPs contributed by the clone detector, −n FPs eliminated by the reproducer.

RQ1 Does Amalfi find malicious packages in practice?

RQ2 Is it accurate enough to be useful?

RQ3 Is training and classification fast enough to be useable?

To answer these questions, we conducted two experiments: one

experiment on a large set of newly published package versions to

assess performance, and one smaller experiment on labelled datasets

to assess accuracy. We will describe the experiments below.

4.1 Experiment 1: Classifying newly published
packages

This was a large-scale experiment designed to simulate a realistic

scenario for automated malware detection in which we applied

Amalfi to all new public package versions published on the public

npm registry over the course of a single, randomly chosen week

from 29 July 2021 to 4 August 2021.

On the first day, we trained our three classifiers on the basic

corpus and then used them to classify the set N1 of all new package

versions published that day. Additionally, we ran our clone detector

on the same set to find copies of malicious packages in the basic

corpus, acting as a fourth classifier. This yielded a set P1 ⊆ N1

of package versions flagged by at least one classifier. We ran the

reproducer on this set to automatically weed out some false posi-

tives, and manually inspected the rest. The manual inspection was

initially conducted by both authors, with each author examining

roughly one half of the flagged versions. The package versions that

were found to be malicious by one author were afterwards verified

by the other author. Finally, we reported the verified malicious

packages to the npm security team. All of them were subsequently

taken down, meaning that the npm security experts agreed with

our assessment. As such, we are confident that our manual labeling

of malicious packages is highly accurate.

The manual inspection resulted in a partitioning of P1 into two

sets TP1 and FP1 of true positives (i.e., genuine malicious packages

found by the classifiers) and false positives (i.e., benign packages

falsely flagged as malicious). As a last step, we ran the clone detector

again to find additional copies of packages in TP1 that were missed

by the classifiers, and added them to TP1.

On the second day, we retrained the classifiers on the basic

corpus as well as the set N1 triaged the previous day, adding TP1
to our set of labelled malicious packages, and everything else (that

is, N1 \ TP1) to the set of benign packages. In other words, for

the purposes of this experiment we assumed that any package

not flagged by any of the classifiers was benign. This is not true

in general, but the enormous number of new package versions

published each day made it infeasible to inspect them all, and since

we expect the number of malicious packages on any given day to

be low it is not an unreasonable approximation to the unknown

ground truth.

As on the first day, we then applied the classifiers to the set N2 of

packages published that day, ran the reproducer on the resulting set

P2, manually inspected the rest, and ran the clone detector to mop

up anything that was missed, yielding a set TP2 of newly identified

malicious packages. On the third day, we retrained the classifiers

using the basic corpus as well as both N1 an N2, and so forth for

each subsequent day.13

The intuition here is that we want to mimic a usage pattern

where results from the classifiers are inspected by a human auditor,

and the classifiers are then retrained with the additional ground

truth obtained in this way.

4.2 Experiment 2: Classifying labelled data

While the first experiment can provide insight into the performance

of our approach under real-world conditions and in particular its

false-positive rate, it cannot tell us much about false negatives.

Hence we ran a second experiment, measuring the precision and

recall of Amalfi on the basic corpus. Its small size prevented us

from separating it in a train-and-test fashion, so instead we per-

formed a 10-fold cross validation experiment, repeatedly training

the classifiers on 90% of the corpus and measuring precision and

recall on the remaining 10%. Given the imbalance in our dataset, we

used stratified sampling to maintain the distribution of malicious

and benign versions for each fold.

Furthermore, we also measured precision and recall on a labelled

dataset from recent work by Duan et al. describing their MalOSS

system [8]. This dataset had some overlap with our basic corpus

which we removed, leaving only the unique data points for this

experiment. Also, the dataset initially only contained malicious

packages; to balance it, we followed the same strategy as for the

basic corpus and added all benign versions of the contained pack-

ages. In the end, this yielded a dataset with 372 package versions,

out of which 40 were malicious.14

Based on the results from these two experiments, we will now

answer the research questions posed above.

13The list of packages considered in this experiment and the results of the classification
are included in the supplementary materials.
14Detailed results for this experiment are included in the supplementary materials.

1686

Practical Automated Detection of Malicious npm Packages ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

4.3 RQ1: Practical performance on newly
published packages

The results of the first experiment are presented in Table 1. The

table contains the date for which we collected the package versions

(Date) as well as the total number of versions published on that

date (# Versions). Then, for each classifier, the table contains the

number of true positives (#TP) and false positives (#FP) flagged by

the classifier, annotated with the number of additional true positives

found by the clone detector (+n) and the number of false positives

eliminated by the reproducer (−n). As explained above, all true

positives were confirmed by the npm security team.

Thus, for example, the entry 16 + 2 in the #TP column for the

decision tree on August 4 means that the classifier flagged 16 true

positive among the 17,063 package versions published that day of

which the clone detector found two additional copies. The entry

9 − 1 in the #FP column means that among the nine false positives

it flagged, one was successfully reproduced and hence eliminated

automatically.

As explained above, the clone detector is also treated like a fourth

classifier. It has no false positives and never misses identical copies,

hence this column only contains a single number per day. Note

again that in this column we show the number of clones found

on that same day, as opposed to the entries after the + sign which

depict the number of clones from the previous days.

The first takeaway from this table is that the number of new

packages published every day is high, but quite variable, with al-

most four times as many packages being published on July 29 (a

Thursday) than on August 1 (a Sunday).

Secondly, we can see that all our classifiers are able to correctly

classifymalicious package versions, with varying degrees of success.

The decision tree performs better than the rest, especially in terms

of true positives. Removing the overlap between classifiers, we

were able to identify 95 previously unknown malicious packages

over the course of these seven days, which is a significant number,

especially considering that the entire set of malicious packages

detected prior to our work only contained 643 samples.

Third, we notice that on the first day all three classifiers produce

an unmanageable number of results. We therefore had to modify

our approach and only examined a subset of all flagged packages

in detail, assuming all the rest to be false positives. This means that

the false-positive counts for this day are likely to be overstated.

However, once this set of packages is added to the training set on

the second day, the number of results drops dramatically, and by the

end of the week all three classifiers yield a relatively low number

of false positives.

Fourth, our results show that the reproducer has a low success

rate in practice, only being able to reproduce one or two packages

on any given day. However, given the overall low number of alerts

towards the end of the week this is still a valuable improvement.

Similarly, clone detection only contributes a few additional true

positives each day (the 17 packages detected on August 4 being an

outlier, and mostly overlapping with the results from the decision

tree), but it still improves the overall results. Both mechanisms are

computationally inexpensive, and thus the help they provide comes

at a low cost, making them worth keeping in spite of their limited

contributions. Conversely, this shows that our classifiers add value

beyond a purely textual scan looking for verbatim copies of known

malware.

In summary, we can answer RQ1 in the affirmative: Amalfi

does indeed detect malicious packages in practice. Further, since

all the packages found by Amalfi and reported to npm had not

been identified before, we can confidently claim that our approach

complements existing solutions for malicious package detection in

npm.

Dataset Decision Tree Naive Bayes SVM

Prec. Recall Prec. Recall Prec. Recall

Basic 0.98 0.43 0.90 0.19 (0.98) (0.27)

MalOSS 0.35 0.64 0.62 0.64 0.73 0.61

Table 2: Results from Experiment 2

4.4 RQ2: Accuracy

The results from Experiment 2 are presented in Table 2.

The first row shows precision and recall measurements from

the 10-fold cross-validation experiment on our basic corpus, aver-

aged over all ten runs. The numbers for the SVM classifier have to

be interpreted with care, since its ν parameter was fitted on this

very dataset, hence we have put them in brackets. All our models

achieve very high precision, but the recall of Naive Bayes and SVM

is somewhat poor. This is expected due to the low prior of malicious

packages.

The second row shows precision and recall from running Amalfi

on the MalOSS dataset derived from the literature [8] as explained

above. We see that the recall is higher than with the previous row,

at the expense of precision. These results point to the trade-off

between these two metrics, but it is also worth pointing out that the

MalOSS dataset contains a number of packages labeled as malicious

where npm disagreed with the authors’ assessment and did not

take them down.

A more detailed comparison of Amalfi to MalOSS is unfortu-

nately not possible since they do not present statistics on false

positives or performance. The heavy-weight nature of their ap-

proach and its complicated setup involving a sophisticated pipeline

combining static and dynamic components made it infeasible to

run on our dataset.

Based on these results and the false-positive numbers discussed

above, we can give a cautiously positive answer to RQ2: Amalfi is

reasonably precise and does not produce an overwhelming number

of results, making manual triaging of results by a human auditor

feasible. The second experiment suggests that there may be a good

number of false negatives, but at least the numbers for the decision

tree look promising.

4.5 RQ3: Performance

To characterize the performance of our approach, we measured

three metrics: (i) the time it takes to train the classifier, (ii) the time

it takes to extract features for a package version, and (iii) the time

it takes to classify a package version. All three measurements were

obtained as a byproduct of Eperiment 1.

1687

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

Figure 4: Classifier training time

Figure 4 shows how long it took to train the classifiers for each

day of our experiment as a function of the size of the training set.

As can be seen, training is quite fast, taking no more than a few

seconds despite the steady increase in training data. The SVM-based

classifier takes the longest time, though it still seems to scale more

or less linearly in the training-set size. The other two classifiers are

very quick to train, and it is clear that the training set size could be

increased substantially before training time becomes a bottleneck.

To benchmark feature extraction, we post-processed logs from

our run of Experiment 1 to measure the time it takes to extract

features for a randomly chosen set of around 500 package versions.

By and large, feature extraction takes less than ten seconds, and

for over half the packages considered it takes less than one second.

However, a single outlier package containing more than 11,000 files

takes more than ten minutes to extract, somewhat skewing the

distribution for an average extraction time of six seconds.

Lastly, we measured the time it took to predict whether a given

package was malicious. For all the classifiers, the time for prediction

was less than a second.

Based on these results, we can give a positive answer to RQ3:

Amalfi is fast enough for practical use.

4.6 Threats to validity

While the results of our evaluation are overall very promising, there

are some threats to the validity of our conclusions.

First, while the set of packages we considered in Experiment 1

was taken from the wild, it may have been biased in ways that we

did not anticipate, and so our results may not generalize. Also, the

basic corpus is to some degree biased in that it contains clusters of

similar malware samples resulting from copy-cat campaigns.

Second, while we examined all packages flagged by Amalfi

and reported the true positives to npm, we limited ourselves to at

most five minutes’ inspection time per package, which prevented

detailed investigation of some of the larger ones and may have

caused us to miss true positives. Conversely, we may have been

mistaken in labelling some packages malicious, leading to missed

false positives, but this seems unlikely considering that npm have

taken all reported packages down, meaning that they agree with

our assessment.

Finally, as noted above in our retraining step in Experiment 1

we assumed packages that were not flagged by any classifier to be

benign. This is not a sound assumption in general, and might end up

increasing the number of false negatives over time. For this reason,

and also to escape the slow but inexorable rise in training time

suggested by Figure 4, in practice one would not want to continue

retraining in this fashion indefinitely. Table 1 suggests diminishing

returns from retraining after a few days, but the data is clearly too

sparse to draw a definite conclusion.

5 DISCUSSION

In this sectionwe review the types ofmalicious packages ourmodels

found, take a closer look at the models themselves, and finally touch

upon tweaks to our approach we investigated but were shown to

be unsuccessful or unnecessary.

Table 3 details the types of discrete features exhibited by the 95

malicious packages we found, while Figure 5 shows the distribution

of the entropy and time features of malicious and benign packages

using boxplots.

All packages used installation scripts or code in their main mod-

ule to connect to a remote host, with almost all of them sending PII

to that host except for a small handful of packages that only pinged

the host without sending any information, perhaps as a proof-of-

concept or in preparation for an actual attack. Our feature extractor

did not detect the PII accesses themselves (pointing to a need to im-

prove our detection of this feature), but the packages were detected

anyway, usually because of the usage of the installation scripts or

network access. This suggests that our approach is robust enough

to find various types of malicious package versions. The fact that

some features do not appear in these specific packages does not

necessarily indicate they are useless or unnecessary; those features

attempt to paint a general picture of maliciousness in packages and

they may prove to be useful in other batches.

A surprising observation in the data was the distribution of up-

date types: the majority of the malicious package versions we found

were major updates, contradicting our assumption that malicious

package updates tend to “hide” behind a minor update. This could

also mean that we missed malicious package versions representing

a minor update.

The distribution of average entropy values shows that the me-

dian, highlighted by the thick red bar, is significantly higher for

Feature # of packages

File-system access 11

Process creation 1

Network access 10

Data encoding 1

Use of package installation scripts 33

Update type: major 52

Update type: minor 1

Update type: patch 3

Update type: prerelease 9

Update type: first 30

Table 3: Features found in the 95 malicious packages

1688

Practical Automated Detection of Malicious npm Packages ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

malicious packages (4.69) than for benign packages (0.001), suggest-

ing they are more likely to contain minified code or binary files, in

line with our expectation. The time between updates also follows a

rather expected distribution, with malicious packages exhibiting a

shorter median time between updates (7.02 s) than the benign ones

(2217.18 s).

Figure 5: Entropy (left) and time (right) value distributions

Next, we took a look at the generated classifiers and how their

predictions overlap. Figure 6 shows a summary of the results on the

90 packages flagged by the classifiers (the remaining five having

been flagged only by the clone detector). While the decision tree

takes the lion’s share, each individual algorithm makes its own

contribution, suggesting that a combination of all three might be a

good choice in practice.

Since the decision tree classifiers are the ones that facilitate inter-

pretation we took a look at the features they use to make decisions.

We noticed that the classifiers for July 29 to July 31 examine all

features except the one representing uses of cryptographic func-

tionality, and the remaining four classifiers from August 1 onwards

employ all eleven features, suggesting that there is not much re-

dundancy in our feature set.

Figure 6: Overlap among the three different classifiers on the

90 malicious packages they flag

Lastly, we tried out several tweaks that ultimately did not prove

successful. The literature often recommends using Random For-

est classifiers instead of plain decision trees, but we did not find

them to provide any advantage in our setting. We also investigated

booleanizing features for the decision tree and one-class SVM, but

in both cases this led to worse performance, in the latter case in-

creasing the rate of false positives by more than 100%.

6 RELATEDWORK

Our work has connections with four different research areas, which

we survey briefly: malicious package detection proper; malware

and anomaly detection more generally; package-registry security;

and security implications of code reuse.

Malicious-package detection. Previous work in this area can be

broadly divided into four categories: general-purpose malicious-

package detection approaches using machine learning [10] or pro-

gram analysis [8, 21, 23]; techniques for rebuilding packages from

source [13, 28, 30]; and finally work that specifically targets ty-

posquatting [26, 31].

Garret et al.’s work on detecting malicious npm packages using

machine-learning techniques [10] is very closely related to our

work. They use a k-means clustering algorithm to identify anoma-

lous, and hence suspicious, package updates.

Like us, they collect features for package updates, not just single

package versions, and the set of features they consider overlaps to

some extent with ours, as shown in Table 4. In particular, they also

consider access to system resources, dynamic code generation, and

use of installation scripts. We additionally consider access to PII

and several specific APIs as features, which they do not, though

to some extent this is covered by their feature recording added

dependencies. Their feature set also does not directly model the

presence of minified code or binary files, though again they do have

a more general feature for added code that is similar in spirit. They

do not consider update type a feature, instead accounting for their

different characteristics by training separate models for each type

of update. Finally, they do not have any feature corresponding to

our time between updates.

Our work is larger in scope than theirs, considering three differ-

ent kinds of classifiers instead of just one, and complementing the

classifiers with package reproduction and clone detection. Their

evaluation on a set of 2288 package updates suggests that their

approach leads to many more alerts than ours, flagging 539 updates

as potentially suspicious; they did not triage the results in detail, so

it is unknown whether they succeeded in finding malicious pack-

ages. Our experiments cover a much larger set of packages, and we

have shown that we can detect a significant number of previously

unknown malicious packages.

Duan et al. [8] study recent examples of supply-chain attacks,

pinpointing root causes and classifying attack vectors andmalicious

behaviors. Based on their results, they built an analysis pipeline

leveraging a combination of static and dynamic program-analysis

techniques to detect malicious packages across three different pack-

age registries (npm, PyPI,15 and RubyGems16). In a large-scale ex-

periment covering more than one million packages, their approach

15https://pypi.org/
16https://rubygems.org/

1689

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

Category Feature Amalfi Garrett et al.

Access to PII �

Access to system resources

File system access � �
Process creation � �
Network access � �

Use of specific APIs

Cryptographic functionality �
Data encoding �
Dynamic code generation � �

Use of installation scripts � �
Presence of minified code and binary files �
Time between updates �
Update type �

Added dependencies �
Added code �
Table 4: Comparison of features considered in our models and those of Garrett et al. [10]

identified 339 previously unknown malicious packages, 41 of them

on npm. They do not provide precise statistics on false positives or

on the performance of their approach.

On the whole, our goals differ from theirs: where they aim to

provide a comparative framework for the security of registries, we

specifically focus on finding malicious npm packages. They update

their detection rules manually as results are assessed, while our clas-

sifiers can be retrained without further manual effort beyond the

assessment of results itself. Our approach seems simpler and more

lightweight than theirs, not requiring (potentially expensive) deep

static analysis or (potentially dangerous) code execution for dy-

namic analysis.17 Nevertheless, we manage to find more malicious

packages on a smaller set than they do.

Pfretzschner et al. [23] propose the use of static analysis to de-

tect uses of JavaScript language features that can make a package

vulnerable to interference from a malicious downstream depen-

dency. They present four different attack scenarios involving global

variables, monkey patching, and caching of modules, though they

did not find real-world examples of such attacks.

Ohm et al. [21] propose a dynamic analysis for observing and

measuring the creation of artifacts during package installation as a

way of detecting malicious packages. While this is a promising re-

search direction and potentially practically very useful, approaches

relying on code execution inherently tend to be more heavyweight

and harder to scale than our lightweight feature extraction.

At the shallower end of the analysis spectrum, tools like Mi-

crosoft Application Inspector18 and OSSGadget19 offer regular-

expression based scanning as a way of quickly detecting various

types of potential malware, including malicious packages. However,

these tools tend to be very noisy in practice and produce many

false positives, precluding large-scale usage.

Several researchers have proposed checking for differences be-

tween packages hosted on registries and their purported source

code as a way of detecting malware. Goswami et al. [13] report that

17While the reproducer does execute code, it only runs build scripts, which are less
likely to be malicious.
18https://github.com/microsoft/ApplicationInspector
19https://github.com/microsoft/OSSGadget

this is difficult for npm packages due to many irrelevant but non-

malicious differences, an experience that tallies with ours. Vu et

al. [28, 30] study the same problem for PyPI, and similarly conclude

that non-reproducibility by itself is a weak indicator of malicious-

ness and needs to be combined with other techniques to become

effective, which is what we have done in this work.

For the specific problem of detecting typosquatting, Vu et al. [31]

propose using edit distance as a metric for finding packages whose

name is very similar to another, while Taylor et al. [26] employ a

combination of lexical similarity and package popularity. Our work

does not specifically focus on typosquatting, but may still be able

to identify such packages from other criteria.

Anomaly detection. Malicious-package detection is a particular

instance of the more general problem of malware detection, which

in turn is often phrased in terms of anomaly detection [22], where

malware is characterized as anomalous outliers in a larger set of

benign samples. This framework has been brought to bear in a

wide variety of contexts, including detecting anomalous commits

on GitHub [12, 14], as well as malicious websites [15], binaries [29],

and mobile apps [2, 6, 7].

Applying machine-learning techniques in these domains often

faces the problem of imbalanced datasets just like in our case. This

line of research pointed us to the advantages of using decision

trees [22], Naive-Bayes [15], and One-class SVMs [22] as the base

algorithms for our models. More complicated models based on

neural networks [29] were not suitable for our problem given the

relatively small dataset in our possession. However, with more and

better data, this could be an avenue for future research.

Package-registry security. The security mechanisms of the pack-

age registries and the impact of malicious packages on these reg-

istries have also been studied extensively. Ohm et al.’s study [20]

explores the forms attacks can have on different registries. Oth-

ers have focused on specific registries such as PyPI [1, 3, 25], or

npm [34]. On one hand, mechanisms to understand the impact of

malicious packages have been proposed [19, 33]. On the other hand,

studies have also focused on ways registries can mitigate the impact

of malicious packages [9]. Compared to these longer-term solutions

1690

Practical Automated Detection of Malicious npm Packages ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(which are, of course, well worth investigating), our focus is on

short-term mitigation measures that do not require any changes to

the registries themselves, as explained in Section 1.

Code reuse and security. Our work touches upon the risks of

code reuse, which has recently seen a fair amount of interest in the

research literature.

Wang et al. [32] investigate third-party library usage in Java,

with particular focus on the problem of outdated libraries that may

be lacking recent bug fixes. They find that maintainers of client

projects are often unwilling to update to more recent library ver-

sions even when alerted to severe bugs in the version they depend

on. Prana et al. [24] report similar results from a study covering

vulnerable dependencies in Java, Python, and Ruby. Interestingly,

they conclude that different levels of development activity, project

popularity, and developer experience do not affect the handling of

vulnerable-dependency reports.

Mirhoseini et al. [17] find that automated upgrade pull requests

improve the situation to some extent, although they can also have

the adverse side effect of overwhelming maintainers with upgrade

notifications. For the case of malicious npm packages, this is less

of a problem since they are taken down upon discovery and hence

can no longer be depended on.

Gkortzis et al. [11] specifically examine the relationship between

software reuse and security vulnerabilities. As one might expect,

they find that the larger a project the more likely it is to be affected

by security vulnerabilities, and similarly that projects with many

dependencies are more exposed to security risks. While their work

focusses on vulnerable code as opposed to malware, it stands to

reason that similar correlations exist in the latter case.

To mitigate this problem, Koishybayev et al. [16] propose a static

analyzer called Mininode that eliminates unused code and depen-

dencies from Node.js applications, thereby reducing their attack

surface.

7 CONCLUSION

We have presented Amalfi, an approach to detecting malicious

npm packages based on a combination of a classifier trained on

known samples of malicious and benign npm packages, a repro-

ducer for identifying packages that can be rebuilt from source, and a

clone detector for finding copies of known malicious packages. The

classifier works on a set of features extracted using a light-weight

syntactic analysis, including information about the capabilities the

package makes use of and how these change between versions.

We have presented an evaluation of our approach employing

three different kinds of classifiers: decision trees, Naive Bayesian

classifiers, and SVMs. In our experiments, all three techniques suc-

ceeded in detecting previously unknown malicious packages, with

the decision tree outperforming the other two, though each clas-

sifier contributed unique results. While all three classifiers pro-

duce false positives, their precision can be improved dramatically

through continuous retraining as past predictions are triaged. We

have also shown that training, feature extraction, and classification

are very fast, suggesting that Amalfi is practically useful.

For future work, we are planning on investigating deeper feature

extraction that goes beyond the purely syntactic approach we have

used so far, perhaps employing light-weight static analysis. We

would also like to experiment with more advanced clone-detection

approaches to identify similar but not textually identical copies of

malicious packages. Another area worth exploring would be how to

combine results from multiple classifiers, perhaps in the form of a

ranking of results that could aid in manual triaging. Finally, it would

be very interesting to apply our techniques to other ecosystems such

as PyPI or RubyGems, which also suffer from malicious packages

in much the same way as npm.

ACKNOWLEDGMENTS

The authors would like to thank the npm team and the GitHub

Trust and Safety team for providing us with access to the corpus of

malicious packages, and for facilitating our experiments. We would

also like to thank them, as well as our GitHub colleagues Bas Alberts

and Henry Mercer, Tom Zimmermann and Patrice Godefroid of

Microsoft Research, Laurie Williams, and the entire GitHub Next

team for valuable feedback and advice during our work on this

paper. Finally, we would like to thank Prof. Nenad Medvidović for

his help and feedback.

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical Anal-

ysis of Security Vulnerabilities in Python Packages. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 446–457.
https://doi.org/10.1109/SANER50967.2021.00048

[2] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal
Usage of Sensitive Data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 426–436. https://doi.org/10.1109/ICSE.2015.61

[3] Aadesh Bagmar, Josiah Wedgwood, Dave Levin, and Jim Purtilo. 2021. I Know
What You Imported Last Summer: A study of security threats in the Python
ecosystem. CoRR abs/2102.06301 (2021). arXiv:2102.06301 https://arxiv.org/abs/
2102.06301

[4] Adam Baldwin. 2019. Plot to steal cryptocurrency foiled by the npm security
team. https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-
foiled-by-the-npm.

[5] Alex Birsan. 2021. Dependency Confusion: How I Hacked Into Apple, Mi-
crosoft and Dozens of Other Companies. https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610.

[6] Haipeng Cai, Xiaoqin Fu, and Abdelwahab Hamou-Lhadj. 2020. A study of
run-time behavioral evolution of benign versus malicious apps in android. In-
formation and Software Technology 122 (2020), 106291. https://doi.org/10.1016/
j.infsof .2020.106291

[7] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds:
Mass Vetting for New Threats at the Google-Play Scale. In 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association, Washington, D.C., 659–
674. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/chen-kai

[8] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In 28th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society. https://www.ndss-symposium.org/ndss-paper/towards-measuring-
supply-chain-attacks-on-package-managers-for-interpreted-languages/

[9] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
tainingMalicious Package Updates in npmwith a Lightweight Permission System.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
1334–1346. https://doi.org/10.1109/ICSE43902.2021.00121

[10] Kalil AndersonGarrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian
Kästner. 2019. Detecting Suspicious Package Updates. In Proceedings of the
41st International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019, Anita Sarma
and Leonardo Murta (Eds.). IEEE / ACM, 13–16. https://doi.org/10.1109/ICSE-
NIER.2019.00012

[11] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software
reuse cuts both ways: An empirical analysis of its relationship with security
vulnerabilities. Journal of Systems and Software 172 (2021), 110653. https:
//doi.org/10.1016/j.jss.2020.110653

1691

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Adriana Sejfia and Max Schäfer

[12] Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schäfer.
2021. Anomalicious: Automated Detection of Anomalous and Potentially Ma-
licious Commits on GitHub. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 258–267.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00035

[13] Pronnoy Goswami, Saksham Gupta, Zhiyuan Li, Na Meng, and Daphne Yao. 2020.
Investigating The Reproducibility of NPM Packages. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 677–681. https:
//doi.org/10.1109/ICSME46990.2020.00071

[14] Raman Goyal, Gabriel Ferreira, Christian Kästner, and James D. Herbsleb. 2018.
Identifying unusual commits on GitHub. J. Softw. Evol. Process. 30, 1 (2018).
https://doi.org/10.1002/smr.1893

[15] H.B. Kazemian and S. Ahmed. 2015. Comparisons of machine learning techniques
for detecting malicious webpages. Expert Systems with Applications 42, 3 (2015),
1166–1177. https://doi.org/10.1016/j.eswa.2014.08.046

[16] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX Association, San
Sebastian, 121–134. https://www.usenix.org/conference/raid2020/presentation/
koishybayev

[17] SamimMirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-Date Dependencies?. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017). IEEE Press, 84–94.

[18] Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. 2020. Ma-
chine Learning with Oversampling and Undersampling Techniques: Overview
Study and Experimental Results. In 2020 11th International Conference on Infor-
mation and Communication Systems (ICICS). 243–248. https://doi.org/10.1109/
ICICS49469.2020.239556

[19] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021. Modu-
lar Call Graph Construction for Security Scanning of Node.js Applications. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2021). Association for Computing Machinery, New York, NY,
USA, 29–41. https://doi.org/10.1145/3460319.3464836

[20] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-
ber’s Knife Collection: A Review of Open Source Software Supply Chain At-
tacks. In Detection of Intrusions and Malware, and Vulnerability Assessment -
17th International Conference, DIMVA 2020, Lisbon, Portugal, June 24-26, 2020,
Proceedings (Lecture Notes in Computer Science), Clémentine Maurice, Leyla
Bilge, Gianluca Stringhini, and Nuno Neves (Eds.), Vol. 12223. Springer, 23–43.
https://doi.org/10.1007/978-3-030-52683-22

[21] Marc Ohm, Arnold Sykosch, and Michael Meier. 2020. Towards Detection of
Software Supply Chain Attacks by Forensic Artifacts. In Proceedings of the 15th
International Conference on Availability, Reliability and Security (ARES ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 65, 6 pages.
https://doi.org/10.1145/3407023.3409183

[22] S. Omar, A. Ngadi, and Hamid H. Jebur. 2013. Machine Learning Techniques for
Anomaly Detection: An Overview. International Journal of Computer Applications
79 (2013), 33–41.

[23] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of Dependency-
Based Attacks on Node.js. In Proceedings of the 12th International Conference
on Availability, Reliability and Security (ARES ’17). Association for Computing
Machinery, New York, NY, USA, Article 68, 6 pages. https://doi.org/10.1145/
3098954.3120928

[24] Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo, An-
drew E. Santosa, Asankhaya Sharma, and David Lo. 2021. Out of sight, out of
mind? How vulnerable dependencies affect open-source projects. Empir. Softw.
Eng. 26, 4 (2021), 59. https://doi.org/10.1007/s10664-021-09959-3

[25] Jukka Ruohonen, Kalle Hjerppe, and Kalle Rindell. 2021. A Large-Scale Security-
Oriented Static Analysis of Python Packages in PyPI. CoRR abs/2107.12699 (2021).
arXiv:2107.12699 https://arxiv.org/abs/2107.12699

[26] Matthew Taylor, Ruturaj K. Vaidya, Drew Davidson, Lorenzo De Carli, and
Vaibhav Rastogi. 2020. Defending Against Package Typosquatting. In Network
and System Security - 14th International Conference, NSS 2020, Melbourne, VIC,
Australia, November 25-27, 2020, Proceedings (Lecture Notes in Computer Science),
Miroslaw Kutylowski, Jun Zhang, and Chao Chen (Eds.), Vol. 12570. Springer,
112–131. https://doi.org/10.1007/978-3-030-65745-17

[27] Nikolai Philipp Tschacher. 2016. Typosquatting in Programming Language Package
Managers. Master’s thesis. University of Hamburg.

[28] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta.
2021. LastPyMile: Identifying the Discrepancy between Sources and Packages.
In ESEC/FSE.

[29] Duc-Ly Vu, Trong-Kha Nguyen, Tam V. Nguyen, Tu N. Nguyen, Fabio Massacci,
and Phu H. Phung. 2019. A Convolutional Transformation Network for Malware
Classification. In 2019 6th NAFOSTED Conference on Information and Computer
Science (NICS). 234–239. https://doi.org/10.1109/NICS48868.2019.9023876

[30] Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2020. Towards Using Source Code Repositories to Identify Software Supply Chain
Attacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20). Association for Computing Machinery, New
York, NY, USA, 2093–2095. https://doi.org/10.1145/3372297.3420015

[31] Duc-Ly Vu, Ivan Pashchenko, FabioMassacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and Combosquatting Attacks on the Python Ecosystem. In
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW).
509–514. https://doi.org/10.1109/EuroSPW51379.2020.00074

[32] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 35–45. https://doi.org/10.1109/
ICSME46990.2020.00014

[33] Ahmed Zerouali, Tom Mens, Alexandre Decan, and Coen De Roover. 2021. On
the Impact of Security Vulnerabilities in the npm and RubyGems Dependency
Networks. CoRR abs/2106.06747 (2021). arXiv:2106.06747 https://arxiv.org/abs/
2106.06747

[34] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in
the npm Ecosystem. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.). USENIX Association, 995–1010. https://www.usenix.org/conference/
usenixsecurity19/presentation/zimmerman

1692

