
Practical Box Splines for Reconstruction on the
Body Centered Cubic Lattice

Alireza Entezari, Dimitri Van De Ville, Member, IEEE, and Torsten Möller, Member, IEEE

Abstract—We introduce a family of box splines for efficient, accurate, and smooth reconstruction of volumetric data sampled on the
body-centered cubic (BCC) lattice, which is the favorable volumetric sampling pattern due to its optimal spectral sphere packing property.
First, we construct a box spline based on the four principal directions of the BCC lattice that allows for a linear C0 reconstruction. Then,
the design is extended for higher degrees of continuity.We derive the explicit piecewise polynomial representations of theC0 andC2 box
splines that are useful for practical reconstruction applications. We further demonstrate that approximation in the shift-invariant
space—generated by BCC-lattice shifts of these box splines—is twice as efficient as using the tensor-product B-spline solutions on the
Cartesian lattice (with comparable smoothness and approximation order and with the same sampling density). Practical evidence is
provided demonstrating that the BCC lattice not only is generally amore accurate sampling pattern, but also allows for extremely efficient
reconstructions that outperform tensor-product Cartesian reconstructions.

Index Terms—BCC, box splines, discrete/continuous representations, optimal regular sampling.

Ç

1 INTRODUCTION

IN this paper, we focus on sampling and representation of
volumetric data. Two important issues are dealt with:

1) the choice of the sampling pattern and 2) the signal
model that links the discrete to the continuous domain and,
thus, serves to effectively interpolate or approximate the
underlying continuous phenomenon. We start by introdu-
cing both aspects.

1.1 Optimal Regular Sampling

The study of optimal regular sampling patterns is not new
[11], [18], [24], [29]. For the class of signals that have an
isotropic band-limited (or essentially low-pass) spectrum,
the problem of optimal regular sampling can be answered
using the solution to the optimal circle (2D) or sphere (3D)
packing problem. This is due to the fact that the sparsest
regular (lattice) distribution of samples in the spatial
domain demands the tightest arrangement of the replicas
of the spectrum in the frequency domain. Therefore, the
optimal sampling lattice is simply the dual of the densest
packing lattice. This sampling lattice constitutes the best
generic lattice for sampling trivariate functions.

Gauß proved that the densest packing in 2D is obtained
by the hexagonal lattice [6]. For the 3D sphere packing
problem, which is also known as the Kepler problem dating
from the early 17th century, Gauß proved that the face-
centered cubic (FCC) lattice attains the highest possible
density [6]. Further, the Kepler conjecture—that FCC
packing is an optimal packing of spheres even when the

lattice condition is not imposed—was not proven until 1998
by a lengthy computer-aided proof [15].

For the class of isotropic band-limited signals, the
hexagonal lattice can contain 14 percent more information
than the Cartesian lattice without introduction of any
aliasing [24]. The analogous 3D FCC replication of the
spectrum allows about 30 percent more information to be
captured without any aliasing in the spectrum of the
function. Having the spectrum replicated on the FCC lattice
in the frequency domain corresponds to sampling on the
body-centered cubic (BCC) lattice in the spatial domain.

Despite their theoretical advantages, optimal sampling
strategies have only had a limited impact on practical
applications. On one hand, there are no 3D scanning devices
yet that produce data directly sampled on the BCC lattice; on
the other hand, if the scanning machines adopt the optimal
sampling pattern, main signal processing tools such as
reconstruction to process and analyze the data are needed.

1.2 Reconstruction Kernels

Reconstruction from sampled data refers to the procedure
of interpolating or approximating the underlying contin-
uous-domain signal. Traditionally, the design of reconstruc-
tion filters is a rich area in signal processing. This approach
is discrete to discrete and thus provides estimates of the
signals on another regular sampling lattice. Typically,
constraints in the frequency domain are used to guide the
filter design process (for example, [3], [12], [28]). On the
other hand, the approximation theory has shown how to
design reconstruction kernels, which are defined in the
continuous domain and allow the estimation of the signal at
any point in space (for example, [16], [25], [27]).

These well-known solutions are 1D, and for image
processing and volume rendering, they are extended to
multiple dimensions through a separable extension (often
called the tensor-product approach) or through a spherical
extension (for example, McClellan transformation [22]). The
problem of these extensions is that they do not deal well
with the multidimensional nature of the sampling lattice, in
particular, for non-Cartesian lattices [19]. The separable
extension clearly is only satisfactory for Cartesian lattices,
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for which the lattice’s natural Nyquist region (see Section 2)
would coincide with the kernel’s low-pass region in the
frequency domain. The spherical extension, however, has
difficulties imposing zero crossing in the frequency domain
at the dual-lattice points, which is crucial to guarantee
approximation order and polynomial reproduction [30].

An interesting example in 2D is “hex-splines,” which
form a B-spline family for hexagonally sampled data [32].
The first-order hex-spline is defined as the indicator
function of the Voronoi cell (and is thus nonseparable).
Higher order hex-splines are defined in terms of successive
convolutions of the first-order function. Analytical formulas
are available in both the frequency and the spatial domain.

Box splines offer a mathematically elegant framework for
constructing a class of multidimensional elements with
flexible shape and support that can be nonseparable in a
natural way. The general topic of box splines is rather
intricate, and a general survey of results on the topic has
been gathered in [9]. In this paper, we design a four-
directional box spline that is geometrically aligned with the
BCC lattice and allows for piecewise polynomial approx-
imation of the data sampled on the BCC lattice.

The most commonly used method for evaluating box
splines at arbitrary points is through de Boor’s recurrence
relation [9]. Unfortunately, the recursive evaluation of box
splines is computationally inefficient and prone to numerical
instabilities [10]. Kobbelt addresses the instability issues by
delaying the evaluation of the discontinuous step function
until the latest stages of recursion [17]. Even though the
numerical inaccuracies of the recursive algorithm can be
minimized, to make box splines practical in the field of
volume graphics (for example, volume rendering), the
computational complexity of their evaluation needs to be
significantly reduced. Although the use of box splines in
surface subdivision ingraphics demands evaluations of a box
spline on a fixedmesh, in the volume rendering domain, one
needs to evaluate a box spline at arbitrary points. For
traditional B-splines, the explicit piecewise polynomial
representation is commonly used for fast evaluation; there-
fore, we introduce a new piecewise polynomial representa-
tion for the proposed box splines in Section 5.

In [8], Dæhlen proposes an algorithm to evaluate a four-
directional box spline on a fixed mesh shifted to an arbitrary
position. Somewhat similar to our evaluation method, he
relies on the relation of box splines to cone splines (truncated
power functions). In Dæhlen’s method, the evaluation of
truncated power functions is still based on a recurrence
relation and is based on the connection with simplex
splines. In our case, however, we derive the explicit
polynomial representation of the truncated power function
in Section 5. This representation provides us with the exact
evaluation of box splines that is free of numerical
inaccuracies since we avoid any recurrence relations.
Furthermore, similar to the piecewise polynomial evalua-
tion methods of B-splines, our method exploits the
symmetries in the support of the box spline to further
reduce the computational cost (see Section 5.5.4).

In volume graphics, the optimality of BCC sampling has
been explored by Theußl et al. [20]. They applied the
spherical extension of reconstruction filters, which resulted
in rather blurry and unsatisfying results. Different ad hoc
approaches were studied for reconstruction and derivative
reconstruction on the BCC lattice, with mixed results [19].
Also, isosurface extraction on the optimal sampling lattice
has been studied with inconclusive results [4]. We also

exploited the BCC lattice in multiresolution analysis [14].
Recently, Csébfalvi [7] demonstrated a reconstruction using
a Gaussian kernel and the principle of generalized inter-
polation [31]. Although this method provides an isotropic
solution, it does not guarantee approximation order. It is
also a numerical scheme without any closed-form solution
for the interpolation kernel. Moreover, our explicit piece-
wise polynomial representation makes the box-spline
solution several times more computationally efficient than
that in [7] (see Section 6).

1.3 Scope and Organization of the Paper

In this paper, we provide accurate and efficient reconstruc-
tion methods for the BCC lattice. Such reconstructions have
been sought for in the volume graphics community [4], [19],
[20] to better exploit the theoretical advantages of the BCC
lattice. Several contributions are proposed:

. We establish a four-directional box spline that is
geometrically tailored to the BCC lattice in Section 4.1

The first-order box spline is a 3D piecewise linear
function. Higher order versions are obtained by
successive convolutions. This way, we can choose
the required smoothness and approximation order.

. We explicitly characterize the polynomial patches
defining these box splines, which is detailed in
Section 5. Our characterization method is general
(for any order) and leads to polynomial expressions
that can be implemented to evaluate the box spline
at any point. Specifically, we derive the explicit
expressions for the C0 and C2 members of our family
of BCC box splines, since they are the most relevant
for the practitioner in rendering applications.

. We demonstrate that our box splines (for C0 and
C2 continuity) on the BCC lattice are computa-
tionally twice as efficient as tensor-product B-
splines on the Cartesian lattice (for comparable
smoothness and the same sampling density); see
Table 2. Based on these results, in Section 6, we
conclude that BCC lattice sampling can be more
attractive not only on a theoretical level, but also
in a practical setting.

2 GEOMETRY OF THE BODY-CENTERED CUBIC

LATTICE

A lattice is a periodic pattern made up by an infinite array of
points in which each point has a neighborhood identical to
those of all the other points [2]. In other words, every lattice
point has the same Voronoi cell, and we can refer to the
Voronoi cell of the lattice without ambiguity.

Periodic sampling of a function in the spatial domain gives
rise to a periodic replication of its spectrum in the frequency
domain. The lattice that describes the centers of the replicas in
the frequency domain is called the dual, reciprocal, or polar
lattice. Reconstruction amounts to eliminating the replicas of
the spectrum in the frequency domain and preserving the
primary spectrum. Therefore, the ideal kernel for reconstruc-
tion in the space of “band-limited” functions is a function that
is the inverse Fourier transform of the characteristic function
of the Voronoi cell of the dual lattice.

In 3D, the BCC lattice points are located on the corners of
a cube with an additional sample in the center of this cube.
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1. A preliminary version of these box splines was presented in our
conference paper [13].



Therefore, the BCC lattice can be considered as two
interleaving Cartesian lattices where the vertices of the
secondary Cartesian lattice are moved to the center of the
primary Cartesian cells. An alternative way of describing
the BCC lattice as a sublattice of the Cartesian is to start
with a Cartesian lattice (that is, ZZ3) and retain only those
points whose coordinates have identical parity. For an
integer point in ZZ3 to belong to the BCC lattice, all three of
x, y, and z-coordinates need to be odd, or all three need to be
even. Therefore, the BCC lattice is a subgroup whose
quotient group is of order four.2 Therefore, the BCC lattice is
a sublattice of ZZ3 whose density is 1/4 in ZZ3; in other
words, the volume of the Voronoi cell of each lattice point is
four. This BCC lattice can be generated by integer linear
combinations of the columns of the sampling matrix:

BCCBCC ¼
1 �1 �1
�1 1 �1
�1 �1 1

2

4

3

5: ð1Þ

Sampling a function with lattice points generated by the
BCC sampling matrix, has the effect of replicating the
spectrum of that function periodically on the dual lattice,
which is an FCC-type lattice generated by [11]

FCCFCC ¼ 2�BCCBCC�T ¼ ��
0 1 1

1 0 1

1 1 0

2

4

3

5: ð2Þ

The FCC lattice is often referred to as the DD3 lattice [6]. In
fact, DD3 belongs to a general family of lattices DDn, some-
times called checkerboard lattices. The checkerboard prop-
erty implies that the sum of the coordinates of the lattice
sites is always even (multiple of � with the scaling in (2)).
We will use this property to demonstrate the zero crossings
of the frequency response of the reconstruction filters at the
FCC lattice sites.

The simplest interpolation kernel on any lattice is the
indicator function of the Voronoi cell of the lattice. The
corresponding interpolation scheme is the generalization of
the so-called nearest neighbor interpolation. More sophis-
ticated reconstruction kernels involve information from the
neighboring points of a given lattice point. With this in
mind, we focus in the next section on the geometry and the
polyhedra associated with the BCC lattice.

2.1 Polyhedra Associated with the Body-Centered
Cubic Lattice

Certain polyhedra arise naturally in the process of construct-
ing interpolation filters for a lattice. The Voronoi cell of the
lattice is one such example. The Voronoi cell of the Cartesian
lattice is a cube, and the Voronoi cell of the BCC lattice is a
truncated octahedron, as illustrated in Fig. 1a.

We are also interested in the cell formed by the
immediate neighbors of a lattice point. The first (nearest)
neighbors of a lattice point are defined via the Delaunay
tetrahedralization of the lattice; a point qq is a first neighbor of
pp if their respective Voronoi cells share a (nondegenerate)
face. The first neighbors’ cell is the polyhedron whose
vertices are the first neighbors. Again, this cell is the same
for all points on the lattice.

For example, by this definition, there are six first
neighbors of a point in a Cartesian lattice; the first
neighbors’ cell for the Cartesian lattice is the octahedron.
For the BCC lattice, there are 14 first neighbors for each
lattice point. The first neighbor cell is a rhombic dodecahe-
dron, as illustrated in Fig. 1b.

3 BOX SPLINES REVIEW

Here, we begin by briefly introducing box splines and state
their properties that will be useful further on.

A box spline is characterized by a set of direction vectors
that indicate its construction by successive convolution of
line segments along these vectors. The linear combination of
shifts of a box spline generates a spline whose smoothness
and ability to approximate continuous functions also
depend on these direction vectors. Notationally, the direc-
tion vectors are usually gathered in a matrix; that is, a box
spline in IRs is specified by n � s vectors in IRs that are
columns of its matrix � ¼ ½��1; ��2; . . . ; ��n�. The support of the
box spline is all points xx 2 IRs such that xx ¼ �tt, where
tt 2 IRn, and 0 � tk � 1 for 1 � k � n. In other words, the
support of the box spline is contained in the convex
combination of these direction vectors.

The simplest box spline is constructedbyn ¼ svectors and
is the (area-normalized) characteristic function of its support:

M�ðxxÞ ¼
1

j det�j where xx ¼ �t and t 2 ½0; 1Þn;
0 otherwise:

�

ð3Þ

Clearly, the box spline from (3) is discontinuous at the
boundary of its support. Its 1D version is the boxcarr function
that is simply the indicator function for the interval [0, 1).

For the general case n > s, the box splines are defined
recursively:

M �;��½ �ðxxÞ ¼
Z 1

0

M�ðxx� t��Þdt: ð4Þ

This inductive definition implies that starting from the base
case as in (3) the indicator function is smeared along the
additional direction vector. Hence, the convolution of two
box splines is yet another box spline:

M�1
�M�2

ðxxÞ ¼M �1;�2½ �ðxxÞ: ð5Þ
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2. Looking at the ðx; y; zÞ coordinates mod 2, there are eight different
combinations, and we are interested in only two: (0, 0, 0) and (1, 1, 1).

Fig. 1. (a) The Voronoi cell of the BCC lattice is the truncated

octahedron. (b) The first neighbors’ cell is the rhombic dodecahedron.



A box spline is a piecewise polynomial of degree at most
n� s. Moreover, let � be the minimal number of vectors
such that if they were removed from �, the remaining
vectors would not span IRs. Then, M� 2 C��2, where Cn is
the space of n-time continuously differentiable functions.
The Fourier transform of a box spline is

M̂�ð!!Þ ¼
Y

��2�

1� expð�i��T!!Þ
i��T!!

; ð6Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

as usual. In 2D, the simplest box spline is
specified by

�0 ¼ ��1 ��2½ � ¼ 1 0

0 1

� �

;

which is the indicator function of the unit square ½0; 1Þ2.
Adding adirection vector of ��3 ¼ ½ 1 1 �T to�0 smears

the unit square across its diagonal. This is illustrated in Fig. 2.
As the basic box spline is a constant function on the unit
square, the result of smearing it along thediagonalproduces a
linear box spline that is representedby ½�0; ��3�. The support of
this box spline is illustrated in Fig. 2b. This box spline is a
bivariate piecewise polynomial of degree one. This box spline
generates a C0 spline function space, as � ¼ 2.

4 FOUR-DIRECTIONAL BOX SPLINE ON THE

BODY-CENTERED CUBIC LATTICE

The construction of box splines dedicated to the BCC lattice
is guided by the fact that the rhombic dodecahedron (the
first neighbors’ cell of the BCC lattice, see Fig. 1b) is the 3D
shadow of a 4D hypercube (tesseract) along its antipodal
axis. This construction is a generalization of the 2D linear
box spline with hexagonal support, which can be obtained
by projecting a 3D cube along its antipodal axis; see Fig. 3b.

4.1 Geometric Construction

Integrating a constant tesseract along its antipodal axis
yields a function that has a rhombic dodecahedron support
(see Fig. 1b), has its maximum value at the center, and has a
linear falloff toward the 14 first-neighbor vertices. Since it
arises from the projection of a higher dimensional box, this
function serves as the linear box spline interpolation kernel
on the BCC lattice.

Let B denote the boxcarr function. The characteristic
function of the unit tesseract is given by a tensor product of
four B functions on each axis. By projecting the unit
tesseract, one obtains a rhombic dodecahedron whose
geometric scale is only half of the first neighbors’ cell of
the BCC lattice described by (1). In this BCC lattice, with
integer lattice coordinates, the first neighbors’ cell is scaled
such that the blue edges in Fig. 1b are of length two.

Therefore, we scale the geometry of the unit tesseract by
two and normalize by its hypervolume:

T ðx; y; z; wÞ :¼ 1

16
Bðx=2ÞBðy=2ÞBðz=2ÞBðw=2Þ: ð7Þ

Let vv ¼ ð2; 2; 2; 2Þ :¼ ½2; 2; 2; 2�T denote a vector along the
antipodal axis. In order to project along this axis, it is
convenient to rotate it so that it aligns with the w-axis:

RR ¼ 1

2
��1��2��3��4½ � ¼ 1

2

1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

1 1 1 1

2

6

6

4

3

7

7

5

: ð8Þ

This rotation matrix transforms vv to (0, 0, 0, 4). Also, by
examining (8), one can see that each vertex of the rotated
tesseract, when projected along the w-axis, will coincide
with the origin or one of the vertices of the rhombic
dodecahedron: ð�1;�1;�1Þ, (�2; 0; 0), (0;�2; 0), (0; 0;�2),
or (0; 0; 0). Let xx ¼ ðx; y; z; wÞ; now, the linear box spline is
given by

LRDðx; y; zÞ ¼
1

16

Z

T ðRR�1xxÞ dw:

Substituting in (7), we get

LRDðx; y; zÞ ¼
1

16

Z

Y

4

k¼1
B 1

4
��Tk xx

� �

dw: ð9Þ

Note that value at the origin is LRDð0; 0; 0Þ ¼ 1=4 (see [9,
II.8]). This is due to the fact that the box splines are
normalized to

R

LRDðxxÞdxx ¼ 1, whereas the sampling
density of the BCC lattice ð1

4
Þ demands a kernel whose

integral is four. Therefore, in order to preserve the energy in
the discrete/continuous model, we employ the box splines
scaled by four on the BCC lattice. This scaling ensures that
the value of the linear box spline is one at the center and
zero at all other lattice sites. Hence, the linear box spline
constitutes a linear interpolator on the BCC lattice.

4.2 Fourier Transform

If the direction matrix of a box spline is known, the
distributional definition of box splines easily leads to their
frequency-domain representation. Here, we present a geo-
metric derivation of the Fourier transform of our box spline.

From the projection-based construction of the rhombic
dodecahedron discussed earlier, we can derive the Fourier
transform of the linear box spline function described by (9).
From (7), it is evident that the Fourier transform of the
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Fig. 2. Construction of the linear element from the simplest box spline.

Fig. 3. (a) One-dimensional linear box spline (triangle function). (b) Two-

dimensional hexagonal linear box spline.



characteristic function of the tesseract is given by the tensor
product:

T̂ ð!x; !y; !z; !wÞ ¼
1� expð�i2!xÞ

i2!x

1� expð�i2!yÞ
i2!y

1� expð�i2!zÞ
i2!z

1� expð�i2!wÞ
i2!w

since 1
2
Bðx=2Þ ! 1�expð�i2!Þ

i2! . We use  ! to indicate a
Fourier transform pair.

By the Fourier slice-projection theorem, projecting a
function along a certain direction in the spatial domain
amounts to slicing its Fourier transform perpendicular to
the direction of projection. This slice runs through the
origin. Again, we make use of the rotation (8) to align the
projection axis with the w-axis. Thus, in the frequency
domain, we take the slice !w ¼ 0.

It is convenient to introduce the 3 � 4 matrix

� ¼ ½��1��2��3��4� ¼
1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

2

4

3

5 ð10Þ

givenby the first three rowsof the rotationmatrixRRof (8). The
reason for omitting the last row is that we are taking a slice
!w ¼ 0 orthogonal to the fourth axis at the origin. The Fourier
transform of the linear box spline can now be written as

L̂RDð!x; !y; !zÞ ¼
Y

4

k¼1

1� expð�i��Tk !!Þ
i��Tk !!

;

where !! ¼ ð!x; !y; !zÞ. The space-domain function LRD

corresponds to the box spline M�; we will use this box
spline symbol from now on. The Fourier transform of this
box spline is then

M̂�ð!!Þ ¼
Y

4

k¼1

1� expð�i��Tk !!Þ
i��Tk !!

: ð11Þ

Since any three of the vectors in � span IR3, at least two
vectors need to be removed from �, so the remaining
vectors do not span; therefore, � ¼ 2. Hence, this box spline
is guaranteed to produce a C0 reconstruction. We can verify
the vanishing moments (zero crossings) of the frequency
response at the aliasing frequencies on the FCC lattice
points. We first note that

P4
k¼1 ��k ¼ 0; therefore, the center

of the box spline M� is at the origin [9], and the Fourier
transform can be written as

M̂�ð!!Þ ¼
Y

4

k¼1
sincð��Tk !!Þ:

Recall that sincðtÞ ¼ sinðt=2Þ
t=2 . This reformulation provides a

more convenient form to verify zero crossings. Due to the
checkerboard property, for every FCC lattice point, the sum
of its coordinates is always even. Since the FCC lattice dual
to the BCC lattice of our discussion is scaled by � (according
to (1)), for !! on the FCC lattice, ��T4 !! ¼ ð!x þ !y þ !zÞ ¼ 2�k
for some k 2 ZZ; therefore, sincð��T4 !!Þ ¼ 0 on all of the
aliasing frequencies. Since ��T4 !! ¼ ���T1 !!� ��T2 !!� ��T3 !!, at
least one of the ��Tm!! for m ¼ 1; 2; 3 needs to also be an even
multiple of � since the sum of three odd multiples of �
cannot be an even multiple. For such k, we have
sincð��Tk !!Þ ¼ 0; therefore, there is a zero of order at least
two at each aliasing frequency, yielding a C0 kernel whose

approximation power is two on the BCC lattice [30]. This
smoothness and approximation power parallels that of the
trilinear B-spline interpolation on the Cartesian lattice.

4.3 Higher Order Box Splines

The number of vanishing moments can be doubled by
convolving the linear box spline with itself. Hence, the
resulting reconstruction kernel will have twice the approx-
imation power on the BCC lattice due to the Strang-Fix
result [30]. As noted before, the resulting box spline can
then be represented by �

2 :¼ ½�;��, where every direction
vector is duplicated.

An equivalent method of deriving this function would be
to convolve the constant function on the tesseract with itself
and project the resulting distribution along a diagonal axis
(this commutation of convolution and projection is easy to
understand in terms of the corresponding operators in the
frequency domain—see Section 4.2). Convolving the con-
stant function on the tesseract with itself results in another
function supported on a tesseract that is the tensor product
of four 1D triangle (linear B-spline) functions. Let � denote
the triangle function. Then, the convolution yields

T cðx; y; z; wÞ ¼
1

16
�

1

2
x

� �

�
1

2
y

� �

�
1

2
z

� �

�
1

2
w

� �

: ð12Þ

Following the same 4D rotation as in the previous section,
we obtain a space-domain representation of the new box
spline:

CRDðx; y; zÞ ¼
1

16

Z

Y

4

k¼1
�

1

4
��Tk xx

� �

dw: ð13Þ

Similar to the linear case, we use the matrix of �
2 to

represent this properly scaled box spline. Since convolution
in the space domain amounts to a multiplication in the
frequency domain, we use (11) to derive the Fourier
transform of the new box spline:

M̂
�

2ð!!Þ ¼ M̂2
�
ð!!Þ ¼

Y

4

k¼1

1� expð�i��Tk !!Þ
i��Tk !!

 !2

: ð14Þ

We can see that the number of vanishingmoments of this box
spline is doubled when compared to the linear kernel. This
implies that this box spline has fourth-order approximation
power on the BCC lattice [30]. The eight directions of this box
spline �

2 are duplicates of the original four directions.
Consequently, the minimum number of directions that one
needs to remove from�

2 so that the remaining vectors do not
span IR3 is � ¼ 4; hence, the weighted shifts of this box spline
are guaranteed to produce C2 continuous reconstructions
with fourth-order approximation. This smoothness and
approximation power parallels that of the tricubic B-spline
reconstruction on the Cartesian lattice; for this reason, we
have referred to M

�
2 as the “cubic” box spline in [13].

However, since there are eight directions, this trivariate box
spline is composed of quintic polynomials. Therefore,
according to de Boor’s notations [9], we will call this box
spline a quintic box spline.

As we noted earlier, M� is of second-order approxima-
tion power on the BCC lattice. The nth convolution of the
linear kernel with itself, denoted by M�

n , will have an
approximation power of 2n on the BCC lattice. These box
splines would produce C2n�2 reconstructions.

ENTEZARI ET AL.: PRACTICAL BOX SPLINES FOR RECONSTRUCTION ON THE BODY CENTERED CUBIC LATTICE 317



4.4 Support

The support of M� is a rhombic dodecahedron, as shown in
Fig. 4. The support ofM�

n is the Minkowski sum of n copies
of rhombic dodecahedron. Since a rhombic dodecahedron is
a convex and symmetric polyhedron (with respect to its
center), its Minkowski addition with itself will have the
same shape, scaled by two. In general, the support of M�

n

would be a rhombic dodecahedron scaled by n [33].
The volume of the support of the box spline M� as

depicted in Fig. 4 is 16. Therefore, for a point xx in a general
position, 16 points from ZZ3 intersect the support of M�ðxxÞ
[9, II.15]. Since only 1/4 of these points belong to the BCC
lattice, only four BCC points fall inside the support of
M�ðxxÞ. Similarly, the support of M

�
2 is a rhombic

dodecahedron whose direction vectors are scaled by two.
Therefore, its volume is 128, which implies that only 32 BCC
points fall inside the support of M

�
2ðxxÞ.

This fact implies that a C0 reconstruction with second-

order approximation power on BCC only needs four data

points,3 whereas for this smoothness and accuracy on the

Cartesian lattice, trilinear interpolation requires a neighbor-

hood of 2� 2� 2 ¼ 8 data points. Similarly, a C2 recon-

struction with fourth-order approximation on BCC only

needs 32 data points, whereas for this smoothness and

accuracy on the Cartesian lattice, tricubic B-spline requires a

neighborhood of 4� 4� 4 ¼ 64 data points (see Table 1 for

a summary). Hence, as we will see in Section 6, the

computational cost of BCC reconstruction is significantly

lower than a similar reconstruction on the Cartesian lattice

with an equivalent sampling density.

5 EXPLICIT PIECEWISE POLYNOMIAL

REPRESENTATION

The previous section defined the four-directional box spline
on the BCC lattice and showed some of its main properties
derived from its Fourier transform. However, a literal
implementation of (9) and (13), as we implemented in [13],
turned out to be extremely inefficient (especially in the case
of the quintic box spline). Hence, although theoretically
exciting, these splines were not useful in a practical setting.
To make them practical for computer graphics and
visualization applications, we derive a piecewise polyno-
mial representation that allows an extremely fast evaluation
as desired for these applications.

5.1 Preliminaries and Outline of Derivation

In the following discussion, the symbol r�� denotes a
(directional) finite-difference operator and is defined by
r��fðxxÞ ¼ fðxxÞ � fðxx� ��Þ. For a matrix of directions, �,
the difference operator is defined as successive applica-
tions of difference operators along each direction in
� : r� ¼

Q

��2�r��. The corresponding differential operator
is denoted by DD�. Green’s function of a differential
operator is a function g that satisfies DDg ¼ �, where �
denotes Dirac’s delta (generalized) function. The Fourier
transform of � in the distributional sense is the constant
function one.

Box splines, similar to B-splines, are piecewise polynomial
functions with bounded support. In this section, we will see
that the box splineM� can be derived by applying the finite-
difference operator r� to a single function G�, which is
Green’s function for the differential operatorDD� correspond-
ing tor�.

The essential idea inourderivation is to closely analyze the
numerator and denominator of the Fourier transform of box
splines (as in (11)). The numerator corresponds to the box
spline’s difference operator in the space domain, which is
defined as

r� !
Y

��2�
1� expð�i��T!!Þ: ð15Þ

In Section 5.2, we will derive the weights and their
respective positions in 3D as a discrete series for the
finite-difference operator of our box splines.

Using distribution theory, we can identify the remaining
part of (11) as the Fourier transform of G� in space domain,
since

DD� !
Y

��2�
i��T!!; and G� !

Y

��2�

1

i��T!!
:
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3. The four points in the linear interpolant construct a barycentric
interpolation on the tetrahedron they form.

Fig. 4. The support of the box spline represented by � is a rhombic
dodecahedron formed by the four direction vectors in �.

TABLE 1
Reconstruction Properties of the Proposed Box Splines

on the BCC Lattice and Tensor-Product B-Splines
on the Cartesian Lattice

TABLE 2
Rendering Times

C0 and C2 indicate the linear and quintic box splines on the BCC lattice
and the trilinear and tricubic B-splines on the Cartesian lattice,
respectively.



If this differential operator DD� is applied to its Green’s
function G�, Dirac’s delta is obtained. However, if we apply
the corresponding finite-difference operator to the Green’s
function, the box splines are obtained:

M�ðxxÞ ¼ r�G�ðxxÞ:
We will show in Section 5.3 that the function G� is
constructed by superpositions and linear transformations
of a tensor product of (two-sided) signed monomials:
xksgnðxÞ. In Section 5.4, we will see that we can also derive
box splines by applying the difference operators on their
truncated powers T�. Truncated powers are very similar to
G�, but instead of the two-sided signed monomials, they
are constructed from one-sided monomials:

ðxÞkþ ¼
xk if x � 0;
0 if x < 0:

�

ð16Þ

ðxÞk� is also defined as ðxÞk� ¼ xk � ðxÞkþ. Since one-sided
monomials are supported on half-spaces, they are more
convenient than Green’s functions in derivations.

Four-directional box splines of generally higher degrees
are obtained by n convolutions of the linear box spline,
which amounts to

M�
nðxxÞ ¼ r�

nT�
nðxxÞ: ð17Þ

These box splines are represented in the frequency
domain by

M̂�
nð!!Þ ¼ M̂n

�
ð!!Þ ¼ 1

i4n

Y

4

k¼1

ð1� expð�i��Tk !!ÞÞ
n

ð��Tk !!Þ
n :

For notational convenience, we introduce the scalar
variables:

zk :¼ expð�i��Tk !!Þ;
wk :¼ ��Tk !!:

ð18Þ

This notation allows us to write the Fourier transforms of
higher degree box splines more compactly as

M̂n
�
ð!!Þ ¼

Y

4

k¼1

ð1� zkÞn
wn

k

:

Furthermore, we note that due to the structure of
P4

k¼1 ��k ¼ 0 in �,
P4

k¼1 wk ¼ 0, and
Q4

k¼1 zk ¼ 1.

5.2 Difference Operator

The finite-difference operator can be represented as a filter.
Its coefficients weight the Green’s function that is shifted to
the various lattice points, as in (17). The Z-domain
representation of the difference operator allows for an easy
polynomial representation of this discrete series:

rn
�
ðzzÞ ¼

Y

4

k¼1
ð1� zkÞn: ð19Þ

Expanding this equation for the linear box spline n ¼ 1 and
using the fact that

Q4
k¼1 zk ¼ 1, we get

r�ðzzÞ ¼ 2� ðz1 þ z2 þ z3 þ z4Þ
þ ðz1z2 þ z1z3 þ z1z4 þ z2z3 þ z2z4 þ z3z4Þ
� ðz1z2z3 þ z1z2z4 þ z1z3z4 þ z2z3z4Þ:

ð20Þ

For a more compact notation, we adopt a slightly different

multinomial notation where the power operation on 4-

tuples Z ¼ ðz1; z2; z3; z4Þ by � ¼ ð�1; �2; �3; �4Þ is defined as

Z� ¼ 1

pð�Þ
X

�1;...;�4ð Þ2perm �1;...;�4ð Þ
z
�1
1 z

�2
2 z

�3
3 z

�4
4 ; ð21Þ

where permð�Þ is the set of all permutations of �, and pð�Þ
counts the number of permutations of repeated values in �.

This is to avoid counting duplicate terms of the polynomial.

For instance, if the value of�1 is repeated in� r1 times and the

value of �2 is repeated r2 times, then pð�Þ ¼ r1!r2!. In this

notation, the difference operator weights are represented as

r�ðzzÞ ¼ 2� Z 1;0;0;0ð Þ þ Z 1;1;0;0ð Þ � Z 1;1;1;0ð Þ:

Note that since z�11 ¼ z2z3z4, both Zð1;0;0;0Þ and Zð1;1;1;0Þ

denote the same set of monomials, which contain exactly

one lattice vector. Geometrically, one can visualize the

weights being 2 at the origin, �1 on all BCC lattice points

reachable by exactly one lattice vector (positive or negative),

and þ1 on lattice points that can be reached by exactly two

lattice vectors. This is illustrated in Fig. 5a. Similarly, the
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Fig. 5. (a) Weights for the difference operator of the linear box spline.
(b) Weights for the difference operator of the quintic box spline. For

simplicity of illustration, only one of the parallelepipeds constituting the

rhombic dodecahedron has been drawn with all of its internal vertices.



difference operator weights for the quintic box spline n ¼ 2

can be derived from (19) in the compact form as

r2
�
ðzzÞ ¼ 18� 10Z 1;0;0;0ð Þ þ 8Z 1;1;0;0ð Þ þ 4Z 2;1;1;0ð Þ

� 2Z 2;1;0;0ð Þ þ Z 2;0;0;0ð Þ þ Z 2;2;0;0ð Þ:
ð22Þ

These weights are on BCC lattice points on a rhombic

dodecahedron with a neighborhood two times larger than

that of the linear-box-spline case and are displayed in Fig. 5b.

5.3 Green’s Function

We now describe a procedure to derive the space-domain
representation of the Green’s functions of our box splines.
We make use of the wk variables introduced in (18):

Ĝ�ð!!Þ ¼
Y

4

k¼1

1

��Tk !!
¼
Y

4

k¼1

1

wk
:

The objective is to rewrite Ĝ� into a number of terms, each of
which contains only three of the four wk variables. Such a
three-variable expression can then be written as a linear
transformation of a trivariate function whose inverse Fourier
transform can be obtained by a tensor product. The general
idea is to exploit the relation w1 þ w2 þ w3 ¼ �w4 to reduce
the number of variables in the denominator and obtain a sum
of terms with one less variable. This helps to eliminate any
fourth variable with the help of the proper numerator, and
consequently, we introduce new terms in the expression
while increasing the power of w4. This procedure is the
frequency-domain reasoning of the spatial-domain recursive
structure of the box splines. We can always apply this
procedure since whenever the number of directions n is
greater than the dimension of the space s, the additional
directions of the box spline can be written as the linear
combination of the s linearly independent vectors. The Ĝ� of
the linear box spline can be rewritten as

Ĝ�ð!!Þ ¼
1

w1w2w3w4

¼ �
w1þw2þw3

w4

w1w2w3w4

¼ �1
w2

4w1w2w3

� ðw1 þ w2 þ w3Þ:

Although the general Green’s function of the nth box spline

is Ĝ�
n ¼ ðĜ�Þn, for the linear box spline, we have n ¼ 1:

Ĝ�ð!!Þ ¼
�1
w2

4

1

w1w2

þ 1

w1w3

þ 1

w2w3

� �

: ð23Þ

Similarly, the quintic box spline’s Green’s function is

obtained by n ¼ 2:

Ĝ
�

2ð!!Þ ¼ Ĝ2
�
ð!!Þ ¼

1

w4
4

1

w2
1w

2
2

þ 1

w2
1w

2
3

þ 1

w2
2w

2
3

� �

þ

�2
w5

4

1

w2
1w3

þ 1

w2
1w2

þ 1

w2
2w3

þ 1

w2
2w1

þ 1

w2
3w1

þ 1

w2
3w2

� �

þ

6

w6
4

1

w2w3

þ 1

w1w3

þ 1

w1w2

� �

:

ð24Þ

Now, we can move back to using the frequency variables
!! ¼ ð!x; !y; !zÞ. We first define these building-block
functions:

�̂1ð!x; !y; !zÞ ¼
�1

!x!y!2
z

;

�̂2ð!x; !y; !zÞ ¼
1

!2
x!

2
y!

4
z

� 2
1

!2
x!y
þ 1

!x!2
y

 !

1

!5
z

þ 6

!x!y!5
z

:

ð25Þ
These functions are useful since the Ĝ� of our box splines
are essentially linear transformations (for example,
ðw1;w2;w4Þ ¼ �

T
f1;2;4g!!) and superpositions of these build-

ing-block functions:

Ĝ�ð!!Þ ¼ �̂1ð�T
f1;2;4g!!Þ þ �̂1ð�T

f1;3;4g!!Þ þ �̂1ð�T
f2;3;4g!!Þ;

Ĝ
�

2ð!!Þ ¼ �̂2ð�T
f1;2;4g!!Þ þ �̂2ð�T

f1;3;4g!!Þ þ �̂2ð�T
f2;3;4g!!Þ:

Here, the subscript fi; j; kg indicates the matrix formed by
the ith, jth, and kth columns of �.

We now derive the inverse Fourier transform of these
building-block functions. First, we recognize that the
Fourier inverse of 1=ði!Þk is the two-sided monomial [1]:

ðxÞksgn
k!

:¼ 1

2

xksgnðxÞ
k!

 ! 1

ði!Þkþ1
: ð26Þ

We can derive the space-domain representation of our
building-block functions as a tensor-product inverse Four-
ier transform of the equations in (25):

�1ðx; y; zÞ ¼ � ðxÞ0sgnðyÞ
0
sgnðzÞsgn;

�2ðx; y; zÞ ¼
1

3!
ðxÞsgnðyÞsgnðzÞ

3
sgnþ

�2
4!
ðxÞsgnðyÞ

0
sgn þ ðxÞ

0
sgnðyÞsgn

h i

ðzÞ4sgnþ
6

5!
ðxÞ0sgnðyÞ

0
sgnðzÞ

5
sgn:

ð27Þ

If QQ is an invertible matrix, we know that
fðQQxÞ !f̂ððQQÞ�1!!Þ=j detQQj. Therefore, we can write the
space-domain representation of the Green’s function of
these box splines as

G�ðxxÞ ¼
1

4
�1ð��1f1;2;4gxxÞ þ �1ð��1f1;3;4gxxÞ þ �1ð��1f2;3;4gxxÞ
� 	

;

G
�

2ðxxÞ ¼ 1

4
�2ð��1f1;2;4gxxÞ þ �2ð��1f1;3;4gxxÞ þ �2ð��1f2;3;4gxxÞ
� 	

;

ð28Þ

where xx ¼ ðx; y; zÞ, and

j det��1f1;2;4gj ¼ j det��1f1;3;4gj ¼ j det��1f2;3;4gj ¼ 1=4:

5.4 Truncated Power

Recall that the Green’s functions were constructed from
the signed monomials xksgnðxÞ in (27). The differential
operator D�, when applied on these signed monomials,
transformed in (28), results in a � function. Consequently,
this differential operator annihilates all polynomials of
degree � k encountered in the signed polynomials in the
Green’s function. Similarly, the finite-difference operator
annihilates all of these polynomials [9, I.32].

Since box splines are obtained by applying the
difference operator on the Green’s function, we can add
or subtract any polynomials up to degree k found in the
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Green’s function. Therefore, the box spline can also be
obtained by applying the difference operator to a Green’s
function that is obtained from 1

2
ðxksgnðxÞ � xkÞ ¼ �ðxÞk� or

1
2
ðxksgnðxÞ þ xkÞ ¼ ðxÞkþ. The contributions from adding or

subtracting xk is eliminated since the difference operator
annihilates the polynomials made of xk. The advantage of
working with these one-sided monomials is that they are
supported on half-spaces, whereas the support of Green’s
functions in (28) is the entire space.

Therefore, we redefine the building-block functions by
using ðxÞkþ, ðyÞ

k
þ, and �ðzÞ

k
�:

�1ðx; y; zÞ ¼ ðxÞ0þðyÞ
0
þðzÞ�;

�2ðx; y; zÞ ¼
�1
3!
ðxÞþðyÞþðzÞ

3
�þ

2

4!
ðxÞþðyÞ

0
þ þ ðxÞ

0
þðyÞþ

h i

ðzÞ4�þ
�6
5!
ðxÞ0þðyÞ

0
þðzÞ

5
�:

ð29Þ

Note that the support of these building-block functions is on
points xx 2 IR3 such that x; y > 0 and z < 0. We further
derive the truncated power functions to be

T�ðxxÞ ¼
1

4
�1ð��1f1;2;4gxxÞ þ �1ð��1f1;3;4gxxÞ þ �1ð��1f2;3;4gxxÞ
� 	

;

T
�

2ðxxÞ ¼ 1

4
�2ð��1f1;2;4gxxÞ þ �2ð��1f1;3;4gxxÞ þ �2ð��1f2;3;4gxxÞ
� 	

:

ð30Þ

The crucial point here is that the values of truncated
power functions at any point xx are affected only by one of
the three terms on the right-hand sides of the above
equations. To see this fact, recall that �1ðx; y; zÞ and �2ðx; y; zÞ
are nonzero only when x; y > 0 and z < 0. The support of
each building-block function is transformed in (30) to cones
formed by columns of � (for example, the support of
�1ð��1f1;2;4gxxÞ is all points xx ¼ �f1;2;4gðt1; t2; t3Þ for t1; t2 > 0

and t3 < 0). The support of the building-block functions is
transformed as

�
�1
f1;2;4gxx ¼

1

2
x� z; y� z; xþ yð Þ;

�
�1
f1;3;4gxx ¼

1

2
x� y; z� y; xþ zð Þ;

�
�1
f2;3;4gxx ¼

1

2
y� x; z� x; yþ zð Þ:

ð31Þ

Therefore, the support of �1ð��1f1;2;4gxxÞ is the cone that is the

intersection of the half-spaces determined by x� z > 0,

y� z > 0, and xþ y < 0 (see Fig. 6). Similarly, the support
of �1ð��1f1;3;4gxxÞ is the cone that is the intersection of the half-

spaces determined by x� y > 0, z� y > 0, and xþ z < 0.

Since y� z < 0 and z� y < 0 are disjoint, the support of

�1ð��1f1;2;4gxxÞ and �1ð��1f1;3;4gxxÞ are disjoint. Therefore, the

supports of each building-block function transformed in
(30) are nonoverlapping.

The support of the truncated power functions of the box
splines is the union of each cone formed by the matrices of
the equations in (30). The support of each transformed
building-block function along with the support of the
truncated power of the box splines is illustrated in Fig. 6.
The red arrows indicate the half-spaces in the support.

Therefore, one can verify that the support of the truncated
power functions is the union of the half-spaces determined
by xþ y < 0, xþ z < 0, and yþ z < 0.

Since the supports of the transformed � functions are
nonoverlapping, at any point xx, only one of the three
transformed � ’s contribute to the value of the truncated
power. For xx to be within the support of one of the
transformed � functions, its first and second components of
the transformed vector need to be positive, whereas the
third component needs to be negative. Under this assump-
tion, the last component of each vector of the right-hand
side of (31) is the sum of the two largest values out of x, y,
and z. Moreover, the other two components in each set is
the difference of the largest and the middle value from the
minimum of the three. We also notice that these basic
building-block functions are symmetric with respect to the
first and second components of the position vector xx of their
argument (see (27)). For example, when � is transformed by
�
�1
f1;2;4g, its support is determined by the region specified by

x > z, y > z, and xþ y < 0. Using these observations, we
can write the truncated power in terms of only one basic
building-block function:

T�ðx; y; zÞ ¼
1

4
�1

1

2
ð~x� ~zÞ; 1

2
ð~y� ~zÞ; 1

2
ð~xþ ~yÞ

� �

; ð32Þ

T
�

2ðx; y; zÞ ¼ 1

4
�2

1

2
ð~x� ~zÞ; 1

2
ð~y� ~zÞ; 1

2
ð~xþ ~yÞ

� �

; ð33Þ

where

~x ¼ max ðx; y; zÞ ; ~y ¼ mid ðx; y; zÞ; and ~z ¼ min ðx; y; zÞ:
ð34Þ
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Fig. 6. The support of the truncated power function is the cone formed by

the three directions in �f1;2;3g. This volume is a disjoint union of the

supports of three � functions, each transformed by �
�1
f1;2;4g, �

�1
f1;3;4g, and

�
�1
f2;3;4g.



5.5 Efficient Evaluation

Having obtained the explicit form of the truncated power,
we shall apply the difference operator derived in Section 5.2
to T�

n in order to obtain M�
n . This operation indicated as in

(17) can be implemented as a convolution of the finite-
difference operator sequence with the truncated power. In
this section, we exploit the symmetries in the support of
these box splines and find a region for the efficient
evaluation of this convolution.

5.5.1 Region of Evaluation: 1D Example

To better understand the procedure, we use to derive the
polynomial pieces of the box spline, we first illustrate this
procedure in 1D for a linear B-spline ð� ¼ ½ 1 � 1 �Þ. In
this case, the Green’s function is � 1

2
xsgnðxÞ, and the

truncated power is: T ðxÞ ¼ ðxÞ�. The difference operator
is represented in the Z-domain by rðzÞ ¼ �z�1 þ 2� z. The
linear B-spline is obtained by the following convolution:

�ðxÞ ¼ �T ðxþ 1Þ þ 2T ðxÞ � T ðx� 1Þ:
The process of this convolution is illustrated in Fig. 7.
Fig. 7a shows the truncated power ðxÞ�, Fig. 7b shows
the difference operator weights, Fig. 7c shows the result
of the convolution illustrated by overlaying the truncated
powers at their respective difference operator sites, and
Fig. 7d shows the resulting B-spline. In Fig. 7d, the red
band indicates the regions of the x-axis that are affected
by the convolution site at 1, the green band indicates the
region that is affected by the convolution site at 0, and
the blue band indicates the region that is affected by the
convolution site at �1. The symmetry of the support of
the linear B-spline suggests an efficient evaluation in the
interval of [0, 1], where only one convolution site
contributes to the values of the B-spline in this region.

Therefore, for an efficient evaluation of the linear B-
spline, we would map any point in [�1; 1], the support of
the B-spline, to the interval [0, 1] using the symmetry of its
support. Once this mapping is performed, the B-spline can
be computed by evaluating the truncated power shifted
only to the sites that affect this region. In the case of the
linear B-spline, there is only one site that affects this region,
which is T ðx� 1Þ.

5.5.2 Region of Evaluation: Trivariate Case

Since our trivariate box splines are obtained through a
projection along the antipodal axis of a tesseract, they exhibit
the symmetries present in their polyhedral support, which is
a rhombic dodecahedron.We exploit the symmetries present

within the rhombic dodecahedron to achieve an efficient

evaluation method for the linear and quintic box splines.
First, we observe that a rhombic dodecahedron can be

decomposed into four nonoverlapping parallelepipeds in

two different ways. For a rhombic dodecahedron formed by

the vectors in � as in Fig. 4, one can construct four

parallelepipeds, each formed by three of the four vectors

from �. Alternatively, one can choose the negative direc-

tions from �� to decompose the rhombic dodecahedron

into four parallelepipeds. Therefore, we can confine the

evaluation region to one of these parallelepipeds, and the

evaluation at the other points can be inferred by symmetry.
The support of T� (or T

�
2 ) is the positive cone of �f1;2;3g,

as in Fig. 6. A minimal number of convolution sites

contribute to the value of the box spline in the parallele-

piped that is cornered at the origin and formed by ���1, ���2,
and ���3. This parallelepiped contains the positive octant of

IR3 and is illustrated with blue edges in Fig. 8. Similarly, for

the quintic box spline, a minimal number of convolution

sites contribute to the parallelepiped formed by �2��1, �2��2,
and �2��3, which is illustrated in Fig. 9.

5.5.3 Linear Box Spline

The operation of the difference operator on the truncated

power is a sum of truncated power functions shifted and

weighted according to the difference operator sites, as in

Fig. 5a. As the support of the truncated power is limited to

the cone of the direction vectors in �f1;2;3g, only one of the

terms of the convolution contributes to the value of M� in

the parallelepiped that we deal with; this term is the one

obtained from shifting the T� to (1, 1, 1) and multiplying by

�1 the difference operator weight at this point (Fig. 5a).

None of the other difference operator sites affect this region

of interest, as illustrated in Fig. 8.
Therefore, a point in the parallelepiped of focus is

characterized by ðx; y; zÞ ¼ ��f1;2;3gðt1; t2; t3Þ, where

0 � t1; t2; t3 < 1. Using the min/mid/max variables intro-

duced in (34), we have
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Fig. 7. Convolution of the truncated power ðxÞ� with the difference
operator, a 1D example. (a) The truncated power ðxÞ�. (b) The discrete-
difference operator weights. (c) The convolution by overlaying the
truncated power functions. (d) The resulting convolution yields the linear
B-spline.

Fig. 8. When computing the operation of the difference operator on the
truncated power, only one term, which shifts the truncated power to (1,
1, 1), affects the parallelepiped of interest formed by ��f1;2;3g. The
support of the truncated powers shifted to the other sites does not
intersect this parallelepiped.



M�ðx; y; zÞ ¼ ð�1ÞT�ðx� 1; y� 1; z� 1Þ

¼ � 1

4
�1

1=2ð~x� 1� ð~z� 1ÞÞ;
1=2ð~y� 1� ð~z� 1ÞÞ;
1=2ð~x� 1þ ~y� 1Þ

0

B

@

1

C

A

¼ � 1

8
~xþ ~y� 2ð Þ

¼ 1

4
1� 1

2
ðmax ðx; y; zÞ þmidðx; y; zÞÞ

� �

;

ð35Þ

which agrees with the geometric simplification we derived

in [13], normalized according to the sampling density of the

BCC lattice described by (1).

5.5.4 Quintic Box Spline

The same procedure as for the linear box spline can be used.

The difference operator for the quintic box spline is shown in

Fig. 5b. The support of the truncated power is limited to the

cone of the direction vectors in�f1;2;3g such that only eight of

the terms of the convolution contribute to the value ofM
�

2 in

the parallelepiped that we focus on; see Fig. 9. As we saw in

Section 4.4, the size of the support of the quintic box spline is

doubled from that of the linear box spline; therefore, the

parallelepiped of focus is now eight times the size of the

corresponding one in the linear-box-spline case; therefore, for

a point in the parallelepiped of focus characterized by

ðx; y; zÞ ¼ ��f1;2;3gðt1; t2; t3Þ, where 0 � t1; t2; t3 < 2, we have

M
�

2ðx; y; zÞ ¼ T
�

2ðx� 2; y� 2; z� 2Þ
� 10T

�
2ðx� 1; y� 1; z� 1Þ � 2T

�
2ðx� 3; y� 1; z� 1Þ

� 2T
�

2ðx� 1; y� 3; z� 1Þ � 2T
�

2ðx� 1; y� 1; z� 3Þ
þ 4T

�
2ðx� 2; y� 2; zÞ þ 4T

�
2ðx� 2; y; z� 2Þ

þ 4T
�

2ðx; y� 2; z� 2Þ;

where T
�

2 is defined as in (33). The shifts in the above
equation are shifts to the difference operator sites, which are
the colored nodes in Fig. 9.

Using the symmetries of the rhombic dodecahedron, we
can confine the evaluation region to a tetrahedron that has a
vertex at the origin, and its apex (which is on the plane
xþ y ¼ 4) is a quarter of one face of the original parallele-
piped since these faces are rhomboids and have fourfold
symmetry. The rhomboid face of the parallelepiped of our
focus lies in the plane specified by xþ y ¼ 4 in Fig. 10. Out of
four possible choices, we pick this tetrahedron so that it
contains the positive octant completely. This region is
specified by its four bounding planes: xþ y < 4, x > y,
y > z, and z > 0. This tetrahedron is illustrated by the dark
tetrahedron in Fig. 10. It is partitioned into four regions
formed by the intersections with four of the eight subpar-
allelepipeds that constitute the original parallelepiped of
focus. These subparallelepipeds are highlighted in green in
Fig. 11. These four regions are identified by

R1 :xþ y < 2; R2 : xþ y > 2; xþ z < 2;

R3 :xþ z > 2; yþ z < 2; R4 : yþ z > 2:

These regions are determined by posing the restriction of
being in the dark tetrahedron of focus, which is specified by
x > y > z > 0 and each of the four subparallelepipeds that
intersect this tetrahedron. These subparallelepipeds are
specified by ��f1;2;3gtt, where the subparallelepiped of
region R1 is specified by 0 � t1; t2; t3 < 1, the subparallele-
piped of region R2 is specified by 0 � t1; t2 < 1 and
1 � t3 < 2, the subparallelepiped of region R3 is specified
by 0 � t1 < 1 and 1 � t2; t3 < 2, and the subparallelepiped
of region R4 is specified by 1 � t1; t2; t3 < 2.

In each of these regions, illustrated in Fig. 11, the box

spline will be represented as a separate polynomial.
RegionR1 is affected by all of the eight difference operator

sites in the parallelepiped of focus. RegionR2 is affected only

by four sites at (3, 1, 1), (2, 2, 2), (1, 3, 1), and (2, 2, 0). RegionR3

is affectedby twosites at (3, 1, 1) and (2, 2, 2). Finally, regionR4

is affected only by (2, 2, 2). Therefore, we simplify the

polynomials in each region separately. Using constants

� :¼ 1=3840, � :¼ 1=1920, and 	 :¼ 1=960, we have
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Fig. 9. When computing the convolution of the difference operator and
the truncated power, only eight terms of the convolution affect the
parallelepiped of interest formed by �2�f1;2;3g. The support of the
truncated power shifted to each site is the cone indicated by the gray
region. The support of the truncated power shifted to the other
convolution sites does not intersect this parallelepiped.

Fig. 10. The region specified by xþ y < 4 and x > y > z > 0 is illustrated

with the dark tetrahedron. This tetrahedron is formed by connecting the

origin to the face, which is the triangle that is one quarter of the rhombic

face of the original rhombic dodecahedron.



Region R1, M�
2ðx; y; zÞ ¼

�ðxþ y� 4Þ3ð�3xy� 5z2 þ 2xþ 2yþ 20zþ x2 þ y2 � 24Þ
þ �ðxþ z� 2Þ3ðx2 � 9x� 3xzþ 10y� 5y2 þ 14þ 11zþ z2Þ
þ �ðyþ z� 2Þ3ð46� 30x� z� yþ 3zyþ 5x2 � y2 � z2Þ
� 	ðxþ y� 2Þ3ðx2 þ x� 3xy� 5z2 þ y2 þ y� 6Þ:

ð36Þ

Region R2, M�
2ðx; y; zÞ ¼

�ðxþ y� 4Þ3ð�3xy� 5z2 þ 2xþ 2yþ 20zþ x2 þ y2 � 24Þ
��ðxþ z� 2Þ3ð�z2 � 11zþ 3xz� 14þ 5y2 þ 9x� 10y� x2Þ
��ðyþ z� 2Þ3ð�46þ zþ 30xþ y� 3zy� 5x2 þ y2 þ z2Þ:

ð37Þ

Region R3, as illustrated in Fig. 11, is not a simple

tetrahedron with homogeneous regions with respect to the

site located at (3, 1, 1). When the truncated power is

centered at this site, two of the three components constitut-

ing the truncated power (see Fig. 6) intersect this region.

Therefore, there are two subcases for the contribution of the

truncated power centered at (3, 1, 1). However, the

contribution from (2, 2, 2) remains homogeneous as only

one of the three components of the truncated power (see

Fig. 6) contributes to this region:

Region R3Afx� z > 2g, M
�

2ðx; y; zÞ ¼

�ðxþ y� 4Þ3ð�x2 þ 8xþ 3xy� y2 þ 5z2 � 16� 12yÞ: ð38Þ

Region R3Bfx� z < 2g, M
�

2ðx; y; zÞ ¼

�ðxþ y� 4Þ3ð�3xy� 5z2 þ 2xþ 2yþ 20zþ x2 þ y2 � 24Þ
��ðyþ z� 2Þ3ð30xþ z� 46� 3yzþ y� 5x2 þ y2 þ z2Þ:

ð39Þ

Region R4, M�
2ðx; y; zÞ ¼

�ðxþ y� 4Þ3ð�3xy� 5z2 þ 2xþ 2yþ 20zþ x2 þ y2 � 24Þ:
ð40Þ

Therefore, a fast evaluation of the box spline can be
obtained for any ðx; y; zÞ by first transforming it to the
tetrahedron of focus (the dark tetrahedron in Fig. 10) by
taking ðx; y; zÞ ¼ ðjxj; jyj; jzjÞ and then sorting ðx; y; zÞ ¼ ðmax
ðx; y; zÞ;midðx; y; zÞ;minðx; y; zÞÞ. Once these transforms are
performed, we can test for the appropriateness of the above
five regions, and the polynomial form can be evaluated. We
also note that due to the explicit piecewise polynomial form
above and the relatively small support of these polynomial
regions, our evaluation is numerically stable.

As a summary, we include the pseudocode for the
evaluation of the quintic box spline referring to the regions
above.

function fourdirection_boxspline(x, y, z)
% Transform the point to the tetrahedron of focus in Fig. 10
x ¼ absðxÞ; y ¼ absðyÞ; z ¼ absðzÞ;
sort x, y, z in decreasing order
% For the linear box spline, the apex of the

focus-tetrahedron is
% on the plane ðxþ yÞ ¼ 2: the boundary
if ððxþ yÞ > 2Þ return 0;
return ð2�ðxþ yÞÞ=8; % Linear case; see (35)

% For the quintic box spline the plane ðxþ yÞ ¼ 4 is the
boundary:

if ððxþ yÞ > 4Þ return 0;
if ððxþ yÞ < 2Þ % Region R1

return M�R1
ðx; y; zÞ as in (36);

elseif ððxþ zÞ < 2Þ % Region R2

return M�R2
ðx; y; zÞ as in (37);

elseif ððyþ zÞ < 2Þ % Region R3

if ððx�zÞ > 2Þ % Region R3A

return M�R3A
ðx; y; zÞ as in (38);

else % Region R3B

return M�R3B
ðx; y; zÞ as in (39);

else % Region R4

return M�R4
ðx; y; zÞ as in (40);

end

6 RESULTS

In this section, we describe our experimental results and
compare the BCC sampling scheme to the traditional
Cartesian sampling on volumetric data sets. In order to
examine the reconstruction schemes discussed in this paper,
we have implemented a ray caster to render images from
the Cartesian and the BCC sampled volumetric data sets.
We have chosen the synthetic data set (Fig. 12) first
proposed in [21] as a benchmark for our comparisons.
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Fig. 11. Different regions of the evaluation domain are the intersection of
subparallelepipeds (highlighted in green) and the tetrahedron in focus

(black edges). The box spline is a homogeneous polynomial in each

region.



The function was sampled at a resolution of 41� 41� 41 on
the Cartesian lattice and at an almost4 equivalent sampling
on the BCC lattice of 32� 32� 64. The images in Fig. 13 are
rendered using the quintic box spline on the BCC sampled
data sets and the tricubic B-spline on the Cartesian sampled
data sets. The analytical function was rendered by evaluat-
ing the actual function proposed in [21]. The images in the
second row in Fig. 13 document the corresponding error
images that are obtained from the angular error that
occurred in estimating the normal by central differencing
on the reconstructed function. Although a direct reconstruc-
tion of the normal is possible by using the analytical
gradient of the reconstruction kernel, we chose central
differencing with a relatively small step on the recon-
structed function to approximate the true gradient. Central
differencing is commonly the method of choice in the
visualization domain, and there is no reason to believe that
it performs any better or worse than taking the analytical
derivative of the reconstruction kernel [26]. The gray value
of 255 (white) denotes an angular error of 0.3 radian
between the computed normal and the exact normal. The
superiority of BCC sampling is apparent by comparing the
images in Figs. 13a and 13b, as these are obtained from an
equivalent sampling density over the volume. Although the
lobes are mainly preserved in the BCC case, they are more
smoothed out in the case of Cartesian sampling. This is also
confirmed by their corresponding error images in the
second row in Fig. 13.

Typical volumetric data are scanned on and recon-
structed from the Cartesian lattice. A suitable (antialiasing)
prefiltering step is applied to limit the spectrum of the
sampled data within the Nyquist region, which is the
Voronoi cell of the reciprocal lattice. For the BCC lattice, this
cell is clearly different from the one of the Cartesian lattice.
Therefore, the ultimate test of the BCC reconstruction on
real-life data sets cannot be performed until there are true
BCC sampling scanners available.

Nevertheless, we constructed comparable BCC and
Cartesian data sets by merely subsampling a fairly densely
sampled Cartesian data set. Cartesian sampled data can be
downsampled onto a BCC lattice by retaining Cartesian
points whose x, y, and z-coordinates are all odd or all even.
Such a BCC lattice has a quarter of the sampling density of
the original data set. To obtain an almost equivalent
subsampling ratio into a lower resolution Cartesian data
set, we choose a rational subsampling scheme where each

dimension of the original Cartesian data set is subsampled
by 63/100 since ð63=100Þ3 ¼ 0:250047 	 1=4. To achieve this
subsampling, we first upsampled by zero-padding in the
frequency domain by a factor of 63. Then a subsampling of
the rate 1/100 yields the properly subsampled Cartesian
volume.

As a first practical case, we chose the Boston Teapot data
set. The original data set has a resolution of 162� 162� 113.
The subsampled Cartesian volume has a resolution of
103� 103� 72, and the subsampled BCC volume has a
resolution of 81� 81� 113. These volumes were rendered
using the tricubic B-spline on the Cartesian lattice and the
quintic box spline on the BCC lattice in Fig. 14. These
images demonstrate the superiority of the BCC sampling
scheme since the Cartesian undersampled data set devel-
oped cracks on the surface of the teapot lid, whereas the
BCC undersampled data set maintains the original content
with higher fidelity. We also examined the carp fish data
set. The original data set has a resolution of 256� 256� 256.
The subsampled Cartesian volume has a resolution of
140� 140� 140, and the subsampled BCC volume has a
resolution of 111� 111� 222. These volumes were also
rendered with the tricubic B-spline and the quintic box
spline, respectively; see Fig. 15. Again, these results show
the superiority of the BCC sampling scheme since the
Cartesian undersampled data set misses the fish tail and
most of the bones.

In [13], we have discussed the issues pertaining to linear
order interpolation. Although in the Cartesian volumes they
demonstrate grid-aligned artifacts, in BCC, they display
girdering artifacts [4]. The result of linear box spline on the
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4. Since a finite sampling of a volume cannot produce the exact same
number of samples for the BCC and Cartesian sampling patterns, for our
discrete resolutions, we chose the resolutions conservatively in favor of the
Cartesian sampling. Therefore, the actual sampling density in the Cartesian
sampled data sets is slightly higher than the BCC sampling density.

Fig. 12. The explicit function introduced by Marschner and Lobb.

Fig. 13. The Marschner-Lobb data set. (a) Sampled on the Cartesian
lattice at a resolution of 41� 41� 41. (b) Sampled on the BCC lattice at
a resolution of 32� 32� 64. The first row illustrates the volume
rendering of the sampled data using the tricubic B-spline on the
Cartesian and our quintic box spline on the BCC data set. The second
row illustrates the corresponding angular errors in estimating the
gradient on the isosurface from the reconstruction process. An angular
error of 0.3 radian is mapped to white. The darker error image of the
BCC data confirms smaller errors and a more accurate reconstruction.



BCC and trilinear B-spline interpolation on the Cartesian

lattice are demonstrated in Fig. 16.
We have also approximated the mean square error

existing in the volumes subsampled on BCC and Cartesian
lattices. The error calculation was carried out by a random
sampling of the error and summing over these random
points to approximate the L2 error integral. These experi-
ments also confirmed that BCC subsampling is more
accurate than the comparable Cartesian subsampling since
the error of the Cartesian subsampled volume matched that
of the BCC volume with only about 70 percent of the
number of samples. Further, we have examined the visual
quality of the rendered images and found empirical
evidence that a BCC sampled volume with roughly about
70 percent of the number of samples of a Cartesian volume
produces equivalent visual quality [23].

Computational cost. The computational cost of the
reconstruction is mainly due to computing the convolution

of the data values and the continuous-domain box-spline
kernel. For trilinear and tricubic B-spline reconstructions on
the Cartesian lattice, a neighborhood of 2� 2� 2 ¼ 8 and
4� 4� 4 ¼ 64 points fall inside the support of the kernels,
respectively. Therefore, eight terms of the convolution in
the case of the trilinear and 64 terms in the case of the
tricubic B-spline need to be computed. Computing the
convolution weights involves evaluating a third-degree
trivariate polynomial for the trilinear, whereas a ninth-
degree trivariate polynomial needs to be evaluated for the
tricubic B-spline. However, due to the tensor-product
structure of these kernels, the third-degree polynomial, in
the case of the trilinear interpolation, factors into a product
of three first-degree univariate polynomials. Similarly, the
ninth degree trivariate polynomial of the cubic B-spline
factors into a product of three third-degree univariate
polynomials.

For linear and quintic box-spline reconstructions on the
BCC lattice, a neighborhood of 4 and 32 points fall inside
the support of the kernels, respectively. Therefore, only four
terms of the convolution in the case of linear and 32 terms in
the case of the quintic box spline need to be computed.
Computing the convolution weights involves evaluating a
first-degree trivariate polynomial for the linear box spline,
whereas a fifth-degree trivariate polynomial needs to be
evaluated for the quintic box spline. However, due to the
structure of the quintic kernel, the fifth-degree polynomial
is factored into the product of a third-degree polynomial
and a second-degree polynomial, as (27) can be factored in
terms of the z variable. All of the polynomial pieces of the
quintic box spline listed in Section 5.5.4 are in the form of
this building-block function.

Our experiments also support these predictions as the
Cartesian data set in Fig. 13a was rendered in 122.69 sec-
onds, whereas the BCC data set in Fig. 13b was rendered
in 63.75 seconds. These images were computed at a
resolution of 500 � 500 on a dual processor (Dual-Core
AMD Opteron 280) machine running Linux with a GCC
compiler (4.0.2). A similar rendition using trilinear
interpolation on the Cartesian image took 21.49 seconds,
whereas the linear box spline on the BCC took 11.99 sec-
onds. Similar timing differences were observed on the
real-life data sets; the timings for these reconstructions are
summarized in Table 2. We note that for C0 reconstruc-
tions, the speedups are less than a factor of two. Since
linear interpolation is relatively light, a smaller portion of
the rendering time is consumed by the reconstruction
step; hence, twice a speedup in reconstruction plays a
slightly less significant role in the rendering time.

7 CONCLUSION

In this paper, for the first time, we have demonstrated the
practicality of box splines, as well as BCC lattice sampling.
This is a significant contribution in two areas. First, it takes
the mathematically elegant construct of box splines and
shows that they are practical and can be efficiently
implemented. Although the derivation in this paper is for
a specific class of box splines, we believe that its principle
can be extended to general box splines. Second, although
BCC lattice sampling has been known to be theoretically
superior over (standard) Cartesian sampling, it has not
received the attention it deserves from practitioners—
mainly due to the absence of computational tools. This
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Fig. 14. The Boston teapot data set. (a) The original Cartesian sampled
data set with 2,965,000 samples reconstructed with the tricubic B-spline.
(b) Undersampled on the Cartesian lattice with 763,848 samples
reconstructed with the tricubic B-spline. The surface shows an artifact.
(c) Undersampled on the BCC lattice with 741,393 samples recon-
structed with the quintic box spline.



paper makes a major step in bringing the theoretical

advantages of the BCC lattice to a solid and efficient

practical foundation and should pave the way to a main-

stream adoption of alternative sampling structures. We plan

to investigate higher degree box splines for efficient

prefiltering (interpolation and quasi-interpolation); see [5]

for some recent advances on the hexagonal lattice.
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[7] B. Csébfalvi, “Prefiltered Gaussian Reconstruction for High-
Quality Rendering of Volumetric Data Sampled on a Body-
Centered Cubic Grid,” Proc. IEEE Visualization Conf. (VIS ’05),
pp. 311-318, 2005.

[8] M. Dæhlen, “On the Evaluation of Box Splines,” Mathematical
Methods in Computer Aided Geometric Design, pp. 167-179, 1989.
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(c) Cartesian. (d) BCC.

Fig. 15. The carp fish data set. (a) The original Cartesian sampled data set with 16,777,216 samples reconstructed with the tricubic B-spline.
(b) Undersampled on the Cartesian lattice with 2,744,000 samples reconstructed with the tricubic B-spline. (c) Undersampled on the BCC lattice with
2,735,262 samples reconstructed with the quintic box spline.
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