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Practical benchmarking of statistical and machine

learning models for predicting the condition of sewer

pipes in Berlin, Germany
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H. Sonnenberg, E. Eckert, N. Lengemann, J. Waschnewski and P. Rouault
ABSTRACT
Deterioration models can be successfully deployed only if decision-makers trust the modelling

outcomes and are aware of model uncertainties. Our study aims to address this issue by developing

a set of clearly understandable metrics to assess the performance of sewer deterioration models

from an end-user perspective. The developed metrics are used to benchmark the performance of a

statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine

learning model, namely, Random Forest, an ensemble learning method based on decision trees. The

models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany

(115,258 inspections). At network level, both models give satisfactory outcomes with deviations

between predicted and inspected condition distributions below 5%. At pipe level, the statistical

model does not perform better than a simple random model, which attributes randomly a condition

class to each inspected pipe, whereas the machine learning model provides satisfying performance.

66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning

approach shows a strong potential for supporting operators in the identification of pipes in critical

condition for inspection programs whereas the statistical approach is more adapted to support

strategic rehabilitation planning.
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INTRODUCTION
Context

Insufficient public and municipal investment represents a

major challenge for the sustainable management of sewer

networks. More than a decade ago, the American Water

Works Association estimated that a new era was dawning:

the replacement era in which the country will need to reha-

bilitate massively the water and sewer networks built by the

previous generations (AWWA ). In many cities world-

wide, the buried infrastructure is nearing the end of its

useful life and will soon reach the age of renewal. The
need for maintaining and expanding the United States’

water and sewer network is estimated to approximately

$126 billion in 2020 (ASCE ). In Germany, a recent

national study highlighted that 20% of the sewer network

have severe defects that require short- or mid-term rehabili-

tation (Berger et al. ). Over the last years, the annual

investment for sewer rehabilitation has been about four bil-

lion € whereas capital need is estimated to be more than

seven billion €, indicating a capital deficit of at least three

billion € (IPK ; KfW ). Delaying further the invest-

ment will result in degrading water and sewer services,
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escalating flood risk, increasing environmental impacts and

raising expenditures for emergency repairs.

The funding gap and the investments needed to cope with

sewer deterioration will necessarily lead to future increases of

the water tariff (Oelmann et al. ). Utilities are challenged

to develop efficient rehabilitation strategies in order to keep

the same level of service. A promising leverage of utilities is

the improvement of technical asset management and, in par-

ticular, the use of digital solutions to improve the efficiency of

inspection and rehabilitation strategies. Utilities often lack

appropriate tools to plan and manage long-term investment

needs (Black & Veatch ) and rely on reactive strategies,

repairing mainly when failures occur.

To tackle this issue, deterioration models have been

developed to forecast the evolution of the system according

to its current and past condition observed during CCTV

inspections. Deterioration models can be used to simulate

the condition of non-inspected pipes and to forecast the

evolution of the condition of the sewer network under differ-

ent investment strategies. Model outputs provide key

information to operators and municipalities for the schedul-

ing of inspection programs (i.e., the detection of sewers in

critical condition) and the planning of rehabilitation budgets

(i.e., the comparison of different sewer rehabilitation scen-

arios and the evaluation of necessary investment rates).

Several modelling approaches have been developed

over the last 20 years to support rehabilitation planning

(e.g., Babovic et al. ; Savić et al. ; Ward & Savić

; Scholten et al. ) as well as inspection and mainten-

ance prioritization (e.g., Baur & Herz ; Berardi et al.

). For a detailed review of modelling approaches, refer

to Ana & Bauwens (), Rokstad & Ugarelli () or

Kley & Caradot (). Many studies have intended to evalu-

ate the performance of statistical and machine learning

deterioration models (e.g. Tran et al. ; Chughtai &

Zayed ; Ana et al. ; Khan et al. ; Salman

; Harvey & McBean ; Sousa et al. ; Ahmadi

et al. ; Rokstad & Ugarelli ). The outcomes of

these studies underline the relevance of using deterioration

models to support asset management strategies but suffer

from two main shortcomings as follows:

• The lack of data for model calibration: models are often

calibrated with less than 2,000 pipes which represent
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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only a small part of the networks (except for the studies

of Salman () and Rokstad & Ugarelli () that

developed deterioration models in the cities of Cincinnati

in the USA and Oslo in Norway using 11,373 and 12,003

pipes, respectively).

• The lack of clear metrics adapted to utilities’ issues for

the assessment of model performance: most metrics are

based on statistical tests (e.g., mean square error, good-

ness-of-fit and coefficient of determination) and do not

provide a full understanding of the potential of deterio-

ration models for municipalities and sewer operators.

Furthermore, the metrics often assess the overall per-

formance of the models without exploring the single

performances for the prediction of each condition class.

Since the condition of sewer networks is mostly imbal-

anced (many pipes in good condition and few pipes in

poor condition), this assessment can lead to biased

conclusions.

Research objectives

The proper validation of deterioration models is the key to

build the confidence of utilities regarding the models’ use.

Deterioration models can be successfully deployed only if

decision-makers trust the modelling outcomes and are

aware of the model uncertainties. Our study aims to address

this issue with the following objectives:

• Develop a set ofmetrics adapted to the local utility needs to

assess the performance of sewer deteriorationmodels from

an end-user perspective. The metrics must be intuitive, self-

explanatory and so clearly understandable by the sewer

operator. Thus, they should be able to convince the utility

about the relevance or uselessness of using deterioration

models to support asset management strategies. This

point is crucial for facilitating the communication of the

outcomes and ensuring the acceptance of the results.

• Apply the set of developed metrics to benchmark the per-

formance of a statistical and a machine learning

deterioration model trained with the extensive CCTV

dataset of the sewer of Berlin, Germany. In Germany,

regional regulations commit sewer operators to inspect

their networks entirely every 10 or 15 years. In Berlin,

each pipe of the almost 10,000 km sewer network has
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been inspected at least once by the end of 2016. The

inspection database is a highly valuable knowledge that

can be exploited to assess model performance in the

special case of full data availability.

The statistical approach selected is the model GompitZ

(Le Gat ; Werey et al. ), based on the theories of sur-

vival analysis and Markov chains. The machine learning

approach selected is Random Forest, an ensemble learning

method for classification or regression, already successfully

implemented for the prediction of sewer pipes condition

(Harvey & McBean ; Vitorino et al. ; Rokstad &

Ugarelli ). Outcomes of the benchmark analysis will be

used to draw conclusions on the strengths and weaknesses

of both approaches regarding asset management objectives.
MATERIALS AND METHODS

Data preparation

The study has been performed using the extensive GIS and

CCTV database of the city of Berlin in Germany (3.5 million

inhabitants).

The sewer network is composed of 235,988 pipes

(9,710 km) registered in the GIS database. Most pipes are

sanitary sewers (45%), 35% are stormwater sewers and

20% are combined sewers. Clay and concrete are the two

dominating materials with proportions of 54% and 25%,

respectively. The GIS database contains the main pipes’

characteristics (construction year, material, type of effluent,

shape, diameter, length, depth, slope, city district) and has

been extended with environmental features expected to

influence sewer deterioration (tree density, proximity of

tramway or subway, groundwater level, type of soil).

The Berlin water company has conducted extensive

CCTV inspection programs since the 1980s. Sewer defects

observed during inspections are systematically coded in a

local coding system similar to the German guideline ATV

M - (). Sewer structural condition is evaluated

using an internal company classification system with three

grades indicating the emergency of rehabilitation.

After data preparation (consistency check, filtering and

clean up), 115,258 inspections with a length of 4,825 km
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
over 102,258 pipes were available for the study. The distri-

bution of the main pipe characteristics and environmental

features for the inspected sewer network of Berlin is

shown in Figure 1.

Of the inspected pipes, 22% are in poor or very poor

condition (condition class 3) and require immediate or

short-term rehabilitation measures; 24% of the pipes are in

a medium condition (condition class 2) and must be rehabi-

litated in the medium term (time horizon: 10 years) whereas

54% of the pipes are in good or perfect condition (condition

class 1). Figure 2 shows correlations between the main

sewer characteristics and the sewer structural condition.

The condition is clearly correlated with the pipe age; old

pipes are in worse condition than new pipes. However,

the condition of very old pipes (>100 years old) seems to

improve slightly. This phenomenon is known as survival

selection bias. Inspection data have a tendency to be

biased as the observations are carried out in a restricted

time window (for this study from 2001 to 2016). Most old

or deteriorated pipes have already been replaced, thus are

not fully represented in the sample of inspection data.

The condition is also correlated with the pipe material;

sewers made of concrete are in worse condition than clay

pipes or PVC pipes. Since stormwater pipes are mainly con-

structed with concrete, they appear to be in worse condition

than sanitary pipes. The width and the depth also seem to

play a relevant role: small-diameter and shallow pipes are

in worse condition than big pipes and deeply laid pipes,

respectively. The condition distribution varies strongly

between the districts probably due to cross correlations

with other pipes’ external characteristics (e.g., type of soil,

type of effluent, age of the network, etc.).

Modelling approaches

Random Forest

Random Forest (RF) is an ensemble learning method for

classification or regression. It consists in growing hundreds

of decision tree classifiers – in our case of type ‘CART’

(Breiman et al. ) – and combining them in a single

ensemble of models (Breiman ). For classification

tasks, the goal is to predict a class output (e.g., condition

class) from a set of numerical or categorical variables. The



Figure 1 | Distribution of pipes characteristics in the sewer network of Berlin – only inspected pipes are considered.
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algorithm builds individual unpruned trees using bootstrap

aggregation with the following procedure:

• Sample n instances randomly (with replacement) from

the original training dataset.

• Start the construction of the tree from the root with the n

instances.
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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• Search through mtry random variables among M vari-

ables to find the best binary split into two children

nodes. The best split is determined by minimizing the

Gini criterion (Breiman ). The criterion evaluates

the performance of the split to classify the output: the

maximum value of the Gini criterion is obtained if the



Figure 2 | Correlation between sewer characteristics and condition. Class 1 (light grey), 2 (medium grey) and 3 (dark grey) represent good, medium and bad condition, respectively.
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distribution of the output is the same in both nodes

(poor classification); the Gini criterion is 0 if the

values of the outputs are perfectly separated between

the two nodes (excellent classification).

• Repeat the previous step to grow the tree until the

number of instances in the children nodes reach the criti-

cal size defined by the hyperparameter nodesize. The

nodesize determines the size of the trees.

A total of ntree trees are grown with the same pro-

cedure. The resulting ensemble of trees composes the

RF. For a given set of variables, each tree delivers a

class output; the prediction of the RF is the mode of the

ntree class outputs. Class probabilities can also be esti-

mated as the percentage of each class among the ntree

class outputs.
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
RF can also deal with imbalanced data in which one of

the output classes constitutes a small minority of the data. In

such cases, the interest usually leans towards the correct

classification of the minority class (e.g., fraud detection, dis-

ease diagnostic, etc.). A classical RF might fail because it will

seek to minimize the overall error rate, rather than paying

special attention to the minority class. The main approach

to tackle the problem of imbalanced data is to incorporate

class weights into the RF to penalize the misclassification

of the minority class. Class weights are used to weight the

Gini criterion and to determine the class output at the term-

inal node of each tree using a weighted majority vote (Chen

& Breiman ).

The analysis of the trees structure highlights the relative

importance of each variable in the model. The minimal

depth is a dimensionless statistic measuring the
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productiveness of a variable in a decision tree (Ishwaran

et al. ). The minimal depth of a given variable in a tree

is the highest level of the nodes in which the variable has

been selected to classify the pipes in the training process.

Since the algorithm selects at each node the variable that

leads to the best classification, important variables have

small minimal depths.

Harvey &McBean () used RF to predict sewer pipes

in bad condition in Ontario, Canada. Results were satisfying

with false negative rate of 11%, false positive rate to 25%

and an area under the ROC curve >0.80 (with 1.0 indicating

a perfect model). However, only 1,255 pipes were available

for training from which around 10% in poor condition. Rok-

stad & Ugarelli () used RF with data of the city of Oslo,

Norway. They conclude that deterioration model appli-

cation may be beneficial for prioritizing inspection

programs and that the performance is limited by the ade-

quacy of the explanatory variables available. Vitorino et al.

() also demonstrated an application of a RF

implemented in the software platform Baseform.org.

Random forests for this study were developed using the

randomForest package in the software R (Liaw & Wiener

). Using three output classes, the following hyper-

parameters need to be set up by the user:

• mtry number of variables randomly sampled as candi-

dates at each split

• nodesize minimum size of terminal nodes

• ntree number of trees in the forest

• w1, w2 priors (i.e., weights) of the classes 1 and 2. w3 is

not defined as a parameter since its value can be calcu-

lated from the other priors (w1þw2þw3¼ 1).

Markov-chains and survival analysis

The model GompitZ (Le Gat ) is based on the theories

of survival analysis and Markov-chains. The goal of the

model is to predict a probability class output (probability

for a pipe to be in a given condition class) from the pipe

age and a set of numerical or categorical variables.

Prior to model calibration, pipes are generally

grouped in cohorts, i.e., homogenous groups of sewer

pipes sharing similar features, e.g., same material and

type of effluent. During the calibration procedure, survival

functions are estimated for each cohort. Survival curves
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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have the mathematical form of a Gompertz distribution.

They are calibrated during a regression procedure using

the maximum likelihood estimation and represent the

mean deterioration of pipes over time: they define the pro-

portion of pipes that have survived at a given age.

Additionally, the shape of the survival curves can be

modulated by further numerical or categorical variables

(also called covariates).

The calibrated survival curves are used to calculate the

probability for a pipe to be in a given condition at a given

age. If the pipe has never been inspected, the class output

is estimated directly from the survival curves. For example,

for a given pipe and three possible condition classes, a prob-

ability vector P is estimated at year T from the survival

curves SC1 and SC2:

P Tð Þ ¼ P1 Tð Þ, P2 Tð Þ, P3 Tð Þð Þ
¼ SC1 Tð Þ, SC2 Tð Þ � SC1 Tð Þ, 1� SC2 Tð Þð Þ (1)

If the pipe has been inspected at least once, the con-

dition is known at the year of the inspection and the

survival curve cannot be used straightforwardly to estimate

the future condition. For example, if the pipe has been

inspected in condition 1 at year T:

P Tð Þ ¼ 1, 0, 0ð Þ (2)

At year T, the pipe is in condition 1 with 100% prob-

ability. The probability vector has been initialized at year T

of the inspection. In this case, a Markov-chain is used to

simulate the future evolution of the pipe condition. The

probability vector at year Tþ 1 depends on the probability

vector at year T and on the transition matrix Q at year

Tþ 1.

P T þ 1ð Þ ¼ P Tð Þ ×Q T þ 1ð Þ (3)

The transition matrix can be mathematically derived

from the slope of the survival curves (Le Gat ). The

elements of the matrix are time-dependent and indicate

the probability for a pipe to stay in a given condition i (prob-

ability qi Tð Þ) or to transit to the next condition iþ 1



Table 1 | Example of confusion matrix with fictive numbers

Prediction

Sum observationsGood Medium Bad

Observation Good 420 56 32 508
Medium 64 140 25 229
Bad 36 28 123 187

Sum predictions 520 224 180
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(probability 1� qi Tð Þ)

Q Tð Þ ¼
q1 Tð Þ 1� q1 Tð Þ 0
0 q2 Tð Þ 1� q2 Tð Þ
0 0 q3 Tð Þ

������
������ (4)

The Markov-chain for a prediction of the pipe condition

at year n can be written as follows:

P T þ nð Þ ¼ P Tð Þ ×Q T þ 1ð Þ ×Q T þ 2ð Þ × . . . ×Q T þ nð Þ
(5)

P T þ nð Þ ¼ P Tð Þ ×
Yn
1

Q T þ ið Þ (6)

Performance metrics

A set of performance metrics has been defined in consul-

tation with Berlin Water Company (BWB) in order to

benchmark and evaluate model performance. The metrics

assess model performance at two main levels: the network

and the pipe levels. At network level, the metrics indicate

to which extent the model is able to predict the condition

distribution of the entire network, i.e., the number of pipes

in each condition. At pipe level, the metrics verify to

which extent the model is able to predict correctly the

inspected condition class of each single pipe. Information

of both is needed for different purposes: network level

metrics show models’ relevance for supporting strategic

rehabilitation planning; pipe level metrics illustrate the

potential for supporting inspection strategies by identifying

pipes in critical condition.

Metrics at network level

The performance metrics at network level describe the devi-

ation between the predicted and inspected condition

distributions, for the entire network and for different age

groups. Sixmetrics have been definedwith the sewer operator.

Deviation of the condition distribution – all pipes: K1,

K2, K3 are the absolute deviations between the percentages

of sewers predicted and inspected in each condition – K1 for

good condition, K2 for medium condition and K3 for bad

condition.
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
Deviation of the condition distribution – only pipe cat-

egory 51–75 years: K4, K5, K6 are the absolute deviations

– for the age category 51–75 years only – between the per-

centages of sewers predicted and inspected in each

condition – K4 for good condition, K5 for medium condition

and K6 for bad condition.

K1, K2 and K3 assess the ability of the model to simulate

the condition distribution of the entire network whereas K4,

K5 and K6 evaluate the ability of the model to consider the

deterioration process. The age category of 51–75 years has

been selected instead of the oldest category because it corre-

sponds to the depreciation period of concrete and clay

pipes. Indeed, older age categories might be biased since

many pipes have already been rehabilitated introducing a

survival selection bias.

Metrics at pipe level

A model can provide excellent results at network level and

nevertheless fail to simulate the right condition of each

pipe by simulating the right proportions of each condition

but the wrong pipes in each condition. An exhaustive

model assessment requires the analysis of the confusion

matrix of the outcomes (Table 1). The confusion matrix com-

pares the predicted and observed class of each pipe and

counts the number of agreements and disagreements.

Several metrics have been derived from the matrix and

validated with the sewer operator.

The True Positive rate: also called sensitivity, indicates

the percentage of sewers inspected in condition ‘i’ that

have been correctly predicted in the same condition ‘i’.

K7 ¼ number of correct predictions in good condition
number of observations in good condition

¼ 420
508

¼ 83%
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K8 ¼ number of correct predictions in medium condition
number of observations in medium condition

¼ 140
229

¼ 61%

K9 ¼ number of correct predictions in bad condition
number of observations in bad condition

¼ 123
187

¼ 66%

The False Negative rate: also called miss rate, indicates

the percentage of sewers inspected in condition ‘i’ that

have been wrongly predicted in a better condition ‘j’. False

Negative predictions overestimate the inspected condition

of the pipes.

K10 ¼
number of pipes observed in medium condition but

predicted in good condition
number of observations in medium condition

¼ 64
229

¼ 28%

K11 ¼
number of pipes observed in bad condition but

predicted in good condition
number of observations in bad condition

¼ 36
187

¼ 19%

There is no False Negative rate for the good condition

since it cannot be overestimated.

The False Positive rate: also called false alarm prob-

ability, indicates the percentage of sewers inspected in

condition ‘i’ that have been wrongly predicted in a worse

condition ‘j’. False Positive predictions underestimate the

inspected condition of the pipes.

K12 ¼
number of pipes observed in good condition but

predicted in bad condition
number of predictions in bad condition

¼ 32
180

¼ 18%

Summary metrics

The metrics defined above are intuitive and clearly under-

standable by the sewer operator and will be used to

convince the utility about the relevance or uselessness of
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf

022
using deterioration models. In order to simplify the search

of the best combination of hyperparameters in the step of

model training, metrics at network and pipe levels have

also been summarized in one unique single metric each.

The summary metrics are defined as the root mean square

error of the six indicators on both network and pipe level.

The square root is used to give more weight to large

errors. K7, K8 and K9 are normalized, i.e., subtracted from

100, to have an optimum value of 0.

KNetwork ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K12þK22þK32þK42þK52þK62

6

r

KPipe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð100�K7Þ2þð100�K8Þ2þð100�K9Þ2þ K102þK112þK122

6

r

Model training and testing

After the withdrawal of pipes with missing age, length or

depth information or highly underrepresented profiles,

material or soil types, the dataset has been separated in

two random subsets: training (60%, 58,528 pipes) and test

(40%, 39,019 pipes) subsets. The partition 60/40 is com-

monly used in statistical and machine learning studies,

among ratios usually varying between 50/50 and 90/10. In

this study, considering the large size of the dataset, the par-

tition size has little influence and does not influence

significantly the values of the parameter estimates and per-

formance metrics obtained (results not shown here).

A Chi-squared test of independence (χ2) has been per-

formed for each pipe feature presented in Figure 1 to

compare the training and test subsets. It tests the equality

of proportions between the two subsets with the null hypoth-

esis that the distributions of the categorical variables are the

same in the two subsets. Reported p-values were higher than

the significance level of 0.05 indicating that the null hypoth-

esis cannot be rejected and that the distributions are the

same for each categorical variable.

For the Random Forest model, the best combination of

hyperparameters have been analysed in two steps in order

to reduce the computation time. The idea is to run a first

coarse grid search to find the optimal values for the most

sensitive parameters, in our case the weighting factors, and

a second fine grid search with fixed weight values to identify
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the optimal values of the remaining two hyperparameters.

With this two-step procedure, the computation time for the

parameter search can be reduced compared to a full grid

search covering all hyperparameters (Bergstra & Bengio

).

• Step 1: random search: a list of 1,000 random hyper-

parameter combinations has been prepared based on

the reasonable range of variation of the four hyper-

parameters (w1, w2, mtry and nodesize). For each

combination of hyperparameters, a five-fold cross-

validation procedure has been performed on the training

dataset using the performance metrics defined in the

previous section.
○ (1) The training dataset is divided into five random

equal sized subsets.

○ (2) Of the five subsets, a single subset is retained as the

validation data to calculate the performance metrics

and the remaining four subsets are used to train the

model.

The procedure (1 and 2) is repeated five times with each

subset used once as validation data. Finally, the mean of

the five sets of performance metrics is calculated. The

values of the metrics KNetwork and KPipe are plotted

against the weight values w1 and w2 in order to identify

the values that maximize the performance.

• Step 2: grid search: step 1 is repeated with fixed values of

weights and varying the values of the remaining hyper-

parameters mtry and nodesize. The values of the metrics

KNetwork and KPipe are plotted against the hyperparameters

nodesize and mtry in order to identify the combination of

hyperparameters that maximize the performance. Finally,

the best combination of hyperparameters is implemented

to train the Random Forest model.

For the GompitZ model, the training consists in identify-

ing the relevant cohorts and variables for the calibration of

the survival curves. Similar to Random Forest, a five-fold

cross-validation procedure has been performed on the train-

ing dataset using the performance metrics defined in the

previous section.

• In a first step, a cross-validation has been run for all com-

binations of cohorts built with one to five categorical

variables.
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
○ If only one variable is used to build the cohorts, pipe

groups are composed based on the categorical values

of the variable (e.g., for the variable material: clay, con-

crete, etc.).

○ If several variables are used to build the cohorts, the

combination of the variables’ values composes the

cohorts (e.g., for variables material and sewerage:

concrete-sanitary, concrete-storm, clay-sanitary, etc.).

• For the best combination of cohorts, a second

cross-validation has been applied by considering

additional numerical variables as variables for model

calibration.

Finally, the trained models have been tested on the inde-

pendent test subset to assess model performance. The sewer

condition has been predicted at the year of inspection with

each sewer and the performance metrics have been

evaluated.
Assessment of model performance

The metrics proposed in the section ‘Performance metrics’

enable the evaluation of model performance. In order to

understand the variation’s range of the metrics, the model

metrics have been compared with the performance of a

simple random model and an ideal model. The goal is to

assess the meaning of the model metrics within their range

of variations from a poor performing model to an ideal

model.

The simple random model attributes randomly a con-

dition class to each inspected pipe. The values of the

metrics obtained represent a poor performing model. The

ideal model has the same accuracy as a sewer inspection;

it is based on the assumption that it is impossible to know

the sewer condition better than with a CCTV inspection.

A methodology to assess CCTV uncertainties has been pro-

posed by Caradot et al. (). The approach is based on the

analysis of repeated inspections of sewer pipes; it considers

only repeated inspections that occur within a short time

period (<3 or 5 years) in order to neglect sewer deterio-

ration. Thus, variations between the condition classes

reflect the uncertainties of the procedure of sewer condition

assessment. The methodology has been applied using

repeated CCTV inspections of 4,695 pipes in Berlin in
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order to assess the True Positive, False Negative and False

Positive rates of sewer inspection.
RESULTS AND DISCUSSION

Random Forest

The random search analysis (step 1) has been performed on

the training dataset using the four hyperparameters. The

tested ranges of the hyperparameters are: nodesize: 4–

1,808; mtry: 1–12; w1: 0.2–3; w2: 0.2–3. Figure 3 shows

the sensitivity of the summary indicators at network and

pipe levels depending on the weights factors w1 and w2.

The graphs indicate optimal weight values at network level

(w1¼ 2; w2¼ 1) and at pipe level (w1¼ 1; w2¼ 0.8) and

suggest the training of one model for each level.
Figure 3 | Influence of the weights factors w1 (left) and w2 (right) over the summary indicato

om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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The grid search analysis (step 2) has been performed

with fixed weight values to identify the optimal values

for nodesize and mtry at both network and pipe levels.

Figure 4 shows the sensitivity of the pipe level metrics

to the variation of the two hyperparameters: nodesize

(minimum size of terminal nodes for each tree) and

mtry (number of variables randomly sampled as candi-

dates at each split). At pipe level, best results are

obtained with high values of mtry (11) and values of node-

size between 20 and 90. The number of trees grown to

build the forest (ntree) has no influence on model per-

formance (results not shown here). Table 2 summarizes

the best combination of hyperparameters at both network

and pipe levels.

Finally, the trained models have been tested on the inde-

pendent test subset to assess model performance. Figure 5

compares the inspected and predicted condition distri-

butions of the network for the test dataset.
rs Knetwork (top) and Kpipe (bottom); the optimal parameter’s window is shaded in grey.



Figure 4 | Sensitivity of the pipe level metrics to the variation of nodesize and mtry.

Table 2 | Best combinations of hyperparameters at both network and pipe levels

Hyperparameter Best model at network level Best model at pipe level

ntree 100 100

nodesize 7 55

mtry 10 11

w1 2.0 1.0

w2 1.0 0.8

w3 1.0 1.0
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Table 3 summarizes the value of metrics obtained on

the test dataset. The metrics have been calculated with

the best models at both network and pipe levels. The devi-

ations at network level (K1 to K6) are relatively low, below

5%. At pipe level, 64.0% of the pipes inspected in good con-

dition have been predicted correctly (K7), 40.0% of the

pipes inspected in medium condition have been predicted

correctly (K8) and 66.7% of the pipes in bad condition

have been predicted correctly (K9). 17.1% of the pipes

inspected in medium condition and 9.5% of the pipes
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
inspected in bad condition have been falsely predicted in

good condition (K10 and K11). 28.3% of the pipes

inspected in good condition have been wrongly predicted

in bad condition (K12).

Figure 6 shows the distribution of the minimal depth

of each variable among the 100 trees of the forest built

for the pipe level. The most important variable for classi-

fication is the sewer age; in 95 of 100 trees, the age is the

variable selected by the algorithm for the first split at the

root. The material, the shape and the type of effluent are

the following most relevant variables; the material and the

type of effluent are strongly correlated since most sanitary

and stormwater pipes are built of clay and concrete,

respectively. The district shows also a strong influence

in the model. The district is strongly correlated with

pipes’ characteristics (for example, pipes in the city

centre are mainly combined sewers made of bricks and

built in the 19th century) but also with other potential rel-

evant deterioration factors such as the traffic load, the

type of soil or the quality of the construction between

the former east and west Berlin. The width, length and



Figure 5 | Inspected and predicted condition distributions with Random Forest for the entire network (right) and for each age group (left). The colours light grey, medium grey and dark grey

represent good, medium and bad condition, respectively.

Table 3 | Summary of performance metrics for the two models on the test dataset

RF GompitZ

Network level K1 Deviation of the condition distribution ∈ 0, 100½ � Goal¼minimize �3.5% 0.8%
K2 3.4% �0.1%
K3 0.1% �0.7%
K4 Deviation of the condition distribution

– 51–75 years only
2.0% 0.1%

K5 �0.1% 0%
K6 1.9% �0.1%

Pipe level K7 True Positive rate ∈ 0, 100½ � Goal¼maximize 64.0% 64.1%
K8 40.0% 29.0%
K9 66.7% 32.9%
K10 False Negative rate ∈ 0, 100½ � Goal¼minimize 17.1% 42.8%
K11 9.5% 38.0%
K12 False Positive rate 28.3% 38.5%

Summary KNetwork Summary metric for network level ∈ 0, 100½ � Goal¼minimize 2.3 0.5
KPipe Summary metric for pipe level 34.5 51.0
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depth are also relevant for describing sewer deterioration

but secondary compared to the material and district.

Finally, the environmental features show little or no influ-

ence (type of soil, tree density, groundwater level).
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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Markov-chains and survival analysis

The cross-validation procedure has been performed on the

training dataset for all combinations of cohorts built with



Figure 6 | Distribution of the minimal depth of each variable among the 100 trees. The values in the bar plots indicate the mean minimal depth of each variable.
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one to five categorical variables. The best cohort combination

is composed of four categorical variables: the material, the

district, the shape and the type of effluent. The consideration

of additional numerical variables does not improve themodel

performance. Table 3 summarizes the value of metrics

obtained on the test dataset. Figure 7 shows the inspected

and predicted condition distributions of the network.

Comparison of model outcomes

Network level

Random Forest and GompitZ give satisfactory outcomes at

network level (Table 3). Deviations obtained with Random

Forest are below 5%; deviations reached with GompitZ

are even lower, below 1%. Both models are able to repro-

duce accurately the condition distribution of the entire

network and for different age groups.

Pipe level

At pipe level, Random Forest performs better than GompitZ

(Table 3). In particular, the True Positive rates for pipes in
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
medium and poor condition are 30% and 100% higher,

respectively. The False Negative rates and False Positive

rate are also minimized with Random Forest. It is interesting

to note that the most relevant variables are the same for both

models: the material, the district, the shape and the type of

effluent.

Figure 8 plots the pipe level metrics of both models and

compares model performance to the performances of a

random and an ideal model. The following outcomes can

be derived for the pipe level:

• GompitZ does not perform better than the random

model, expect for the simulation of pipes in good con-

dition (K7).

• The Random Forest performs much better than the

random model. The performance is excellent for the

simulation of pipes in poor condition (K9) being close

to the performance of the ideal model. The False Nega-

tive rates (K10 and K11) are also very low, similar to

the ideal model. On the other hand, the Random Forest

model fails to identify pipes in medium condition (K8)

and the False Negative rate is high compared to the

ideal model (K12).



Figure 7 | Inspected and predicted condition distributions with GompitZ for the entire network (right) and for each age group (left). The colours light grey, medium grey and dark grey

represent good, medium and bad condition, respectively.

Figure 8 | Comparison of model outcomes with a random and an ideal model.
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Simulation example

In order to visualize the outcomes of the Random Forest

and GompitZ models, the condition of three single pipes

with different characteristics have been simulated with

both models (Figure 9). For example, the first pipe shows

the deterioration process of a circular sanitary clay pipe situ-

ated in the Pankow district of Berlin (Figure 9 – left). The

deterioration behaviour is similar with the two models:

faster for clay pipes in Pankow, slower for clay pipes in Ste-

glitz and much slower for brick pipes in Mitte. The

deterioration is smoother with GompitZ since the survival

function follows a Gompertz distribution (Le Gat ).

The deterioration with Random Forest is much sharper

since themodel learned from available data without the sup-

port of statistical regression. The sharpness of the Random



Figure 9 | Example of simulation for three pipes with different characteristics (the title of each graph indicates pipes’ characteristics in the following order: district – type of effluent –

material). The colours light grey, medium grey and dark grey represent the probability for the pipe to be in good, medium and bad condition, respectively.

1145 N. Caradot et al. | A benchmark of statistical and machine learning sewer deterioration models Journal of Hydroinformatics | 20.5 | 2018

Downloaded from http
by guest
on 16 August 2022
Forest prediction is both the strength and the weakness of

the model. It allows a more accurate prediction of the con-

dition of specific pipes. However, it might also lead to

doubtful predictions such as condition improvement along

with pipe age. This leads to the conclusion that the tested

machine learning approach shall only be used for ad hoc

classification of the sewer pipes but not for long-term fore-

casts into the future. This characteristic of machine
://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
learning models is still to be investigated in order to guaran-

tee the plausibility of future predictions.
CONCLUSION

This study aimed to assess the performance of a statistical

and a machine learning deterioration model using the
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extensive CCTV and GIS dataset of the city of Berlin,

Germany. A set of understandable and intuitive metrics

has been defined together with the sewer operator in order

to evaluate sewer performance from an end-user perspec-

tive. The selected metrics aim at convincing the

municipality about the relevance or uselessness of using a

given deterioration model to support asset management

strategies. The main outcomes can be summarized as

follows:

• At network level, both Random Forest and GompitZ give

satisfactory outcomes. Deviations between the predicted

and inspected condition distributions, for the entire net-

work and for different age groups, are below 5% using

Random Forest and even lower (below 1%) using Gom-

pitZ. This result underlines the strong potential of both

statistical and machine learning models to simulate the

condition distribution of the network.

• At pipe level, GompitZ does not perform better than a

simple random model, which attributes randomly a con-

dition class to each inspected pipe. GompitZ is not able

to simulate the condition of single pipes accurately.

• At pipe level, the Random Forest performs better than

GompitZ. Random Forest performance is satisfying for

the simulation of pipes in poor condition: 66.7% of the

pipes inspected in bad condition have been predicted cor-

rectly and only 9.5% of the pipes inspected in bad

condition have been falsely predicted in good condition.

The True Positive rate of Random Forest for pipes in bad

condition (67%) is close to the True Positive rate of a

CCTV inspection (79%). The Random Forest model

shows a strong potential for supporting sewer operators

in the identification of pipes in critical condition for

inspection programs.

• The main weakness of the Random Forest model lies in

its high False Positive rate: 28.3% of pipes predicted in

bad condition are actually in good condition. This

aspect of the performance might be improved in further

studies by considering additional variables and testing

other modelling approaches.

• Another weakness of the Random Forest model is the

lack of physical information about pipe deterioration in

the model’s structure. The model learns and reproduces

the patterns observed in the inspection dataset. It can
om http://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
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lead to doubtful prediction such as condition improve-

ment along with pipe age. This leads to the conclusion

that the tested machine learning approach shall only be

used for ad hoc classification of the sewer pipes but not

for long-term forecasts into the future. This problem

does not occur with GompitZ since the deterioration fol-

lows a GompertZ distribution that prevents any

condition improvement. This aspect of machine learning

should be carefully investigated before deploying such

models in practice.
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