
Journal of Computer Security 10 (2002) 105–136 105
IOS Press

Practical automated detection of stealthy portscans

Stuart Staniford, James A. Hoagland∗ and Joseph M. McAlerney
Silicon Defense, 513 2nd Street, Eureka, CA 95501, USA

Until some brilliant researcher comes up with a better technique,

scan detection will boil down to testing for X events

of interest across a Y-sized time window.

Stephen Northcutt (1999)

Portscan detectors in network intrusion detection products are easy to evade. They classify a portscan as
more than N distinct probes within M seconds from a single source. This paper begins with an analysis of
the scan detection problem, and then presents Spice (Stealthy Probing and Intrusion Correlation Engine), a
portscan detector that is effective against stealthy scans yet operationally practical. Our design maintains
records of event likelihood, from which we approximate the anomalousness of a given packet. We use
simulated annealing to cluster anomalous packets together into portscans using heuristics developed from
real scans. Packets are kept around longer if they are more anomalous. This should enable us to detect all
the scans detected by current techniques, plus many stealthy scans, with manageable false positives. We
also discuss detection of other activity such as stealthy worms, and DDOS control networks.

1. Portscanning

Portscanning is a common activity of considerable importance. It is often used
by computer attackers to characterize hosts or networks which they are considering
hostile activity against. Thus it is useful for system administrators and other network
defenders to detect portscans as possible preliminaries to a more serious attack. It is
also widely used by network defenders to understand and find vulnerabilities in their
own networks. Thus it is of considerable interest to attackers to determine whether or
not the defenders of a network are portscanning it regularly. However, defenders will
not usually wish to hide their portscanning, while attackers will. For definiteness, in
the remainder of this paper, we will speak of the attackers scanning the network, and
the defenders trying to detect the scan.

There are several legal/ethical debates about portscanning which break out regu-
larly on Internet mailing lists and newsgroups. One concerns whether portscanning
of remote networks without permission from the owners is itself a legal and ethical
activity. This is presently a grey area in most jurisdictions. However, our experience

* Corresponding author.

0926-227X/02/$8.00 2002 – IOS Press. All rights reserved

106 S. Staniford et al. / Practical automated detection of stealthy portscans

from following up on unsolicited remote portscans we detect in practice is that al-
most all of them turn out to have come from compromised hosts and thus are very
likely to be hostile. So we think it reasonable to consider a portscan as at least po-
tentially hostile, and to report it to the administrators of the remote network from
whence it came.

However, this paper is focussed on the technical questions of how to detect
portscans, which are independent of what significance one imbues them with, or
how one chooses to respond to them. Also, we are focussed here on the problem of
detecting a portscan via a network intrusion detection system (NIDS). We try to take
into account some of the more obvious ways an attacker could use to avoid detection,
but to remain with an approach that is practical to employ on busy networks. In the
remainder of this section, we first define portscanning, give a variety of examples at
some length, and discuss ways attackers can try to be stealthy. In the next section, we
discuss a variety of prior work on portscan detection. Then we present the algorithms
that we propose to use, and give some very preliminary data justifying our approach.
Finally, we consider possible extensions to this work, along with other applications
that might be considered. Throughout, we assume the reader is familiar with Internet
protocols, with basic ideas about network intrusion detection and scanning, and with
elementary probability theory, information theory, and linear algebra.

There are two general purposes that an attacker might have in conducting a
portscan: a primary one, and a secondary one. The primary purpose is that of gath-
ering information about the reachability and status of certain combinations of IP
address and port (either TCP or UDP). (We do not directly discuss ICMP scans in
this paper, but the ideas can be extended to that case in an obvious way.) The sec-
ondary purpose is to flood intrusion detection systems with alerts, with the intention
of distracting the network defenders or preventing them from doing their jobs. In this
paper, we will mainly be concerned with detecting information gathering portscans,
since detecting flood portscans is easy. However, the possibility of being maliciously
flooded with information will be an important consideration in our algorithm design.

We will use the termscan footprint for the set of port/IP combinations which the
attacker is interested in characterizing. It is helpful to conceptually distinguish the
footprint of the scan, from thescript of the scan, which refers to the time sequence
in which the attacker tries to explore the footprint. The footprint is independent of
aspects of the script, such as how fast the scan is, whether it is randomized, etc. The
footprint represents the attacker’s information gathering requirements for her scan,
and she designs a scan script that will meet those requirements, and perhaps other
non-information-gathering requirements (such as not being detected by an NIDS).

The most common type of portscan footprint at present is ahorizontal scan. By
this, we mean that an attacker has an exploit for a particular service, and is interested
in finding any hosts that expose that service. Thus she scans the port of interest on
all IP addresses in some range of interest. Also at present, this is mainly being done
sequentially on TCP port 53 (DNS). An example is shown in Fig. 1. But other ports
are common also, including 139 (NetBIOS file and print sharing), 98 (linuxconf), and

S. Staniford et al. / Practical automated detection of stealthy portscans 107

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.193:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.194:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.195:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.196:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.197:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.198:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.199:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.200:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.201:53 SYNFIN

Apr 1 19:02:12 666.66.666.66:53→ 111.11.11.202:53 SYNFIN

Fig. 1. A fragment of a Snort portscan preprocessor log for a sequential DNS scan.

Apr 1 18:36:01 666.66.666.66:1093→ 111.11.11.49:21 SYN

Apr 1 18:36:01 666.66.666.66:1094→ 111.11.11.49:22 SYN

Apr 1 18:36:01 666.66.666.66:1095→ 111.11.11.49:23 SYN

Apr 1 18:36:01 666.66.666.66:1096→ 111.11.11.49:25 SYN

Apr 1 18:36:01 666.66.666.66:1097→ 111.11.11.49:42 SYN

Apr 1 18:36:02 666.66.666.66:1116→ 111.11.11.49:8010 SYN

Apr 1 18:36:02 666.66.666.66:1117→ 111.11.11.49:8080 SYN

Apr 1 18:36:02 666.66.666.66:1100→ 111.11.11.49:79 SYN

Apr 1 18:36:02 666.66.666.66:1102→ 111.11.11.49:110 SYN

Apr 1 18:36:02 666.66.666.66:1101→ 111.11.11.49:80 SYN

Apr 1 18:36:02 666.66.666.66:1104→ 111.11.11.49:119 SYN

Apr 1 18:36:02 666.66.666.66:1103→ 111.11.11.49:111 SYN

Fig. 2. A fragment of a Snort portscan preprocessor log for a vertical portscan.

23 (telnet). The distribution of ports of interest changes over time as the popularity
of different exploits grows and wanes in the attacker community.

Vertical scans are also seen. This is where an attacker scans some or all ports on
a single host. Here the rationale is that the attacker is interested in this particular
host, and wishes to characterize the services on it, perhaps with a view to find which
exploit to attempt, or to find a suitable exploit via her network of contacts and re-
sources. Part of an example vertical scan, produced using the popular nmap scan
tool [4], is shown in Fig. 2. In some cases, scans may only target a small range of
ports. For example, a scan on just three ports is shown in Fig. 3. This was an actual
scan we detected, but the purpose of this scan, and the tool used to generate it, are
currently unknown.

A scan may combine horizontal and vertical types into ablock scan of numerous
services on numerous hosts. More complicated geometries of what is to be scanned
are possible in principal, though not seen much in practice.

108 S. Staniford et al. / Practical automated detection of stealthy portscans

Apr 1 11:18:56 666.66.666.66:2419→ 111.11.11.47:80 SYN

Apr 1 11:18:56 666.66.666.66:2420→ 111.11.11.47:80 NOACK

Apr 1 11:19:00 666.66.666.66:2423→ 111.11.11.47:80 SYN

Apr 1 11:19:00 666.66.666.66:2427→ 111.11.11.47:80 SYN

Apr 1 11:19:31 666.66.666.66:2434→ 111.11.11.47:37 SYN

Apr 1 11:19:31 666.66.666.66:2434→ 111.11.11.47:37 NOACK

Apr 1 11:19:34 666.66.666.66:2435→ 111.11.11.47:37 SYN

Apr 1 11:19:34 666.66.666.66:2435→ 111.11.11.47:37 NOACK

Apr 1 11:19:37 666.66.666.66:2436→ 111.11.11.47:37 SYN

Apr 1 11:19:38 666.66.666.66:2437→ 111.11.11.47:13 SYN

Apr 1 11:19:38 666.66.666.66:2437→ 111.11.11.47:13 NOACK

Apr 1 11:19:41 666.66.666.66:2438→ 111.11.11.47:13 SYN

Apr 1 11:19:44 666.66.666.66:2439→ 111.11.11.47:13 SYN

Fig. 3. Portscan scanning 3 ports. This is the whole log.

Turning now to the individual scan probes, a number of types are known. Consid-
ering TCP first, perhaps the simplest type is for the scan tool to simply initiate the full
three way handshake (nmap -sT, for example). If the handshake succeeds, the port
is open, whereas if it does not, the port is closed or perhaps filtered at some packet
filter or firewall device in front of the target address. This scan type is sometimes
used by security consultants, but rarely by attackers. From an attacker’s standpoint,
the drawback to this method is that, since theaccept() call on the socket at the server
end has completed, the server application may generate a log entry for the connec-
tion (perhaps via TCP wrappers on Unix and similar systems). This leaves a trace of
their activity unnecessarily.

The most popular TCP scan probe therefore is a syn-scan (nmap -sS). In this ap-
plication, the scan tool generates just the initial syn packet. If this reaches an open
port, the server will respond with a syn-ack packet. If the port is closed, the server
will respond with a reset. If there is simply no response, this suggests that the port
is firewalled between scanner and server. Modern scan tools can generate these syn
packets to many hosts very rapidly, and then collect and collate the responses asyn-
chronously as they arrive back at the scanning machine. Since the scan tool never
completes the three way handshake, even if a syn-ack is returned, the hostaccept()
socket call never completes successfully for that instance, and so no log of the scan
is generated on the host machine (usually).

There are other scan probe possibilities. For example, syn-fin scanning involves
sending packets with both syn and fin flags set. This is a combination that would
never occur in normal TCP traffic. The attacker’s hope in sending this is that an
incorrectly implemented packet filter, which would not pass a bare syn packet, will
pass the syn-fin packet. Fin scanning (just F flag alone) and XMAS scans (FPU)
similarly hope to pass a firewall, and result in a reset from a closed port, and nothing
from an open port.

S. Staniford et al. / Practical automated detection of stealthy portscans 109

Ack scanning involves sending an unsolicited packet with just the Ack flag set. It
cannot distinguish open ports from closed, but can sometimes be used to map firewall
rule sets (according to whether packets are dropped or result in resets).

Additionally, an important application of TCP portscanning is operating system
(OS) identification. This relies on the fact that the TCP/IP RFCs do not specify how
to handle illegal unanticipated flag combinations. Thus different implementations do
it differently, and these idiosyncrasies can be used to determine what OS is in use
at a particular IP address. For example, one popular tool, QueSO [14], sends seven
packets:

0 SYN
1 SYN+ ACK
2 FIN
3 FIN + ACK
4 SYN+ FIN
5 PSH
6 SYN+1 + 2

(1 and 2 denote the reserved TCP flags.) All packets have a random sequence num-
ber and a 0 ack field. The replies are examined for their flag combination, ack, and
similar, and this is compared to a table of popular OS’s.

Current scanners can determine many kinds of operating systems – for example,
nmap v2.53 can distinguish 468 different cases. On the face of it, this represents
about 9 bits of information. However, there are probably only a couple of bits of true
entropy per host because most hosts will have one of just a few popular operating
systems.

UDP scanning is a little different from TCP scanning in that, if the port is open, the
server will typically not respond to the probe (since the probe packet will not usually
be a valid request in whatever protocol is being used over that port). However, if
the port is closed, the server should respond with an ICMP message of Type 3 and
Code 3 (Destination Unreachable because Port Unreachable). Thus UDP scanning
involves listening for the ICMP responses from closed ports and then assuming that
any ports that do not respond are open. This is sometimes slow (since hosts may rate
limit how they send out the ICMP messages) and unreliable (since packets may be
lost with no way to tell). UDP scans are much rarer in practice than TCP scans at
present, but they certainly are possible and do occur.

For more detail on portscanning techniques, see [5,6]. Up to date information can
presently be found at [4].

From the standpoint of a network intrusion detection system, all the scan probe
types which involve illegal flag combinations are extremely straightforward to detect.
Rules which simply flag any packet with a non-standard combination of flags will
detect all such scans with essentially no false positives. Thus, although these are
often referred to as “stealth scans”, they are not stealthy for our case. A network

110 S. Staniford et al. / Practical automated detection of stealthy portscans

intrusion detection system is much more challenged by full connect scans, syn scans,
and UDP scans where the individual packets could, on the face of it, be normal traffic.
In the remainder of the paper, we shall concentrate on these cases.

It is helpful for us to be able to characterize how “big” a scan footprint is, or
how big the portion of the footprint which falls into some particular organization’s
domain of IP space is. Clearly this tells us a lot about how difficult a scan is going to
be to detect, and thus in measuring the efficiency of portscan detection, it’s useful to
parametrize against the size of the scan footprint. For example, a scan of every port
on every host of a full Class C network involves the attacker checking 16,646,144
distinct host/port combinations. This is going to be hard to hide. By contrast, an
attacker who only wants to know whether a single port is turned on, on a single host
on our network, will find it much easier to evade detection.

The simplest method, then, of sizing a footprint is just to count the IP/port combi-
nations the attacker needs to test. We call this thetotal size of the footprint. From the
attacker’s standpoint, this is often a good metric of how big her scan is, as it may be
directly related to the number of bits of information about the target network that she
obtains as a result of performing her scan. However, this is not always so – some-
times the attacker is attempting to obtain a number of bits of information from each
port/IP combination. OS detection is the most obvious case in point. Thus it’s useful
then to talk about thetotal information of the footprint, as being the total number of
bits of information the scan is intended to obtain.

However, there are alternative metrics that are useful from a detection standpoint.
To motivate these, we consider that some pieces of the scan may be far easier for
us to detect than others. Most obviously, if a scan probe finds an open port, it is
much harder for us to determine that this was a scan than if it hits a closed port. This
is because, other than some misconfiguration, normal traffic will not hit closed ports
very often. Normal Internet users do not generally attempt to find services by making
connections to the host/port in question to see whether the service is there. Rather,
they rely on various forms of advertisements to tell them where services are (for
example, links on web servers to other web servers, DNS information, information
about where mail servers are that users enter into their computers manually). Thus
connections to closed ports are inherently a lot more suspicious than connections to
open ports (though by no means guaranteed to be intrusive). So another measure of
the size of a scan footprint is theclosed size of it – the number of distinct port/IP
combinations the scan is targeting which are in fact closed at the time of scanning.

Indeed one approach to portscan detection is not to look at the scan packets (which
we will call forward scan detection), but rather to look for packets that could be
responses to portscan probes from closed server ports; TCP resets in the case of TCP
scans, and ICMP port unreachable packets in the case of UDP scans. We refer to
this asbackward scan detection. The advantage of backward scan detection is that
the packets are inherently more anomalous than the packets used in forward scan
detection. The drawback is that we will miss portscans into empty IP addresses,
which are particularly diagnostic. Forward and backward scan detection are both

S. Staniford et al. / Practical automated detection of stealthy portscans 111

of value, and complement one another. In the remainder, we will generally use the
language of forward scan detection for the sake of definiteness, but most of our
techniques apply equally to both cases.

We present one final metric, which is the one we make most actual use of, and
which is a generalization of the idea of the closed size of a scan. Suppose that the
current probability distribution of normal traffic to ports and hosts on the protected
network is known (in practice, it can be estimated from samples, but is not known
perfectly). Then, when faced with any given scan probe for a given port/IP combi-
nationx, it is possible to determine the probabilityP (x) that a normal traffic packet
would be targeting this port. Then we can give a packet ananomaly score A(x) as
the negative log likelihood of this probe:

A(x) = − log
(
P (x)

)
. (1)

Now the footprint of the scan is defined by a setX , of individualx. We can therefore
define the total anomaly score of the scan as

A(X) =
∑

x∈X

A(x). (2)

Note that this isnot usually the log likelihood of the overall scan, but it is a conve-
nient measure of how easy it will be to detect this particular scan. The more unlikely
the port/IP combinations the attacker needs information about in terms of our usual
traffic, the more easily we should be able to detect her.

It’s important to understand that the anomaly score of a scan is site dependent. If
two sites have exactly the same configuration of hosts and services, and both sites
are scanned in an identical way, the anomaly score of the scans may be quite differ-
ent if the probability distribution of traffic is different. Even if the two usual traffic
distributions are isomorphic, if the volume of normal traffic on one site is much
greater than on the other site, then the scan will be more anomalous on the high
traffic site.

We also note that we are making a simplification here. The probability distribu-
tion of traffic is time dependent. If the scan is spread out over time, then the anomaly
scores for different probes are defined with respect to different probability distribu-
tions, which makes our definition of the total anomaly score for the scan footprint
logically incoherent. We do not think this issue is of practical importance at present,
and so we ignore it.

We now turn to looking at what an attacker can do with her script to make it hard
for us to detect her investigating her chosen footprint. A variety of techniques are
available to her.

Changes of scan order. Most scans in the wild at present move through IP addresses
sequentially, going from lower to higher. However, if this assumption is used by

112 S. Staniford et al. / Practical automated detection of stealthy portscans

defenders in detection, it is straightforward for attackers to change it. Randomizing
the order in which IP addresses and ports are searched can easily be done. nmap is
currently capable of randomizing the addresses it uses within blocks of 2048 hosts.
Also, if an attacker suspects that a particular detection algorithm is in use, the scan
order can be constructed maliciously to put that detection algorithm into its worst
case performance.

Slowing down. By slowing down the scan, an attacker can make it more dif-
ficult to detect. This easily defeats current naive scan detectors by simply ex-
tending the scan so that successive probes appear out of the detection window.
It forces any detector to keep more state, and pick the scan pattern out of far
more normal traffic. Thus detection becomes more difficult. The price the at-
tacker pays is that it takes more time for her to obtain the information she needs.
Thus it may be useful to characterize scans by the average information rate the
scan is achieving (how many bits of information per second it discovers on aver-
age).

Randomizing inter-probe timing. Deterministic delays between probes can help
some detection algorithms. Therefore, it is of value for an attacker to insert ran-
dom delays into the probes. An exponential waiting distribution would be a natural
thing to try to introduce noise into the process, but power law distributions with long
tails could also be used, since it is known that network traffic distributions often have
features of self-organized criticality [9].

Randomizing non-essential fields. Fields such as sequence number, ack number,
IP id, and source port in the scan packets are often hard coded with fixed values in
current scans. Alternatively, they may be generated with some simple deterministic
algorithm. This makes detection easy, and so attackers are likely to randomize them
in future.

Affecting the source address. The source address is more difficult for an attacker to
affect, and so is a key piece of information for scan detection. In the simplest case,
the attacker does need to use a real source address, since she needs to see the packets
that servers generate in response to the scan in order to know what ports are actually
open.

An exception to this is if an attacker is able to monitor a network close to the target
network (perhaps the ISP of the target network). In that case, the attacker is free to
forge the source addresses randomly, and rely on monitoring to see the response
packets. This idea has been implemented in at least one tool – Icmpenum [15]. This
idea will often not be practical as the attacker may not be able to compromise the
ISP, or if she can, the fast switched networks there may not be amenable to network
monitoring.

However, as a diversionary tactic, it is certainly feasible for an attacker on a net-
work that does not perform egress filtering to create additional probes with forged
addresses. Nmap has a mode to do just this, invoked by command line option ‘-D’.

S. Staniford et al. / Practical automated detection of stealthy portscans 113

This makes it more likely the scan will be detected, but harder to determine what
response to make.

Distributed scanning. An attacker who can launch her scan from a number of dif-
ferent real IP addresses can investigate different parts of the footprint from different
places. This complicates the detection task. In the extreme case, large networks of
agents similar to those used for distributed denial of service attacks could be used
for portscanning. As of early 2000, such tools were under development, but not in
widespread use. It is reasonable to assume that portscanning may evolve in this di-
rection.

We should assume that all these tactics will be used by attackers. Some are in use
already. It may take several years for tools with all these features to be in widespread
use, but it will certainly happen eventually. And sophisticated attackers with large
budgets could develop tools with these features in several months’ effort (and may
have done so already).

It is worth noting also that some common events look like hostile portscans but
are not. A variety of network computer games will, on startup, contact a range of
different servers very rapidly (often using UDP). The scans often use a default port,
but with variations depending on the individual server. An example from the popular
game “Half Life” is shown in Fig. 4.

Also, web pages will sometimes contain elements located on several different
servers (ads, scripts, and graphical elements may be in a variety of different places).
When the browser loads the page, it will issue a quick burst of DNS lookups and port
80 connections as it assembles all the resources it needs to render the page. This may
trigger present day portscan detectors.

Apr 1 21:16:21 111.11.11.197:4344→ 23.222.22.222:27015 UDP

Apr 1 21:16:21 111.11.11.197:4345→ 32.233.33.233:27015 UDP

Apr 1 21:16:21 111.11.11.197:4346→ 34.244.44.244:27015 UDP

Apr 1 21:16:21 111.11.11.197:4242→ 43.250.55.250:27016 UDP

Apr 1 21:16:21 111.11.11.197:4320→ 45.100.66.100:27015 UDP

Apr 1 21:16:21 111.11.11.197:4329→ 54.120.77.120:27015 UDP

Apr 1 21:16:21 111.11.11.197:4347→ 56.180.88.180:27015 UDP

Apr 1 21:16:21 111.11.11.197:4354→ 65.190.15.190:27015 UDP

Apr 1 21:16:21 111.11.11.197:4311→ 67.200.55.200:27015 UDP

Apr 1 21:16:21 111.11.11.197:4205→ 76.202.13.202:27015 UDP

Apr 1 21:16:21 111.11.11.197:4350→ 78.195.13.195:27015 UDP

Apr 1 21:16:21 111.11.11.197:4355→ 87.199.85.199:27015 UDP

Apr 1 21:16:21 111.11.11.197:4313→ 89.190.95.160:27015 UDP

Apr 1 21:16:21 111.11.11.197:4356→ 98.248.15.230:27015 UDP

Apr 1 21:16:21 111.11.11.197:4325→ 90.123.16.157:27015 UDP

Fig. 4. A fragment of a Snort portscan preprocessor log of a Half life scan.

114 S. Staniford et al. / Practical automated detection of stealthy portscans

2. Prior work in scan detection

To our surprise, there seems to have been very little work on the problem of effi-
ciently and reliably detecting portscans. Given all the research in intrusion detection
over the last decade and a half, and the enormous practical importance of this prob-
lem, it is striking how little attention it has received. A number of research IDS
systems, data mining studies, etc., must have detected portscans, but how they did
so is not generally published or commented upon. Commercial systems generally
use the naive algorithm to the best of our knowledge. However, they may often be
unwilling to reveal their algorithm choices. We survey the few relevant systems here.

2.1. NSM

The Network Security Monitor (NSM) [7] was the first NIDS, and also the first
NIDS to detect scanning. It had rules to detect any source IP address connecting to
more than 15 other source IP addresses (presumably within some time window, but
this is not clearly specified in the paper). Thus it pioneered the algorithm that has
been used by most systems ever since.

2.2. GrIDS

The Graph Based Intrusion Detection System (GrIDS) prototype was built by UC
Davis [2,16] (the team involved two of the present authors). It was intended to detect
rapid automated hostility of various kinds, including portscans. It was the first system
to attempt to do this on a large scale using hierarchical processing.

GrIDS detected portscanning by building graphs of activity in which the nodes
represented hosts, and the edges represented some network traffic between hosts.
Thus a scan probe could be represented as an edge between the scanning host and
the server being scanned. GrIDS assembled these edges into graphs based on the
fact that the edges shared at least one node, and on other user definable rules. Thus
scans in which all the probes had the same source IP could be detected. In practice,
the rules were usually conditioned on time so that only scans that occurred fairly
rapidly were detected. This was not a limitation in principle, however, whereas the
restriction to same source IP of probes was.

GrIDS had a complex design which allowed it to propagate information about
graph edges up a hierarchy of processing engines which viewed the network on larger
and larger scales. This enabled it to detect even very sparse random scans as long as
they were rapid and used the same source IP.

GrIDS had no notion of anomaly or probability for packets, so it would always be
limited in its ability to handle stealthy scans. Additionally, the prototype implemen-
tation was in Perl and was quite slow for modern networks. Nonetheless it was used
in practice for a number of months on a network of about a hundred hosts and was
quite useful there.

S. Staniford et al. / Practical automated detection of stealthy portscans 115

2.3. Snort portscan preprocessor

Snort [11,12] is an open source lightweight network intrusion detection system
based on libpcap [1]. It can produce real-time alerts as well as packet logs in a va-
riety of formats. Snort has a flexible rules language to describe what alerts should
be alerted, logged, or passed. Different members of the Snort community provide
rules that can be used for a particular installation and sites can write their own rules.
The detection engine uses a modular plugin architecture, which allows developers to
extend Snort and users to choose the functionality required to meet their needs.

The portscan detection functionality in Snort is made possible by a preprocessor
plugin. The Snort portscan detector attempts to look forX TCP or UDP packets sent
to any number of host/port combinations from a single source host inY seconds,
whereX andY are user defined values. Additionally, the portscan detector looks for
single TCP packets that are not used in normal TCP operations. Such packets will
have odd combinations of TCP flags set, or no flags set at all.

Upon arrival, a packet’s structure is checked for soundness. The packet is then
tested to see if it is part of a scan currently in progress. This is achieved by comparing
the packet type and source address to those of scans currently being investigated. If
it is not part of a current scan, it becomes the starting node of a new scan. Otherwise,
the matching scan’s packet count is incremented, and a check is made to determine
whether the threshold ofX packets sent inY seconds was exceeded. If so, the scan
is reported. The scan will also be reported, regardless of the threshold being broken,
if the packet contained an abnormal TCP flag combination.

The current version of the Snort portscan detector has a couple notable shortcom-
ings that can easily be used to evade portscan detection. First, it is unable to detect
scans originating from multiple hosts. Also, the threshold is determined by a static
combination of user specified numbers. The threshold is usually set high enough to
allow for only a bearable amount of portscan false positives. As a result, it is very
easy to avoid detection by increasing the time between sending scan probes.

2.4. Emerald

The EMERALD system [10] from SRI International has also been used to detect
portscanning, and uses a different algorithm than the usual one. EMERALD can re-
gard each source IP address communicating with the monitored network as asubject.
It constructs statistical profiles for subjects, and matches a short term weighted pro-
file of subject behavior to a long term weighted profile. When the short term profile
goes far enough into the tails of the distribution for the long term profile, EMERALD
views it as suspicious. One of the aspects of subject behavior can be the volume of
particular kinds of network traffic generated. This can be used to detect portscanning
as a sudden increase in the volume of syn packets, for example, from a particular
source IP.

116 S. Staniford et al. / Practical automated detection of stealthy portscans

This approach has some limitations. It is not capable of detecting slow stealthy
scans, since those will not create the kind of sharp volume increase that EMERALD
looks for. It also cannot easily correlate distributed source scans. And finally, it is not
clear how EMERALD would interpret scanning from IPs that have never been seen
before and which have no profile.

3. Spice detection approach

So how might we detect a slow randomized scan which is buried in days, weeks, or
months of normal traffic? If we only use a short detection window, we will miss slow
scans. However, if we try to use a long detection window, we face searching through
massive amounts of normal traffic looking for patterns. It’s generally completely
infeasible to save all network traffic for any length of time since there is so much
of it.

The key insight that we invoke is that the attacker is trying to gather information
which she does not already know, and she is trying to find out this information in
some systematic way, rather than simply approaching the target site as any normal
user would. (Of course a good attacker will have used less noticeable reconnaissance
first, but if she is portscanning, it implies a desire to know about ports that may or
may not be open.) Therefore, at least some of the portscan is likely to be highly
anomalous traffic relative to the usual traffic distribution. If the packet has unusual
features (i.e., is a “crafted packet”) this will be still more true. Thus our approach is
to save information about packets to be searched later based on how anomalous the
packet is. Thus a TCP syn to port 98 (linuxconf) on a Windows host will be saved
for much longer than one to port 80 (http) on a known web server. This allows us to
accumulate such rare events over a longer period of time.

We then try to group the saved packets together into activities that are similar,
using simulated annealing with a variety of heuristics discussed later. Packets that
fall into a sizeable group are also saved longer, thus meaning that a stealthy portscan
will be saved, grouped, and noticed while normal traffic on the site will timeout and
be lost from state quickly.

Architecturally, Spice has two kinds of components: an anomaly sensor and a cor-
relator. The sensor (Section 3.1) monitors the network and assigns an anomaly score
to each event. Those events that are sufficiently anomalous are passed, along with
their anomaly scores, to the Spice correlator (Section 3.2). This correlator groups
events together and reports scans. Section 3.3 briefly discusses theoretical limits on
what Spice can detect. We discuss how the anomaly sensor, Spade, was implemented
in Section 3.4 and how we implemented the correlator in Section 3.5.

3.1. Anomalous event assessment

As discussed in Section 1, we assess the anomalousness of an event based on the
probability that a normal event would look like the event. This is based on packet

S. Staniford et al. / Practical automated detection of stealthy portscans 117

Fig. 5. The Bayes network provided in Spade. Arrows indicate that one feature influences the other. For
example, source IP and source port influence the destination IP.

header fields such as source IP, destination IP, source port, destination port, proto-
col (TCP or UDP), and protocol flags. Some combination of these should go into
the characterization of the packet for these purposes. The optimal way to do this
in general could be the subject of years of research and may vary with the moni-
tored network. We describe two general approaches. In either case, in order to assess
the anomalousness of events, the sensor will need to maintain probability tables of
feature instances and multi-dimensional tables of conditional probabilities observed.
We discuss how we implemented this efficiently for Spade in Section 3.4.2.

The first approach is to directly maintain the joint probability of a certain set of
features. That is, directly measure things likeP (destinationport, destinationIP, sour-
ceIP, sourceport). This has the advantage of simplicity. However, if there are more
normal combinations of this than are seen regularly on the network, then the result
can be noisy and not reliable. Also, maintaining all the different combinations of
values may be resource intensive. Generally, employing as few features as needed to
characterize the packet’s probability should make this more tractable.

The second approach is to construct an estimate based upon more limited proba-
bilities and conditional probabilities such asP (destinationport), P (sourceport|desti-
nationport), andP (destinationIP|sourceIP, sourceport) using a construction known
as a belief network, or Bayes network [13]. A Bayes network is a diagram describ-
ing how variables in a system of variables are related. For example, it will describe
whether two variables are independent or conditionally independent. If variables are
independent then there is no need to measure their joint probabilities. A Bayes net-
work that we provide in Spade is shown in Fig. 5. The Bayes network allows us
to estimate the joint probability distribution while only measuring the conditional

118 S. Staniford et al. / Practical automated detection of stealthy portscans

H(dip) = 4.602 H(sip) = 7.980

H(dip|dport) = 2.876 H(sip|dip) = 4.995

H(dip|sip) = 1.616 H(sip|dport) = 6.048

H(dip|sport) = 2.750 H(sip|sport) = 4.225

H(dip|sip, dport) = 1.447 H(sip|dip, sport) = 1.814

H(dip|sip, sport) = 0.530 H(sip|dip, dport) = 4.619

H(dip|sport, dport) = 1.467 H(sip|sport, dport) = 2.718

H(dip|sip, sport, dport) = 0.364 H(sip|dip, sport, dport) = 1.615

H(dport) = 3.118 H(sport) = 13.938

H(dport|dip) = 1.393 H(sport|dip) = 12.278

H(dport|sip) = 1.186 H(sport|dport) = 12.557

H(dport|sport) = 1.737 H(sport|sip) = 10.183

H(dport|dip, sport) = 0.263 H(sport|sip, dip) = 9.097

H(dport|sip, dip) = 1.018 H(sport|sip, dport) = 9.227

H(dport|sip, sport) = 0.230 H(sport|dip, dport) = 11.148

H(dport|sip, dip, sport) = 0.064 H(sport|sip, dip, dport) = 8.144

Fig. 6. Observed entropy amounts for source IP and port and destination IP and port among TCP syn
packets. All numbers are bits of entropy. The conditional entropies are the amount of entropy that remain
in a feature when the feature conditioned on are known.

probability distribution of pairs and triples of packet header fields (which is a more
tractable thing to do). To derive the full joint probability of a packet, the product of
the probabilities of each feature in the network, given that the parent features(s) (if
any) have the values that they do. Thus while the conditional probability of source
port given destination port is needed, the conditional probability of destination IP
given destination port is not.

The way in which we assessed full and conditional independence in designing our
network is by making entropy measurements on live traffic. We compute the amount
of entropy in different fields of the packet header, and then compute the mutual
information between various fields of interest. This allows us to assess quantitatively
which fields are related to which others. With real network traffic, we were not able
to establish the total independence of fields, but it might be close enough. Given the
way in which we use the result, it should not be overly sensitive to this effect. Figure 6
shows the relationship between source IP, source port, destination IP, and destination
port in real network traffic. This is based on 3 weeks of observation of 1,258,251
TCP syn packets on the network of a small company. Note that once the source IP
and source port are known, not much remains unexplained about the destination IP.
Providing the destination port as well explains not much more (just 0.166 bits). So,
the Bayes net shown asserts that destination IP is independent of destination port,
given source IP and source port.

S. Staniford et al. / Practical automated detection of stealthy portscans 119

3.2. Portscan correlation in Spice

Events which have an anomaly score greater than a certain threshold at the sensor
will be sent to the correlator. There, they are assembled into groups as described in
this section.

The challenge that we face is that we wish to consider a number of heuristics in
determining exactly what to group, and we don’t know a priori which heuristics will
be helpful in grouping any particular scan. For example, in one scan, the fact that the
ID fields in the IP packets are all the same will be very helpful, while in another scan,
the fact that source port and IP address proceed in lockstep is what will be helpful.

The other challenge is that we do not know in what order and how quickly the
events to be grouped will arrive – the ordering and timing may even be malicious.
Thus deterministic algorithms can easily be led astray. In this setting, we turn to
statistical physics algorithms for inspiration (though we will use them in a loose and
creative way).

3.2.1. Correlation graph
The metaphor that motivates our approach is this: the events (packets) to be corre-

lated are like atoms living in space. Each heuristic is expressed as a bonding energy
between the atoms. Then we createbonds between those events where the attrac-
tion is strongest. These are described in a graph, where the events are nodes and
the bonds are undirected edges. We refer to this as thebond graph. Roughly speak-
ing, two events will be bonded if there is a strong connection between the events.
Each bond has a certain strength associated with it. As a constraint, all events are
connected in a single graph.

Groups of related events are represented in the graph by subgraphs in which each
connection is above a certain strength. The events in such subgraphs describe an
entire group. Thus the groups are the connected subgraphs left when bonds weaker
than some threshold are deleted.

An example correlation graph is shown in Fig. 7.

3.2.2. Evaluation function
The strength of connections between events is evaluated pairwise. The form of the

evaluation function is:

f (e1, e2) = c1h1(e1, e2) + c2h2(e1, e2) + · · · + ckhk(e1, e2),

wheree1 ande2 are the events whose connection is being evaluated,c1 . . . ck are
constants, andh1 . . . hk are heuristic evaluation functions. The heuristic evaluation
functions capture knowledge of how events are connected in scans. The methods by
which a heuristic may operate are arbitrary. (We believe that a set of simple heuristics
can capture most portscans seen in the wild today and that it is feasible to capture the
stealthier portscans that are likely to be more common in the future with somewhat
more sophisticated heuristics.) So as to prevent any heuristic from exerting undue

120 S. Staniford et al. / Practical automated detection of stealthy portscans

Fig. 7. An example correlation graph. This is a screen shot of a tool to visualize a snapshot of a Spice
correlator graph. It is a plot of events and the edges (bonds) between those that are above a threshold. The
axes are source IP (s), destination IP (d), and time (t). The highlighted edges are part of the same group,
which is a stealthy, distributed-source, portscan. The closely spaced series of green dots on the right side
are an unstealthy horizontal portscan.

influence over the evaluation function, all heuristic evaluation functions are required
to produce results within the continuous range [0,1], where 0 indicates the heuristic
finds no connection between the events and 1 indicates the strongest possible con-
nection between the events. Initial heuristics are likely to include:

• Feature equality heuristics. Is the source IP address the same between the
events? The destination port? How about the destination network? If so, 1.
Else, 0.

S. Staniford et al. / Practical automated detection of stealthy portscans 121

• Feature proximity heuristics. How close are the times of the events? How about
the destination IP? Or the destination port? The closer, the closer to 1 the result
would be. If they are too far apart, the result is 0.

• Feature separation heuristics. This heuristic attempts to recognize gaps in a fea-
ture’s value between events. This can be done in a primitive way using just the
two immediate events being evaluated. It might recognize well-known separa-
tions between events, e.g., 1 hour between events or a step of 1 in destination IP.
Considering the bond partners of events allows more sophisticated analysis. It
can recognize that a certain feature has the same gap between two events as
between another two events. An efficient implementation might find the bond
partner of one of the events with closest to the same gap as the reference events
and evaluate the heuristic based on this closeness.

• Feature covariance heuristics. Recognizing event features that vary together
can be implemented to a limited extent by looking at just two events. It can be
noted, for instance, that source port is rising at the same rate as destination IP
(e.g., (destip1 – destip2)/(srcport1 – srcport2)= 1) and that would result in a
high value. Considering the events bonded to some event allows more sophisti-
cated heuristics. Ife1 ande2 have a rate between two features that is the same
as the rate betweene2 and some bond partner ofe2, there is a connection and
the heuristic would yield higher results. This would be useful for destination IP
to time based rates.

The constantsc1 . . . ck are expected to be within a small factor of each other for
active heuristics.

3.2.3. Adding events
When a new event is presented to the correlator, it needs to be added to the graph

somehow. There may be a large number (perhaps thousands) of events in the graph so
a new event cannot be tested for connections with every event. We use the technique
of simulated annealing [13], assigning some number (perhaps 4) of bonding partners
randomly initially (though we may wish to make one of these the last event added as
a possible optimization).

Simulated annealing is a technique that was originally developed in statistical
physics for finding the global energetic minima of physical systems. However, it
has since been used in a variety of applications in AI and other fields for problems
associated with finding the configuration that globally maximizes some evaluation
function in the presence of local maxima. The name and algorithm derive from an
explicit analogy with annealing which is the process of gradually cooling a liquid
till it freezes. It can be viewed as a variation on a hill-climbing algorithm. In the hill
climbing algorithm, all successor states (neighbors) of a given state are evaluated
and the one that evaluates the highest is chosen as the new reference point. This con-
tinues until all successors are worse than the present. This termination condition is a
problem if there are local maxima in the state space. Simulated annealing overcomes
this problem by sometimes making moves to states that seem worse.

122 S. Staniford et al. / Practical automated detection of stealthy portscans

At each step in simulated annealing, a possible successor is chosen randomly
among the successors of the current state. If the successor state evaluates better
than the current state, it is made the next current state. If it is worse, then a move
is made to it only with certain probability. This probability decreases with the degree
to which the possible successor state is worse than the current state and is regulated
by a cooling schedule. The cooling schedule controls the degree to which negative
moves are allowed. The cooling schedule is defined by a function that starts off high
(at 1) and decreases to 0 by the time at which the global maxima is expected to be
found. When it is at 0 it is essentially hill-climbing.

As we apply it to the process of finding bond partners for a new event, the states
are events in the bond graph and the evaluation function is the one introduced in the
previous section, applied between the new event and the other event. Successors of
a state are the existing bond partners of the current event. The exception to this is if
a successor already has a bond with a new event, in which case its bond partners are
considered successors but it is not. We denote the schedule function bysched, where
sched(t) is its value at timet. This becomes 0 in some finite time. We will illustrate
the process with the following algorithm, wheremaxe is the highest possible value
of the evaluation function:

add_event(new)

for i = 1 to 4

current = randomly chosen event in the graph

t = 1

while (sched(t) > 0)

neighbor-set = neighbors(current,new)

next = randomly chosen event from

neighbor-set

change = e(new, next) - e(new, current)

if (change > 0 or (rand(0,1) <

echange/(sched(t) ∗ maxe)))

current = next

t+ +

create a new bond between current and new

neighbors(refevent, avoid)

set n to {}

for each event e in a bond from refevent

if there is not an bond between e and avoid

n = n+ e

else

n = n+ neighbors(e, avoid)

return n

S. Staniford et al. / Practical automated detection of stealthy portscans 123

Fig. 8. Some simulated annealing steps to add e100 to the correlation graph.

Figure 8 shows some example steps in the annealing process. Initially, a new event
e100 is given a bonding partnere17 at random; their link evaluates a strength of 1.7.
e22 is chosen as the next event since it is a neighbor ofe17. The link betweene100

ande22 evaluates to 4.0, better than the link withe17, so it becomes the current event.

124 S. Staniford et al. / Practical automated detection of stealthy portscans

e5 is chosen at random amonge22’s bonding partners as the next possible successor.
Although it evaluates lower (2.1), it is selected anyway by chance.e74 is not as lucky;
it evaluates lower thane5 but it is not selected ande5 remains the current event.e22 is
chosen as the possible successor toe5 and is selected due to its higher evaluation.e50

is chosen amonge22’s bonding partners and it becomes the new current event since
it evaluates higher.

When other correlators provide groups of events for consideration, they are added
individually to the graph using the process described above. There is no attempt to
maintain global consistency as to the disposition of event groups. This would be
complex in general and this way allows individual correlating sites to decide on their
own parameters and heuristics.

Weak bonds in the graph that are not necessary to maintain graph connectedness
would be discarded as a low priority background operation. This helps keep the graph
tidy.

3.2.4. Timing out events
All events time out. How long they are around depends on their anomaly score and

the other events in the group of which they are a part. An event’s individual lifetime is
proportional to its anomaly score, so the most anomalous events are retained longer.
This is added to the time of the event to find its scheduled timeout. However, events
in a group inherit the latest timeout of any event in the group. This keeps events
around while they are part of an active group and rewards being bonded to long lived
events.

If, after removing events that have timed out, the graph is separated, then an opera-
tion must take place to reconnect the graph. The way to determine what disconnected
subgraphs are created by removing events is to check for paths between the events
that neighbor the removed events. If there is a path, they are in the same subgraph.
Provided there is more than one subgraph, reconnection proceeds as follows. For
each pair of subgraphs, the strongest pairwise bond between events in the two sub-
graphs is added to a list sorted by decreasing strength. This produces a list of the
best way to merge any two subgraphs. To determine which of these to employ to
merge all the subgraphs together, repeatedly removed the top of the list. If the events
are still in different subgraphs, a bond is added between the events. This continues
until all the subgraphs have been merged. We believe that this procedure is a good
tradeoff between performance and bond strength optimization. We expect that in the
typical case, there would be only a small number of disconnected subgraphs formed
because a well connected event seems less likely to time out.

3.2.5. Sharing and alerting scans
The anomaly score for a group of events is the sum of the anomaly scores for

the events in a group. This is used when deciding when to share or alert groups of
events. If a certain threshold is exceeded, the group of events is shared with other
correlators. If a separate (presumedly higher) threshold is exceeded, then a group of
events is sent as an alert to a user.

S. Staniford et al. / Practical automated detection of stealthy portscans 125

3.3. Limits on detection

In this section we take an intuitive look at the theoretical bounds on what Spice
can detect. Formalizing this is left as an exercise for the reader or for the authors at
a later date.

Spice is the component that classifies a set of events as a portscan. However, the
only events it considers are those that the anomaly sensor produces. So we first con-
sider the anomaly sensor. The anomaly sensor passes along statistically anomalous
packets to Spice. As argued in Section 1, the vast majority of scan packets will be
statistically anomalous and thus will be passed to Spice. The ones that will not be
are the ones that happen to look like normal traffic. The importance of their omission
from a portscan report depends on the application for which Spice is being used.
However, there is likely to be a pattern apparent in the scan, so that the missing
events, if any, can be inferred.

An event fails to be detected as part of a portscan if it has not been included in with
a group that gets reported as a portscan. As described in Section 3.2.4, a group times
out when each of the component events reach the end of their individual lifetimes.
Thus, a group must be kept fresh in order to be around to include any later portscan
events. This means that much depends on the constant that is used as a multiplier to
calculate the individual lifetime of an event. If the attacker allows a time greater than
the individual lifetime of an event to pass before sending the next event in the scan,
then there is no way for Spice to detect the scan. (Given a reasonably long lifetime
factor though, it is unlikely that attacker would be patient enough for the results of
the portscan. The results could even be out of date by the time the scan completes.)

Due to the nondeterministic approach used in adding events to the bond graph,
there is a small chance that a new event will not be grouped with another event in the
same portscan that is already present in the bond graph, even if the bond score would
have been high enough. Such an possibility (the occurrence of which is controllable
to an extent by the cooling function used in simulated annealing) would delay the
inclusion of an event in a portscan group and thus could be a factor in a missed
detect.

For a given bond evaluation function, not all pairs of events in a portscan are
necessarily within a given grouping threshold. This could occur even if the bond
evaluation function is constructed well enough to include all scan event within the
grouping threshold. Thus, the ordering of the events in the scan could be important.
For example, the attacker could attempt to schedule the events such that a small group
of portscan events would time out before the necessary events occur to enable it to
be included in a large enough group to be reported. (Even given a relatively patient
attacker, it is not known whether this is something that can be practically achieved.
The geometry of the scan footprint being targeted by attacker may also put limits on
this.)

To improve the reporting of events in a scan, there is pressure to increase event
lifetimes and to lower the grouping threshold used. The tradeoff with this is that

126 S. Staniford et al. / Practical automated detection of stealthy portscans

non-scan events could also be included in portscan reports. Lowering the reporting
threshold and using a less specific (weaker) bond evaluation function might also im-
prove the reporting of scan events, but would increase the chance that non-scan traf-
fic is reported as a scan. Fine-tuning these trade-offs is most likely to be determined
empirically and would depend on the goals of the organization using Spice.

3.4. Spade

We have an implementation of the Spice anomaly detector publicly released under
GNU GPL. It is called SPADE (Statistical Packet Anomaly Detection Engine) and
can be downloaded from http://www.silicondefense.com/software/spice/. It is a Snort
preprocessor plugin, which gives us the benefit of using Snort’s input/output facilities
such as receiving packets already parsed into a data structure. This is where we
maintain the probability tables that are used to assign an anomaly score. In its present
form, Spade only looks at TCP syn packets since this where the interesting truly
stealthy scans are now (by design though, it can easily handle other packet types).

The portscan correlation will run in a separate process, possibly on a remote ma-
chine (see Section 3.5). The communication between the anomaly detector and the
correlator is via sockets and consists of the anomaly detector passing along details
of anomalous events along with their anomaly scores. We think that having sepa-
rate processes and communicating via sockets makes sense for a couple of reasons.
First, this way Snort does not take too long in processing any packet, which might
otherwise lead to dropping packets. The correlating process has a little more liberty
to do extra computations with the anomalous events. Also, if other correlators want
to communicate anomalous events that they have found, then they can send it to the
correlating process and not to Snort.

3.4.1. Spade features
Spade has a number of features that can be enabled and configured through

the Snort configuration file. It offers the user four alternatives for assessing
the likelihood of packets. One is the Bayes network depicted in Fig. 5. The
other three are direct joint probability measurements:P (sourceIP, sourceport,
destinationIP, destinationport), P (sourceIP, destinationIP, destinationport), and
P (destinationIP, destinationport). The user may also elect to have Spade only mon-
itor packet going into certain networks. This allows Spade to focus its assessment on
the traffic of interest, removing the noise of outgoing traffic (which typically has a
much larger range of possible addresses and ports).

Since Spade maintains state over a period of time, it provides checkpointing and
recovery facilities. Spade starts up recovering its state from a specified file and peri-
odically (and on signals and Snort exit) stores its state in a designated file.

The anomalous event reporting threshold is an important parameter in a Spade
installation. Unfortunately it is also one whose ideal value varies from site to site
depending on the characteristics of the network. This could also vary over time. If

S. Staniford et al. / Practical automated detection of stealthy portscans 127

the threshold is too high, interesting events may be missed. If it is too low, the use
may be flooded with events, most of which are not interesting. To allow the user to
get Spade running well “out of the box” with minimal threshold adjustment, three
capabilities are provided by Spade to automatically adjust the threshold to observed
network traffic. These aim to meet a specified target rate (in term of packet count or
in terms of a fraction of traffic).

Spade also provides two modes unrelated to its primary purpose of reporting
anomalous events. One is a survey mode in which statistics about the distribution
of anomaly scores recently observed are appended to a file periodically, thus produc-
ing a table of this information. The other is the capability to report on certain known
feature statistics such as entropy and conditional probabilities. It is this functionality
that produced the measurements shown in Fig. 6.

3.4.2. Maintaining probabilities in Spade
Depending on the probability mode, Spade needs to maintain certain joint proba-

bilities for packet features. (Conditional probabilities needed for the Bayes network
calculation can be derived from unconditional probabilities.) The most efficient way
to do this in a real time system is to maintain a count of features in observed events.
Conceptually, for a featureA, whose probabilities are needed, there would be a table
with the different possible values ofA and a count of their occurrences. To determine
the probability of a particular value ofA, its count is divided by the total number of
events recorded in the table. If we need to know the probability of the joint occur-
rence ofa ∈ A andb ∈ B, then we need a two-dimensional table, where the entry
for a andb records a count of their joint occurrence. In general ak-dimensional table
is used to record the joint occurrence ofk feature-values.

Now comes the question of how to efficiently represent these tables. The nature
of network traffic influences this. Certain feature values may be much more likely
than others (e.g., destination port 80 may be much more likely than destination port
5037). In fact, the observed values may be sparse compared to the total range of
possible values for a feature, so an array representation (while it would be efficient
for lookups) would be too expensive in terms of memory usage. Hash tables can be
similarly inefficient and it would be difficult to find a good general hash function
that is not biased with the data for all cases. For the conditional probability tables,
we would require hash tables of pointers to other hash tables. This would certainly
make for much waste of space for rows in the table that were almost empty.

It is also important to have a data structure which will perform tolerably well
even when the sensor is seeing a flood scan designed deliberately to fill up the data
structure with all possible cases that could occur in the table. This rules out linked
lists and similar structures.

We take a general approach. We have decided on a custom data structure and
algorithm based on a balanced binary search tree. Our aim is a solution which gener-
ally provides very fast access for the common cases (main servers and most popular
ports), but can handle very large growth in the number of entries in the structure
while still maintaining tolerable performance and being space efficient.

128 S. Staniford et al. / Practical automated detection of stealthy portscans

Fig. 9. Balanced Binary Search Tree for counts of destination ports. The upper number in leaf nodes are
the port number represented and the lower number is a count of instances. In interior nodes, the upper
number is the indication of the position of value beneath and the lower number is the sum of instances
counted below.

Let us first introduce the data structure as it would be used for a single dimension.
A tree is maintained that stores all the values observed. These values are stored in
leaf nodes along with a count of the number of instances observed. As is standard
in binary search trees, these nodes are kept in order from left to right. Interior nodes
record the largest value on the left side of the node. This serves as an indication
whether to go left or right to look for (or insert) a leaf node of a particular value.
Interior nodes also maintain the sum of the counts of the leaf nodes beneath the node.
Consider as an example the tree in Fig. 9, depicting counts of destination ports.

It is this sum that is the focus of balancing in our efforts to maintain the tree. We
feel the counts serve as a predictor of future accesses. Specifically, we wish for the
left and right child nodes of all interior nodes to have as close to the same count/sum
as possible. The result of this is a tendency to push leaf nodes with higher counts
higher in the tree, since they have more weight for the balancing than other nodes.
This results in more efficient access for this common case.

The need to rebalance a subtree is checked periodically. This period is in terms
of the number of count increments in the subtree. To support this, a wait count is
maintained on each interior node. This count is decremented with each increment in
the subtree. When an interior node is created and after a rebalance check, the wait
count is set to the greater of 10 or the minimum number of insertions that would be
needed to unbalance the subtree. Any interior nodes whose children were changed in
the process of rebalancing are also checked for rebalancing. Also to avoid frequent
rebalancing, no effort is made to rebalance a subtree unless one side is more than
twice the size of the other side.

S. Staniford et al. / Practical automated detection of stealthy portscans 129

Fig. 10. Balanced Binary Search Tree after 4 more port 80 observations.

To rebalance a subtree, left and right rotations (see [3]) are performed. If the left
has a higher count/sum than the right, then a right rotation is done; otherwise a left
rotation is done. In addition to right and left rotations, more general relocation of
subtrees from right to left and left to right are performed if needed for rebalancing.
This is repeated for the node in that position in the tree until a further rotate would
bring the tree more out of balance than current or until no further rotations can be
done since a leaf node and the bottom of the tree is encountered.

As an example of rebalancing, consider the balanced binary search tree in Fig. 10,
which is the tree shown in Fig. 9 after 4 additional port 80 observations. Notice that
the children of the root are unbalanced. After a left rotate, this would be rebalanced
to the tree shown in Fig. 11.

To use this structure in two dimensions, the type of trees described would also
be used for a second dimension and would be anchored off the leaf nodes in the
first dimension. This is extended in a straightforward manner for more than two
dimensions.

The characteristics of a network will change over time and the most attention
should be paid to recent characteristics. Furthermore, if we were to store artifacts of
every access indefinitely, this would lead to a large amount of memory use and large
data structures. The approach taken in Spade to this is to de-emphasize past obser-
vations periodically with respect to new observations. It would be too inefficient to
scale all current counts down by certain amount with each new event (and ultimately
too inflationary to increasingly emphasize new events, besides which it would not
eliminate old one-time events). Instead, we take the optimization of only doing the
de-emphasis on occasion. For example, every hour we might multiply all counts by
99.5%, discarding occurrences with too low a result (say below 0.25). Thus an ob-
servation that occurred once (and was given an initial weight of 1) would only have
a weight of 0.886 after 24 hours.

130 S. Staniford et al. / Practical automated detection of stealthy portscans

Fig. 11. Rebalanced Balanced Binary Search Tree after a left rotate at the root.

3.4.3. Spade results
Though our results are preliminary, Spade seems stable and efficient. We have

had it running for over 3 months on a client’s Internet connection without problems.
Using the 3 week data set (see Section 3.1), we measured that Spade processed the
file in about 2 minutes, including producing reports. This is an average of about
86 microseconds per packet. Memory use was between 2 and 42 MB depending on
the probability mode employed.

In using it for our commercial monitoring with a threshold setting that typically
produces about 300 alerts per day, Spade has noticed (at least) most of the events in
every TCP syn portscan that we would have noticed otherwise. In addition, there are
many slow or small scans we have detected though the Spade alerts that we would
not have noticed otherwise.

As a step in assessing the effectiveness of Spade in detecting actual portscans,
we identified 28 horizontal scans (consisting of 1245 packets) and 4 nmap network
scans (10,7026 packets) in the 3 week data set. (There may have been scans we did
not find in that data set.) We then compared this against the alerts produced when
Spade was run in different configurations. We present some of our results here.

We calculate two indicators, which we termefficiency andeffectiveness. Efficiency
is the ratio of the number of true positives to all positives. For these experiments, it is
the number of alerts that had been labelled as part of one of the scans divided by the
number of alerts produced. The bigger this number is, the less noise the correlator
will have to deal with. Effectiveness is the ratio of true positives to all trues. This is
how well Spade detected scan packets. For us, this is the number of alerts that had
been labelled as part of one of the scans divided by the number of labelled events.

There is a tradeoff between these indicators. Generally, if you want increased ef-
fectiveness (that is, you want to catch more of the scans), the lower your efficiency

S. Staniford et al. / Practical automated detection of stealthy portscans 131

Table 1

Spade results on the 3 week data set with threshold settings of 12,
13, 14, and 15 and with the 2 feature joint probability mode

Threshold 12.0 13.0 14.0 15.0

of alerts 19,1718 16,8606 15,0082 13,6554

events detected

horiz. 1195 1160 1107 984

Nmap 106,910 106,904 106,764 106,492

total 108,105 108,064 107,871 107,476

Efficiency 0.5639 0.6409 0.7187 0.7871

Effectiveness 0.9984 0.9980 0.9963 0.9926

Table 2

Spade results on the portion of the 3 week data set
that has destination internal to the monitored network.
Threshold settings of 9, 11, and 13 and the 2 feature joint
probability mode were used

Threshold 9.0 11.0 13.0

of alerts 127,225 119,234 114,400

events detected

horiz. 1205 1195 1143

Nmap 106,940 106,912 106,896

total 108,145 108,107 108,039

Efficiency 0.8500 0.9067 0.9444

Effectiveness 0.9988 0.9984 0.9978

will be (that is, you will have more noise). This is illustrated in Table 1. This shows
the results of running Spade over all the packets in the data set using the two feature
joint probability mode with static threshold settings of 12, 13, 14, and 15. The higher
the cutoff, the higher the efficiency but the lower the effectiveness.

However, using Spade’s homenet option improves both. The homenet was set to
cover the IP addresses of the monitored network. This leaves 1,010,909 packets
whose destination is in the home network. The two joint probability mode is used
again with static threshold settings of 9, 11, and 13. The results are depicted in Ta-
ble 2. For any of these settings, the efficiency is above 85% and the effectiveness is
above 99.7%. The reason for the improvement seems to be that outgoing traffic could
not be adequately sampled in terms of destination port and IP combination due to the
wide variety of destinations.

Table 3 depicts some results of comparing the different probability modes avail-
able in Spade (see Section 3.4.1). We used Spade’s adapt3 mode, which very slowly
adjusts the threshold to meet a target rate. As configured, every hour the rate is ad-
justed by averaging the last 168 measurements of what threshold would have caused
0.3% of packets to be sent as alerts. The homenet option was again employed. The

132 S. Staniford et al. / Practical automated detection of stealthy portscans

Table 3

Spade results for the different probability modes on the portion of
the 3 week data set that has destination internal to the monitored
network. Spade adapt3 mode was use with a target alert rate to
0.3% of packets

Probability mode joint-2 joint-3 joint-4 Bayes

of alerts 116,453 87,889 478,069 402,596

events detected

horiz. 1191 527 413 244

Nmap 106,815 44,294 68,290 79,830

total 108,006 44,821 68,703 80,074

Efficiency 0.9275 0.5100 0.1437 0.1989

Effectiveness 0.9975 0.4139 0.6345 0.7395

joint probability mode with 2 features clearly does the best here, detecting 99.75%
of those scan packets. To truly have a fair comparison between the modes, we should
compare the results when they are in the configuration that works best for them (e.g.,
at their best reporting threshold).

These preliminary results serve to support our belief that Spade can detect portscan
packets well, but that it may take some amount of configuration work to find an
optimal configuration. Note also that a low efficiency rate might be acceptable when
Spade is being used to feed the correlation engine, part of whose task it is to weed
out non-scan events.

3.5. Correlator implementation

We have completed a detailed design of the correlator and have nearly completed
our initial implementation. We are using a multi-threaded approach. The threads
currently implemented are: a thread to receive anomalous event reports into a queue,
threads to add events from the queue to the bond graph and to report scans, a thread to
clean up the graph (removing weak links), and a thread to time out and remove events
from the graph. Also anticipated are a checkpointing thread, a thread to respond to
queries about correlator state, and a thread to receive commands to adjust operational
parameters dynamically. Certain read and write mutual exclusion locks need to be
maintained for data shared between threads (e.g., the bond graph, the queue, and the
timeout data structure).

The bond graph has a pretty straightforward representation for traversing the
graph. Two operations that a graph representation is not good for are discussed in
the following section.

3.5.1. Timeout data structure
The representation of the bond graph is not suited for maintaining event timeouts

or choosing random events from the graph. Thus we maintain a separate timeout
structure for these operations. A simple example of this is depicted in Fig. 12.

S. Staniford et al. / Practical automated detection of stealthy portscans 133

Fig. 12. Timeout structure example. The lower part is the timeout hash table of sizeN = 4. The upper
part is the event count array depicted as a tree. Dashed lines show how these relate. The value on the
event count tree nodes is the number of events beneath its left side. Event numbers illustrate the implicit
ordering of events in the hash table.

At a conceptual level, the timeout structure maintains a record of events and when
they will time out. As an optimization, it actually records the scheduled timeout –
the time it was to time out in the last instance it was checked. This may be different
than its timeout value at a given moment since the timeout might be delayed due to
new events that are added to its group. When the clock reaches the value of an entry
in the timeout tree, each event associated with that entry is checked. If the timeout
is still current, then it is deleted from the timeout structure and from the bond graph.
Otherwise it is reinserted into the structure with its new scheduled timeout value.

At an implementation level, we use a hash table to maintain the list of times at
which timeouts are scheduled to occur and for which events. A simple hash function
is employed,h(t) = t modN , whereN is the size of the hash table array. When
multiple timeout times hash to the same bucket in the hash table array, a linked list
of times (and the associated events) is used for the bucket. This linked list is kept
sorted by increasing timeout time.

We also use this timeout structure in selecting random events. Our strategy for
picking events with uniform probability is to conceptually order all the events in the
hash table, to choose an order position by choosing a integer with equal probability
among the positions. The corresponding event would then be retrieved. We order

134 S. Staniford et al. / Practical automated detection of stealthy portscans

the events as follows: first by hashtable array position (smallest to largest), then by
timeout time, and finally by event position in the list of events at the time. (It does
not matter that the event list is in arbitrary order or that the timeout values may not
be current; we only care that the order is well defined at any given time.)

Standard hash tables are not efficient for selecting events in this manner (retrieving
an event in an arbitrary position), so we augment the hash table with an array of size
N − 1 maintaining certain counts of events in a range of hash table array slots. As is
often done with the heap data structure [3], we view this count array as a complete
binary tree. The tree root is node 1, the left of nodei is 2∗ i, and the right of node
i is 2∗ i + 1. For simplicity in discussion, we assume thanN is a power of 2. The
tree is a full one of height log2(N) in this case. TheN/2 leaves of this tree each
(conceptually) have adjacent left and right nodes in the timeout hash table array. The
count maintained on each node in tree is the number of events below its left node. For
example, node 2 in the figure stores the number of events in the first hash bucket and
node 1 contains the number of events below node 2. This allows a particular event
position to be located by walking down the tree from the root. To further increase
selection efficiency, we maintain a count of events at a given timeout (not depicted
in the figure), so that events in certain times can be skipped entirely.

3.5.2. Correlator results
As of the time of this writing, we had just begun formal experimental testing of the

correlator. The results from informal testing are promising. In several scenarios using
real data with introduced scans, we detected and grouped the events of randomized
horizontal portscans with inter-probe gaps as high as 90 minutes, even using sev-
eral source IP addresses. There were few false positives or extra events grouped in.
In addition to formal experiments, we have plans to validate SPICE in operational
environments.

4. Future work and extensions

In this work, we have sketched the design for Spice, which we hope will be a viable
method of picking stealthy portscans out of background traffic. We also described
the implementation of the Spice anomaly sensor, Spade and the Spice correlator.
We will conduct formal experiments with Spade and Spice to measure its detection
performance. Operational validation will also be done. These may suggest ways to
tune Spade and Spice.

We note also that if this tool is successful, it should also be very useful for detect-
ing the spread of worms and the use of distributed denial of service networks. Like
portscans, those applications involve large numbers of connections or packets with
similar structures which will typically be quite anomalous relative to regular traffic.
The only difference from detecting portscans will be some change in the heuristics.
Thus Spice could be a tool capable of detecting such misuses of the networkwithout
first reverse engineering the particular worm or DDOS tool in use.

S. Staniford et al. / Practical automated detection of stealthy portscans 135

We also note that Spice lends itself in a natural way to distributed or hierarchi-
cal use. We could share events upwards or sideways only if they were particularly
anomalous (more so than required just to correlate them locally). This would allow
a set of Spice correlators to collectively detect and characterize very sparsely dis-
tributed network misuse across a number of autonomous networks. Hence, it might
be possible for collaborating sites to compare strange events such as Fig. 3, and de-
termine whether they genuinely are isolated, or whether they are part of a larger
pattern at present unseen.

Acknowledgements

This work was supported under DARPA contract #F30602-99-C-0181. We thank
DARPA for their ongoing support of our research, and intrusion detection research in
general. This paper was helped by discussions with some of our collaborators at Boe-
ing (Randy Smith and Dan Schnackenberg), UC Davis (Karl Levitt, Jeff Rowe, and
Dave Klotz), and NAI Labs (Dan Sterne, Kelly Djandahari, and Roshan Thomas).
Dave Farrel and Raymond Parks at Sandia National Labs provided helpful ideas
about the attacker’s view of portscanning. The idea to use Bayes networks in this
way came to us following discussions with Al Valdes at SRI of his quite different
use of Bayes networks in [17]. We also thank Marty Roesch, Patrick Mullen, and
the rest of the Snort community for making available a viable open-source IDS; that
was important in the development of this research. Finally, thanks to Steve Northcutt
for the quote given at the start of this paper, which partially inspired this work. We
aren’t brilliant yet, but we aspire to be.

All opinions in the paper are those of the authors alone.

References

[1] http://www.tcpdump.org/.

[2] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, J. Rowe, S. Staniford-Chen,
R. Yip and D. Zerkle, The design of GrIDS: A graph-based intrusion detection system, U.C. Davis
Computer Science Department Technical Report CSE-99-2, 1999.

[3] T. Cormen, C. Leiserson and R. Rivest,Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[4] Fyodor, http://www.insecure.org/nmap/.

[5] Fyodor, The art of scanning, Phrack 51, www.phrack.com.

[6] Fyodor, Remote OS detection via TCP/IP Stack Fingerprinting, Phrack 54, www.phrack.com.

[7] L.T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood and D. Wolber, A network security mon-
itor, in: Proc. 1990 Symposium on Research in Security and Privacy, Oakland, CA, May 1990,
pp. 296–304.

[8] S. Northcutt,Network Intrusion Detection: An Analyst’s Handbook, New Riders, Indianapolis, 1999,
p. 125.

136 S. Staniford et al. / Practical automated detection of stealthy portscans

[9] V. Paxson and S. Floyd, Wide-area traffic: the failure of Poisson modeling,IEEE/ACM Transactions
on Networking 3(3) (1995), 226–244.

[10] P. Porras and A. Valdes, Live traffic analysis of TCP/IP gateways, in:1998 Internet Society Sympo-
sium on Network and Distributed System Security, San Diego, March 1998.

[11] M. Roesch, Snort – lightweight intrusion detection for networks, in:Proceedings of the 1999
USENIX LISA Conference, November 1999.

[12] M. Roesch, http://www.snort.org/.

[13] S. Russell and P. Norvig,Artificial Intelligence: A Modern Approach, Prentice-Hill, Upper Saddle
River, NJ, 1995.

[14] Savage, http://www.apostols.org/projectz/queso/.

[15] Simple Nomad, http://razor.bindview.com/tools/desc/icmpenum_readme.html.

[16] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee,
R. Yip and D. Zerkle, GrIDS – a graph-based intrusion detection system for large networks, in:The
19th National Information Systems Security Conference.

[17] A. Valdes and K. Skinner, http://www.sdl.sri.com/emerald/adaptbn-paper/adaptbn.html.

