
Practical Byzantine Fault Tolerance
and Proactive Recovery

MIGUEL CASTRO

Microsoft Research

and

BARBARA LISKOV

MIT Laboratory for Computer Science

Our growing reliance on online services accessible on the Internet demands highly available sys-
tems that provide correct service without interruptions. Software bugs, operator mistakes, and
malicious attacks are a major cause of service interruptions and they can cause arbitrary behav-
ior, that is, Byzantine faults. This article describes a new replication algorithm, BFT, that can be
used to build highly available systems that tolerate Byzantine faults. BFT can be used in practice
to implement real services: it performs well, it is safe in asynchronous environments such as the
Internet, it incorporates mechanisms to defend against Byzantine-faulty clients, and it recovers
replicas proactively. The recovery mechanism allows the algorithm to tolerate any number of faults
over the lifetime of the system provided fewer than 1/3 of the replicas become faulty within a small
window of vulnerability. BFT has been implemented as a generic program library with a simple
interface. We used the library to implement the first Byzantine-fault-tolerant NFS file system,
BFS. The BFT library and BFS perform well because the library incorporates several important
optimizations, the most important of which is the use of symmetric cryptography to authenticate
messages. The performance results show that BFS performs 2% faster to 24% slower than produc-
tion implementations of the NFS protocol that are not replicated. This supports our claim that the
BFT library can be used to build practical systems that tolerate Byzantine faults.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems—
Client/server; D.4.3 [Operating Systems]: File Systems Management; D.4.5 [Operating Sys-

tems]: Reliability—Fault tolerance; D.4.6 [Operating Systems]: Security and Protection—
Access controls; authentication; cryptographic controls; D.4.8 [Operating Systems]: Perfor-
mance—Measurements

General Terms: Security, Reliability, Algorithms, Performance, Measurement

Additional Key Words and Phrases: Byzantine fault tolerance, state machine replication, proactive
recovery, asynchronous systems, state transfer

This research was partially supported by DARPA under contract F30602-98-1-0237 monitored by
the Air Force Research Laboratory. Part of this work was done while M. Castro was with the MIT
Laboratory for Computer Science and during this time he was partially supported by Praxis XXI
and Gulbenkian fellowships.
Authors’ addresses: M. Castro, Microsoft Research, 7 J. J. Thomson Avenue, Cambridge CB3 0FB,
UK; email: mcastro@microsoft.com; B. Liskov, MIT Laboratory for Computer Science, 545 Technol-
ogy Square, Cambridge, MA 02139.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0734-2071/02/1100-0398 $5.00

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002, Pages 398–461.

Practical Byzantine Fault Tolerance and Proactive Recovery • 399

1. INTRODUCTION

We are increasingly dependent on services provided by computer systems and
our vulnerability to computer failures is growing as a result. We would like
these systems to be highly available: they should work correctly and they should
provide service without interruptions.

There is a large body of research on replication techniques to implement
highly available systems. The problem is that most research on replication
has focused on techniques that tolerate benign faults (e.g., Alsberg and Day
[1976], Gifford [1979], Oki and Liskov [1988], Lamport [1989], and Liskov et al.
[1991]): these techniques assume components fail by stopping or by omitting
some steps. They may not provide correct service if a single faulty component
violates this assumption. Unfortunately, this assumption is not valid because
malicious attacks, operator mistakes, and software errors are common causes
of failure and they can cause faulty nodes to exhibit arbitrary behavior, that is,
Byzantine faults. The growing reliance of industry and government on computer
systems provides the motif for malicious attacks and the increased connectivity
to the Internet exposes these systems to more attacks. Operator mistakes are
also cited as one of the main causes of failure [Murphy and Levidow 2000]. In
addition, the number of software errors is increasing due to the growth in size
and complexity of software.

Techniques that tolerate Byzantine faults [Pease et al. 1980; Lamport et al.
1982] provide a potential solution to this problem because they make no as-
sumptions about the behavior of faulty processes. There is a significant body of
work on agreement and replication techniques that tolerate Byzantine faults.
However, most earlier work (e.g., Canetti and Rabin [1992], Reiter [1996],
Malkhi and Reiter [1996b], Garay and Moses [1998], and Khilstrom et al.
[1998]) either concerns techniques that are too inefficient to be used in prac-
tice, or relies on assumptions that can be invalidated easily by an attacker.
For example, it is dangerous to rely on synchrony [Lamport 1984] for safety in
the Internet, that is, to rely on bounds on message delays and process speeds.
An attacker may compromise the correctness of a service by delaying nonfaulty
nodes or the communication between them until the bounds are exceeded. Such
a denial-of-service attack is generally easier than gaining control over a non-
faulty node.

This article describes BFT, a new algorithm for state machine replica-
tion [Lamport 1978; Schneider 1990] that offers both liveness and safety pro-
vided at most ⌊(n− 1)/3⌋ out of a total of n replicas are faulty. This means that
clients eventually receive replies to their requests and those replies are correct
according to linearizability [Herlihy and Wing 1987; Castro and Liskov 1999a].

BFT is the first Byzantine-fault-tolerant, state machine replication algo-
rithm that is safe in asynchronous systems such as the Internet: it does not
rely on any synchrony assumption to provide safety. In particular, it never
returns bad replies even in the presence of denial-of-service attacks. Addition-
ally, it guarantees liveness provided message delays are bounded eventually.
The service may be unable to return replies when a denial-of-service attack is
active but clients are guaranteed to receive replies when the attack ends.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

400 • M. Castro and B. Liskov

Since BFT is a state machine replication algorithm, it has the ability to repli-
cate services with complex operations. This is an important defense against
Byzantine-faulty clients: operations can be designed to preserve invariants on
the service state, to offer narrow interfaces, and to perform access control. BFT
provides safety regardless of the number of faulty clients and the safety prop-
erty ensures that faulty clients are unable to break these invariants or bypass
access controls. Algorithms that only offer reads, writes, and synchronization
primitives (e.g., Malkhi and Reiter [1998b]) are more vulnerable to Byzantine-
faulty clients; they rely on clients to order and synchronize reads and writes
correctly in order to enforce invariants.

We also describe a proactive recovery mechanism for BFT that recovers
replicas periodically even if there is no reason to suspect that they are faulty.
This allows the replicated system to tolerate any number of faults over the
lifetime of the system provided fewer than 1/3 of the replicas become faulty
within a window of vulnerability. The best that could be guaranteed previously
was correct behavior if fewer than 1/3 of the replicas failed during the life-
time of a system. The window of vulnerability can be made very small (e.g., a
few minutes) under normal conditions with a low impact on performance. Our
mechanism provides detection of denial-of-service attacks aimed at increasing
the window and it also detects when the state of a replica is corrupted by an
attacker.

BFT incorporates a number of important optimizations that allow the algo-
rithm to perform well so that it can be used in practice. The most important
optimization is the use of symmetric cryptography to authenticate messages.
Public key cryptography, which was cited as the major latency [Reiter 1994]
and throughput [Malkhi and Reiter 1996a] bottleneck in previous systems, is
used only to exchange the symmetric keys. Other optimizations reduce the
communication overhead: the algorithm uses only one message round trip to
execute read-only operations and two to execute read-write operations, and
it uses batching under load to amortize the protocol overhead for read-write
operations over many requests. The algorithm also uses optimizations to re-
duce protocol overhead as the operation argument and result sizes increase.
Additionally, the article describes efficient techniques to garbage collect pro-
tocol information, and to transfer state to bring replicas up to date; these are
necessary to build practical services that tolerate Byzantine faults.

BFT has been implemented as a generic program library with a simple inter-
face. The BFT library can be used to provide Byzantine-fault-tolerant versions
of different services. The article describes the BFT library and explains how
it was used to implement a real service: the first Byzantine-fault-tolerant dis-
tributed file system, BFS, which supports the NFS protocol.

The article presents a performance analysis of the BFT library and BFS. The
experimental results show that BFS performs 2% faster to 24% slower than
production implementations of the NFS protocol that are not replicated. These
results were obtained in configurations with four and seven replicas that can
tolerate one and two Byzantine faults, respectively. They support our claim that
the BFT library can be used to implement practical Byzantine-fault-tolerant
systems.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 401

The rest of the article is organized as follows. Section 2 presents our system
model and assumptions, and Section 3 describes the problem solved by the al-
gorithm and states correctness conditions. The algorithm without recovery is
described informally in Section 4 and formally in the Appendix. The proactive
recovery mechanism is presented in Section 5. Section 6 describes optimiza-
tions and implementation techniques that are important for implementing a
practical solution for replication in the presence of Byzantine faults. The im-
plementation of the BFT library and BFS is presented in Section 7. Section 8
presents a detailed performance analysis for the BFT library and BFS. Section 9
discusses related work. Finally, our conclusions and some directions for future
work appear in Section 10.

2. SYSTEM MODEL

A replicated service is implemented by n replicas that execute operations re-
quested by clients. Replicas and clients run in different nodes in a distributed
system and are connected by a network.

BFT implements a form of state machine replication [Lamport 1978;
Schneider 1990] that allows replication of services that perform arbitrary
computations provided they are deterministic, that is, replicas must produce the
same sequence of results when they process the same sequence of operations.

Replicas use a cryptographic hash function D to compute message di-
gests, and they use message authentication codes (MACs) to authenticate all
messages including client requests [Schneier 1996]. There is a pair of session
keys for each pair of replicas i and j : ki, j is used to compute MACs for messages
sent from i to j , and k j ,i is used for messages sent from j to i. Each replica
also shares a single secret key with each client; this key is used to authenticate
communication in both directions. These session keys can be established and
refreshed dynamically using the mechanism described in Section 5.2.2 or any
other key exchange protocol.

Messages that are sent point-to-point to a single recipient contain a single
MAC; we denote such a message as 〈m〉µi j

, where i is the sender, j is the receiver,
and the MAC is computed using ki, j . Messages that are multicast to all the
replicas contain authenticators; we denote such a message as 〈m〉αi

, where i is
the sender. An authenticator is a vector of MACs, one per replica j (j 6= i), where
the MAC in entry j is computed using ki, j . The receiver of a message verifies
its authenticity by checking the corresponding MAC in the authenticator.

BFT assumes very little from the nodes and the network. We use a Byzantine
failure model; that is, faulty nodes may behave arbitrarily. (Replicas and clients
are correct if they follow the algorithm in Section 4.) The network that connects
nodes may fail to deliver messages, delay them, duplicate them, or deliver them
out of order. Therefore, we allow for a very strong adversary that can control
faulty nodes and the network in order to cause the most damage to the replicated
service. For example, it can coordinate faulty nodes, delay messages, or inject
new messages.

We rely only on the following assumptions: the first two are assumptions on
the behavior of nodes, required both for safety and for liveness, and the last one

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

402 • M. Castro and B. Liskov

is an assumption on the behavior of the network, required only for liveness.
The proactive recovery mechanism relies on additional (realistic) assumptions
that are described in Section 5.1.

Bound on Faults

We assume a bound f = ⌊(n− 1)/3⌋ on the number of faulty replicas. In
Section 5, we describe a proactive recovery mechanism that enables the algo-
rithm to tolerate any number of faults over the lifetime of the system provided
at most f replicas fail in any small window of vulnerability. But the proactive
recovery mechanism requires additional assumptions.

There is little benefit in using the BFT library or any other replication tech-
nique when there is a strong positive correlation between the failure probabil-
ities of the replicas; the probability of violating the bound on the number of
faults is not significantly larger than the probability of a single fault in this
case. For example, our approach cannot mask a software error that occurs at
all replicas at the same time. But the BFT library can mask nondeterministic
software errors, which seem to be the most persistent [Gray 2000] since they
are the hardest to detect.

One can increase the benefit of replication further by taking steps to increase
diversity. One possibility is to have diversity in the execution environment: the
replicas can be administered by different people; they can be in different geo-
graphic locations; and they can have different configurations (e.g., run different
combinations of services, or run schedulers with different parameters). This im-
proves resilience to several types of faults, for example, administrator attacks
or mistakes, attacks involving physical access to the replicas, attacks that ex-
ploit weaknesses in other services, and software bugs due to race conditions.
Another possibility is to have software diversity: replicas can run different ser-
vice implementations to improve resilience to software bugs and attacks that
exploit software bugs. The version of the BFT library described in this article
does not allow software diversity but we have recently developed an extension
to the library that does [Rodrigues et al. 2001].

Strong Cryptography

We also assume that the adversary is computationally bound so that (with very
high probability) it is unable to subvert the cryptographic techniques men-
tioned above. We assume the attacker cannot forge MACs: if i and j are non-
faulty nodes and they never generated 〈m〉µi j

, the adversary is unable to gen-
erate 〈m〉µi j

for any m. We also assume that the cryptographic hash function
is collision resistant: the adversary is unable to find two distinct messages m

and m′ such that D(m) = D(m′). These assumptions are probabilistic but they
are believed to hold with high probability for the cryptographic primitives we
use [Black et al. 1999; Rivest 1992]. Therefore, we assume that they hold with
probability one in the rest of the text.

The algorithm does not rely on any form of cryptographic signature attached
to messages to prove that they are authentic to a third party. Therefore, it can be
modified easily to rely only on point-to-point authenticated channels. This can
be done simply by sending copies of a message (without MACs) over multiple

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 403

channels instead of multicasting the message (with MACs). It is also possible
to modify the algorithm not to use a cryptographic hash function by replacing
the hash of a message by the value of the message. The resulting algorithm is
secure against adversaries that are not computationally bound provided the au-
thenticated channels can be made secure against such adversaries (which may
be possible using, for example, quantum cryptography [Bennett et al. 1992]).
But since most authenticated channel implementations rely on computational
bounds on the adversary, we present an efficient version of the algorithm that
relies on this assumption.

In addition, if we were only concerned with nonmalicious faults (e.g., software
errors), it would be possible to relax the assumptions about the cryptographic
primitives and use weaker, more efficient constructions.

Weak Synchrony (Only for Liveness)

Let delay(t) be the time between the moment t when a message is sent for the
first time and the moment when it is received by its destination (where the
sender keeps retransmitting the message until it is received, and both sender
and destination are correct). We assume that delay(t) has an asymptotic upper
bound. Currently, we assume that delay(t) = o(t) but the bounding function can
be changed easily.

3. SERVICE PROPERTIES

BFT provides both safety and liveness properties [Lamport 1977] assuming no
more than ⌊(n− 1)/3⌋ replicas are faulty over the lifetime of the system.

The safety property is a form of linearizability [Herlihy and Wing 1987]:
the replicated service behaves as a centralized implementation that executes
operations atomically one at a time. The original definition of linearizability
does not work with Byzantine-faulty clients. We describe our modified definition
of linearizability in Appendix B.

The resilience of BFT is optimal: at least 3 f + 1 replicas are necessary to
provide the safety and liveness properties under our assumptions when up to
f replicas are faulty. To understand the bound on the number of faulty replicas,
consider a replicated service that implements a mutable variable with read and
write operations. To provide liveness, the service may have to return a reply
before the request is received by more than n− f replicas, since f replicas
might be faulty and not responding. Therefore, the service may reply to a write
request after the new value is written only to a set W with n− f replicas. If
later a client issues a read request, it may receive a reply based on the state of a
set R with n− f replicas. R and W may have only n− 2 f replicas in common.
Additionally, it is possible that the f replicas that did not respond are not
faulty and, therefore, f of those that responded might be faulty. As a result,
the intersection between R and W may contain only n− 3 f nonfaulty replicas.
It is impossible to ensure that the read returns the correct value unless R and
W have at least one nonfaulty replica in common; therefore n> 3 f .

Safety is provided regardless of how many faulty clients are using the service
(even if they collude with faulty replicas): all operations performed by faulty

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

404 • M. Castro and B. Liskov

clients are observed in a consistent way by nonfaulty clients. In particular, if
the service operations are designed to preserve some invariants on the service
state, faulty clients cannot break those invariants. This is an important defense
against Byzantine-faulty clients that is enabled by BFT’s ability to implement
an arbitrary abstract data type [Liskov and Zilles 1975].

Some algorithms only provide primitives to read a single variable or to write
a single variable; they are more vulnerable to Byzantine-faulty clients because
they rely on clients to implement complex service operations using these prim-
itives. Even when systems provide mutual exclusion operations to group reads
and writes (e.g., Malkhi and Reiter [1998b, 2000]), they rely on clients to order
and group these primitive operations correctly to enforce the invariants re-
quired by the service operations. For example, creating a file requires updates
to metadata information. In BFT, this operation can be implemented to enforce
metadata invariants such as ensuring the file is assigned a new inode. In al-
gorithms that rely on clients to implement complex operations, a faulty client
will be able to write metadata information and violate important invariants;
for example, it could assign the inode of another file to the newly created file.

The invariants enforced by service operations may be insufficient to guard
against faulty clients; for example, in a file system a faulty client can write
garbage data to some shared file. Therefore, we further limit the amount of
damage a faulty client can do by providing access control: we authenticate
clients and deny access if the client issuing a request does not have the right
to invoke the operation. Since operations can be arbitrarily complex, the access
control policy can be specified at an abstract level (e.g., the ability to create files
in a directory). This contrasts with systems where access control policy can only
specify the ability to read or write each object (e.g., Malkhi and Reiter [1998b,
2000]). Additionally, the algorithm allows services to change access permissions
dynamically while still ensuring linearizability. This provides a mechanism to
recover from attacks by faulty clients.

BFT does not rely on synchrony to provide safety. Therefore, it must rely
on synchrony to provide liveness; otherwise it could be used to implement con-
sensus in an asynchronous system, which is not possible [Fischer et al. 1985].
We guarantee liveness (i.e., clients eventually receive replies to their requests),
provided at most ⌊(n− 1)/3⌋ replicas are faulty and delay(t) does not grow faster
than t indefinitely. This is a rather weak synchrony assumption that is likely
to be true in any real system provided network faults are eventually repaired
and denial-of-service attacks eventually stop, yet it enables us to circumvent
the impossibility result.

Our algorithm does not address the problem of fault-tolerant privacy: a faulty
replica may leak information to an attacker. It is not yet practical to offer fault-
tolerant privacy in the general case because service operations may perform
arbitrary computations using their arguments and the service state; replicas
need this information in the clear to execute such operations efficiently. But it
is easy to ensure privacy by having clients encrypt arguments that are opaque
to service operations.

Algorithms that tolerate Byzantine faults are subtle. Therefore, it is im-
portant to specify them formally and to prove their correctness. We wrote a

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 405

formal specification for a simplified version of the algorithm and proved its
safety [Castro 2001]. The simplified version is identical to the one described
in this article except that messages are authenticated using public key cryp-
tography. Recently, Lampson [2001] formalized a simplified version of the al-
gorithm described in this article (without public key cryptography) and argued
its correctness.

4. THE BFT ALGORITHM

This section describes the algorithm without proactive recovery. We omit some
important optimizations and details related to message retransmissions. The
optimizations are explained in Section 6 and message retransmissions are ex-
plained in Castro [2001]. We present a formalization of the algorithm in the
Appendix.

4.1 Overview

Our algorithm builds on previous work on state machine replication [Lamport
1978; Schneider 1990]. The service is modeled as a state machine that is repli-
cated across different nodes in a distributed system. Each replica maintains the
service state and implements the service operations. Clients send requests to
execute operations to the replicas and BFT ensures that all nonfaulty replicas
execute the same operations in the same order. Since replicas are deterministic
and start in the same state, all nonfaulty replicas send replies with identical
results for each operation. The client waits for f + 1 replies from different repli-
cas with the same result. Since at least one of these replicas is not faulty, this
is the correct result of the operation.

The hard problem in state machine replication is ensuring nonfaulty repli-
cas execute the same requests in the same order. Like Viewstamped Replica-
tion [Oki and Liskov 1988] and Paxos [Lamport 1989], our algorithm uses a
combination of primary-backup [Alsberg and Day 1976] and quorum replica-
tion [Gifford 1979] techniques to order requests. But it tolerates Byzantine
faults whereas Paxos and Viewstamped Replication only tolerate benign
faults.

In a primary-backup mechanism, replicas move through a succession of con-
figurations called views. In a view one replica is the primary and the others are
backups. The primary picks the ordering for execution of operations requested
by clients. It does this by assigning the next available sequence number to a
request and sending this assignment to the backups. But the primary may be
faulty: it may assign the same sequence number to different requests, stop
assigning sequence numbers, or leave gaps between sequence numbers. There-
fore the backups check the sequence numbers assigned by the primary and use
timeouts to detect when it stops. They trigger view changes to select a new
primary when it appears that the current one has failed.

The algorithm ensures that request sequence numbers are dense, that is, no
sequence numbers are skipped but when there are view changes some sequence
numbers may be assigned to null requests whose execution is a no-op.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

406 • M. Castro and B. Liskov

To order requests correctly despite failures, we rely on quorums [Gifford
1979]. We can use any Byzantine dissemination quorum system construction
[Malkhi and Reiter 1998a]. These quorums have two important properties.

— Intersection: any two quorums have at least one correct replica in common.

— Availability: there is always a quorum available with no faulty replicas.

These properties enable the use of quorums as a reliable memory for protocol
information. Replicas write information to a quorum and they collect quorum

certificates, which are sets with one message from each element in a quorum
saying that it stored the information. These certificates are proof that the in-
formation has been reliably stored and will be reflected in later reads. Reads
from the reliable memory obtain the information stored by all the elements in
a quorum and pick the latest piece of information.

We also use weak certificates, which are sets with at least f + 1 mes-
sages from different replicas. Weak certificates prove that at least one cor-
rect replica stored the information. Every step in the protocol is justified by a
certificate.

We denote the set of replicas byR and identify each replica using an integer in
{0, . . . , |R| − 1}. For simplicity, we assume |R| = 3 f + 1 where f is the maximum
number of replicas that may be faulty. We choose the primary of a view to be
replica p such that p = v mod |R|, where v is the view number and views are
numbered consecutively. Currently, our quorums are just sets with at least
2 f + 1 replicas.

4.2 The Client

A client c requests the execution of state machine operation o by multicasting
a 〈REQUEST, o, t, c〉αc

message to the replicas. Timestamp t is used to ensure
exactly once semantics for the execution of client requests. Timestamps for c’s
requests are totally ordered such that later requests have higher timestamps
than earlier ones.

Replicas accept the request and add it to their log provided they can authen-
ticate it. Request execution is ordered using the protocol described in the next
section. A replica sends the reply to the request directly to the client. The reply
has the form 〈REPLY, v, t, c, i, r〉µic

where v is the current view number, t is the
timestamp of the corresponding request, i is the replica number, and r is the
result of executing the requested operation.

The client waits for a weak certificate with f + 1 replies with valid MACs
from different replicas, and with the same t and r, before accepting the result
r. Since at most f replicas can be faulty, this ensures that the result is valid.
We call this certificate the reply certificate.

If the client does not receive a reply certificate soon enough, it retransmits
the request. If the request has already been processed, the replicas simply
retransmit the reply; replicas remember the last reply message they sent to
each client to enable this retransmission. If the primary does not assign a valid
sequence number to the request, it will eventually be suspected to be faulty by
enough replicas to cause a view change.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 407

We assume that the client waits for one request to complete before sending
the next one but it is not hard to change the protocol to allow a client to make
asynchronous requests, yet preserve ordering constraints on them.

The next paragraphs discuss scalability with the number of clients. First,
replicas share a secret key with each client. This could create a scalability prob-
lem with a large number of clients. We avoid this problem as follows. Replicas
only share secret keys with active clients and they limit the number of active
clients. New session keys can be established as described in Section 5.2.2 when
the set of active clients changes. Key information does not take a large amount
of space even with a large bound on the number of active clients. For exam-
ple, with 50,000 active clients this information uses less than 1 MB of space
assuming 16-byte keys and 8-byte client identifiers.

Additionally, replicas need to remember the 8-byte timestamp of the last
request executed by each client to ensure exactly once semantics. But since
timestamps are small and timestamps of inactive clients can be stored on disk,
this should not cause a significant scalability problem. However, replicas also
store the last reply message sent to each client to enable retransmissions. This
is impractical if replies are large and there are a large number of clients. The
implementation can trade off the ability to retransmit lost reply messages for
scalability. Replicas can bound the amount of space used to store this informa-
tion by discarding the oldest replies. If a replica receives a request whose reply
has been discarded, it informs the client that the request has been executed but
the reply is no longer available. We believe that the bound and the frequency
of request retransmissions can be made sufficiently large that this is unlikely
to happen. Furthermore, the client may be able to query the service and obtain
a reply after this happens.

4.3 Normal Case Operation

We use a three-phase protocol to atomically multicast requests to the repli-
cas. The three phases are pre-prepare, prepare, and commit. The pre-prepare
and prepare phases are used to totally order requests sent in the same view
even when the primary, which proposes the ordering of requests, is faulty. The
prepare and commit phases are used to ensure that requests that commit are
totally ordered across views. Figure 1 provides an overview of the algorithm in
the normal case of no faults.

The state of each replica includes the state of the service, a message log

containing messages the replica has accepted or sent, and an integer de-
noting the replica’s current view. We describe how to truncate the log in
Section 4.4. The state can be kept in volatile memory; it does not need to be
stable.

When the primary p receives a request mαc
= 〈REQUEST, o, t, c〉αc

from a
client, it assigns a sequence number n to m provided it can authenticate the
request. Then it multicasts a PRE-PREPARE message with the assignment to
the backups and inserts this message in its log. The message has the form
〈PRE-PREPARE, v, n, D(m)〉αp

, where v indicates the view in which the message is
being sent and D(m) is m’s digest.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

408 • M. Castro and B. Liskov

Fig. 1. Normal case operation: the primary (replica 0) assigns sequence number n to request m in
its current view v and multicasts a PRE-PREPARE message with the assignment. If a backup agrees
with the assignment, it multicasts a matching PREPARE message. When a replica receives messages
that agree with the assignment from a quorum, it sends a COMMIT message. Replicas execute m

after receiving COMMIT messages from a quorum.

Like PRE-PREPAREs, the PREPARE and COMMIT messages sent in the other phases
also contain n and v. A replica only accepts one of these messages provided that
it is in view v; that it can verify the authenticity of the message; and that n

is between a low water mark h and a high water mark H. The last condition
is necessary to enable garbage collection and to prevent a faulty primary from
exhausting the space of sequence numbers by selecting a very large one. We
discuss how H and h advance in Section 4.4.

A backup i accepts the PRE-PREPARE message provided (in addition to the
conditions above) it has not accepted a PRE-PREPARE for view v and sequence
number n containing a different digest. If a backup i accepts the PRE-PREPARE

and it has request m in its log, it enters the prepare phase by multicasting a
〈PREPARE, v, n, D(m), i〉αi

message with m’s digest to all other replicas; in addi-
tion, it adds both the PRE-PREPARE and PREPARE messages to its log. Otherwise,
it does nothing. The PREPARE message signals that the backup agreed to assign
sequence number n to m in view v. We say that a request is pre-prepared at a
particular replica if the replica sent a PRE-PREPARE or PREPARE message for the
request.

Then each replica collects messages until it has a quorum certificate with the
PRE-PREPARE and 2 f matching PREPARE messages for sequence number n, view
v, and request m. We call this certificate the prepared certificate and we say
that the replica prepared the request. This certificate proves that a quorum
has agreed to assign number n to m in v. The protocol guarantees that it is not
possible to obtain prepared certificates for the same view and sequence number
and different requests.

It is interesting to reason why this is true because it illustrates one use of
quorum certificates. Assume that it were false and there existed two distinct
requests m and m′ with prepared certificates for the same view v and sequence
number n. Then the quorums for these certificates would have at least one non-
faulty replica in common. This replica would have sent PRE-PREPARE or PREPARE

messages agreeing to assign the same sequence number to both m and m′ in
the same view. Therefore, m and m′ would not be distinct, which contradicts
our assumption.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 409

This ensures that replicas agree on a total order for requests in the same view
but it is not sufficient to ensure a total order for requests across view changes.
Replicas may collect prepared certificates in different views with the same se-
quence number and different requests. The commit phase solves this problem
as follows. Each replica i multicasts 〈COMMIT, v, n, i〉αi

saying it has the prepared
certificate and adds this message to its log. Then each replica collects messages
until it has a quorum certificate with 2 f + 1 COMMIT messages for the same se-
quence number n and view v from different replicas (including itself). We call
this certificate the committed certificate and say that the request is committed

by the replica when it has both the prepared and committed certificates.
After the request is committed, the protocol guarantees that the request has

been prepared by a quorum; that is, there is a quorum which knows that a
quorum has accepted to assign number n to a request in view v. New primaries
ensure information about committed requests is propagated to new views by
reading prepared certificates from a quorum and selecting the sequence number
assignments in the certificates for the latest views. The view change protocol
is described in detail in Section 4.5.

Each replica i executes the operation requested by the client when m is com-
mitted and the replica has executed all requests with lower sequence numbers.
This ensures that all nonfaulty replicas execute requests in the same order as
is required to provide safety. After executing the requested operation, replicas
send a reply to the client. To guarantee exactly once semantics, replicas discard
requests whose timestamp is lower than the timestamp in the last reply they
sent to the client.

We do not rely on ordered message delivery, and therefore it is possible for
a replica to commit requests out of order. This does not matter since it keeps
the PRE-PREPARE, PREPARE, and COMMIT messages logged until the corresponding
request can be executed.

It is possible for a request’s authenticator to have both correct and incor-
rect MACs if the client is faulty, or the request was corrupted in the network.
Therefore it is necessary to design the protocol to ensure that replicas agree
on whether a request is authentic. Otherwise, this problem could lead to safety
and liveness violations. BFT solves this problem by generalizing the mecha-
nism used to verify the authenticity of requests; a replica i can authenticate
a request if the MAC for i in the request’s authenticator is correct, or i has
f + 1 PRE-PREPARE or PREPARE messages with the request’s digest in its log. The
first condition is usually sufficient but the second condition prevents the system
from deadlocking if a request with a partially correct authenticator commits at
some correct replica.

4.4 Garbage Collection

This section discusses the garbage collection mechanism that prevents message
logs from growing without bound. Replicas must discard information about
requests that have already been executed from their logs. But a replica cannot
simply discard messages when it executes the corresponding requests because
it could discard a prepared certificate that would later be necessary to ensure

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

410 • M. Castro and B. Liskov

safety. Instead, the replica must first obtain a proof that its state is correct.
Then, it can discard messages corresponding to requests whose execution is
reflected in the state.

Generating these proofs after executing every operation would be expensive.
Instead, they are generated periodically, when a request with a sequence num-
ber divisible by the checkpoint period K is executed (e.g., K = 128). We refer to
the states produced by the execution of these requests as checkpoints and we
say that a checkpoint with a proof is a stable checkpoint.

When replica i produces or fetches a checkpoint, it multicasts a
〈CHECKPOINT, n, d , i〉αi

message to the other replicas, where n is the sequence
number of the last request whose execution is reflected in the state and d is
the digest of the state. A replica maintains several logical copies of the service
state: the last stable checkpoint, zero or more checkpoints that are not stable,
and the current state. This is necessary to ensure that the replica has both the
state and the matching proof for its stable checkpoint. Section 6.2 describes
how we manage checkpoints and transfer state between replicas efficiently.

Each replica collects messages until it has a quorum certificate with 2 f + 1
CHECKPOINT messages (including its own) authenticated by different replicas
with the same sequence number n and digest d . We call this certificate the stable

certificate; it ensures other replicas will be able to obtain a weak certificate
proving that the stable checkpoint is correct if they need to fetch it. At this point,
the checkpoint with sequence number n is stable and the replica discards all
entries in its log with sequence numbers less than or equal to n; it also discards
all earlier checkpoints.

The checkpoint protocol is used to advance the low and high water marks
(which limit what messages will be added to the log). The low water mark h is
equal to the sequence number of the last stable checkpoint and the high water
mark is H = h + L, where L is the log size. The log size is the maximum number
of consecutive sequence numbers for which the replica will log information. It is
obtained by multiplying K by a small constant factor (e.g., 2) that is big enough
so that it is unlikely for replicas to stall waiting for a checkpoint to become
stable.

4.5 View Changes

The view change protocol provides liveness by allowing the system to make
progress when the primary fails. The protocol must also preserve safety: it must
ensure that nonfaulty replicas agree on the sequence numbers of committed
requests across views.

The basic idea behind the protocol is for the new primary to read informa-
tion about stable and prepared certificates from a quorum and to propagate
this information to the new view. Since any two quorums intersect, the pri-
mary is guaranteed to obtain information that accounts for all requests that
committed in previous views and all stable checkpoints. The rest of this section
describes a simplified view change protocol that may require unbounded space.
We present a modification to the protocol in Castro [2001] that eliminates the
problem.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 411

Fig. 2. View-change protocol: the primary for view v (replica 0) fails causing a view change to view
v + 1.

Data Structures

Replicas record information about what happened in earlier views. This infor-
mation is maintained in two sets, P and Q. These sets only contain information
for sequence numbers between the current low and high water marks in the log.
The sets allow the view change protocol to work properly even when more than
one view change occurs before the system is able to continue normal operation;
the sets are empty while the system is running normally. Replicas also store
the requests corresponding to entries in these sets.

P at replica i stores information about requests that have prepared at i

in previous views. Its entries are tuples 〈n, d , v〉, meaning that i collected a
prepared certificate for a request with digest d with number n in view v and no
request prepared at i in a later view with the same number.

Q stores information about requests that have pre-prepared at i in previous
views (i.e., requests for which i has sent a PRE-PREPARE or PREPARE message). Its
entries are tuples 〈n, d , v〉, meaning that i pre-prepared a request with digest
d with number n in view v and that request did not pre-prepare at i in a later
view with the same number.

View-Change Messages

Figure 2 illustrates the view-change protocol from view v to view v + 1. When
a backup i suspects the primary for view v is faulty, it enters view v + 1 and
multicasts a 〈VIEW-CHANGE, v + 1, h, C, P, Q, i〉αi

message to all replicas. Here h

is the sequence number of the latest stable checkpoint known to i, C is a set of
pairs with the sequence number and digest of each checkpoint stored at i, and P

and Q are the sets described above. These sets are updated before sending the
VIEW-CHANGE message using the information in the log, as explained in Figure 3.
Once the VIEW-CHANGE message has been sent, i removes PRE-PREPARE, PREPARE,
and COMMIT messages from its log. The number of tuples in Q may grow without
bound if the algorithm changes views repeatedly without making progress.
In Castro [2001], we describe a modification to the algorithm that bounds the
size of the Q by a constant. It is interesting to note that VIEW-CHANGE messages
do not include PRE-PREPARE, PREPARE, or CHECKPOINT messages.

View-Change-Ack Messages

Replicas collect VIEW-CHANGE messages for v + 1 and send acknowledgments
for them to v + 1’s primary, p. Replicas only accept these VIEW-CHANGE

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

412 • M. Castro and B. Liskov

Fig. 3. Computing P and Q.

messages if all the information in their P and Q components is for view
numbers less than or equal to v. The acknowledgments have the form
〈VIEW-CHANGE-ACK, v + 1, i, j , d 〉µip

, where i is the identifier of the sender, d is
the digest of the VIEW-CHANGE message being acknowledged, and j is the replica
that sent that VIEW-CHANGE message. These acknowledgments allow the primary
to prove authenticity of VIEW-CHANGE messages sent by faulty replicas.

New-View Message Construction

The new primary p collects VIEW-CHANGE and VIEW-CHANGE-ACK messages (in-
cluding messages from itself). It stores VIEW-CHANGE messages in a set S.
It adds a VIEW-CHANGE message received from replica i to S after receiving
2 f − 1 VIEW-CHANGE-ACKs for i’s VIEW-CHANGE message from other replicas. These
VIEW-CHANGE-ACK messages together with the VIEW-CHANGE message it received
and the VIEW-CHANGE-ACK it could have sent form a quorum certificate. We call it
the view-change certificate. Each entry in S is for a different replica.

The new primary uses the information in S and the decision procedure
sketched in Figure 4 to choose a checkpoint and a set of requests. This proce-
dure runs each time the primary receives new information, for example, when
it adds a new message to S. We use the notation m.x to indicate component x

of message m where x is the name we used for the component when defining
the format for m’s message type.

The primary starts by selecting the checkpoint that is going to be the starting
state for request processing in the new view. It picks the checkpoint with the
highest number h from the set of checkpoints that are known to be correct
(because they have a weak certificate) and that have numbers higher than the
low water mark in the log of at least f + 1 nonfaulty replicas. The last condition
is necessary for liveness; it ensures that the ordering information for requests
that committed with numbers higher than h is still available.

Next, the primary selects a request to pre-prepare in the new view for each
sequence number n between h and h + L (where L is the size of the log). If a
request m committed in a previous view, the primary must select m. If such a
request exists, it is guaranteed to be the only one that satisfies conditions A1
and A2. Condition A1 ensures that the primary selects the request that some
replica in a quorum claims to have prepared in the latest view v, and A2 ensures

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 413

Fig. 4. Decision procedure at the primary.

that the request could prepare in view v because it was pre-prepared by at least
one correct replica in v or a later view.

If there is a quorum of replicas that did not prepare any request with se-
quence number n (condition B), no request committed with number n. There-
fore, the primary selects a special null request that goes through the protocol as
a regular request but whose execution is a no-op. (Paxos [Lamport 1989] used
a similar technique to fill in gaps.)

The decision procedure ends when the primary has selected a request for
each number. This may require waiting for more than n− f messages but a
primary is always able to complete the decision procedure once it receives all
VIEW-CHANGE messages sent by nonfaulty replicas for its view. After deciding, the
primary multicasts a NEW-VIEW message to the other replicas with its decision:
〈NEW-VIEW, v + 1, V, X 〉αp

. Here, V contains a pair for each entry in S consisting
of the identifier of the sending replica and the digest of its VIEW-CHANGE message,
and X identifies the checkpoint and request values selected. The VIEW-CHANGEs
in V are the new-view certificate.

New-View Message Processing

The primary updates its state to reflect the information in the NEW-VIEW mes-
sage. It obtains any requests in X that it is missing and if it does not have the
checkpoint with sequence number h, it also initiates the protocol to fetch the
missing state (see Section 6.2.2). When it has all requests in X and the check-
point with sequence number h is stable, it records in its log that the requests
are pre-prepared in view v + 1.

The backups for view v + 1 collect messages until they have a correct NEW-VIEW

message and a correct matching VIEW-CHANGE message for each pair in V. If a
backup did not receive one of the VIEW-CHANGE messages for some replica with
a pair in V, the primary alone may be unable to prove that the message it re-
ceived is authentic because it is not signed. The use of VIEW-CHANGE-ACK messages
solves this problem. Since the primary only includes a VIEW-CHANGE message in

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

414 • M. Castro and B. Liskov

S after obtaining a matching view-change certificate, at least f + 1 nonfaulty
replicas can vouch for the authenticity of every VIEW-CHANGE message whose di-
gest is in V. Therefore, if the original sender of a VIEW-CHANGE is uncooperative,
the primary retransmits that sender’s VIEW-CHANGE message and the nonfaulty
backups retransmit their VIEW-CHANGE-ACKs. A backup can accept a VIEW-CHANGE

message whose authenticator is incorrect if it receives f VIEW-CHANGE-ACKs that
match the digest and identifier in V.

After obtaining the NEW-VIEW message and the matching VIEW-CHANGE mes-
sages, the backups check if these messages support the decisions reported by
the primary by carrying out the decision procedure in Figure 4. If they do not,
the replicas move immediately to view v + 2. Otherwise, they modify their state
to account for the new information in a way similar to the primary. The only
difference is that they multicast a PREPARE message for v + 1 for each request
they mark as pre-prepared. Thereafter, normal case operation resumes.

4.5.1 Correctness. We now argue informally that the view-change protocol
preserves safety and that it is live.

Safety. We start by sketching a proof of the following claim.
If a request m commits with sequence number n at some correct replica in

view v then no other request commits with v and n at another correct replica,
and the decision procedure in Figure 4 will not choose a distinct request for
sequence number n in any view v′ > v.

This claim implies that after a request commits in view v with sequence
number n no distinct request can pre-prepare at any correct replica with the
same sequence number for views later than v. Therefore, correct replicas agree
on a total order for requests because they never commit distinct requests with
the same sequence number.

The proof is by induction on the number of views between v and v′. If m

committed at some correct replica i, i received COMMIT messages from a quorum
of replicas Q , saying that they prepared the request with sequence number
n and view v. By the quorum intersection property, distinct requests cannot
prepare at a correct replica with the same view and sequence number. Therefore
the claim is true in the base case v′ = v.

For the inductive step (v′ > v), assume by contradiction that the decision
procedure chooses a request m′ 6= m for sequence number n in v′. This implies
that either condition A1 or condition B must be true. By the quorum intersection
property, there must be at least one VIEW-CHANGE message from a correct replica
j ∈ Q with h < n in any quorum certificate used to satisfy conditions A1 or B.

From the inductive hypothesis and the procedure to compute P described
in Figure 3, j ’s VIEW-CHANGE message for v′ must include 〈n, D(m), vc〉 in its
P component with vc ≥ v (because j did not garbage collect information for
sequence number n). Therefore condition B cannot be true. But condition A1
can be true if a VIEW-CHANGE message from a faulty replica includes 〈n, D(m′), v f 〉
in its P component with v f > vc; condition A2 prevents this problem. Condition
A2 is true only if there is a VIEW-CHANGE message from a correct replica with
〈n, D(m′), v′

c〉 in its Q component such that v′
c ≥ v f . Since D(m′) 6= D(m) (with

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 415

high probability), the inductive hypothesis implies that v′
c ≤ v. Therefore, v f ≤ v

and conditions A1 and A2 cannot both be true, which finishes the proof.

Liveness. To provide liveness, replicas must move to a new view if they are
unable to execute a request. View changes are triggered by timeouts that pre-
vent backups from waiting indefinitely for requests to execute or when backups
detect that the primary is faulty. A backup is waiting for a request if it received
a valid request and has not executed it. A backup starts a timer when it receives
a request and the timer is not already running. It stops the timer when it is no
longer waiting to execute the request, but restarts it if at that point it is waiting
to execute some other request.

We now argue informally that the algorithm is live. We start by arguing
that a correct primary will be able to send a NEW-VIEW message provided it has
enough time before correct replicas change to the next view. Then we explain
how the algorithm maximizes the amount of time available to complete view
changes and process some new request.

Assume by contradiction that a correct primary with unbounded time is un-
able to reach a decision using the procedure in Figure 4. We start by showing
that there is at least one checkpoint that satisfies the conditions in the deci-
sion procedure. The primary will be able to make progress by choosing this
checkpoint or any other checkpoint that satisfies these conditions. Let hc be the
sequence number of the latest checkpoint that is stable at some correct replica.
Since there are at least 2 f + 1 correct replicas and at least f + 1 correct repli-
cas have the checkpoint with number hc, the primary will be able to choose the
value hc for h. If necessary to make progress, replicas will be able to fetch any
checkpoint chosen by the primary because at least one correct replica has the
checkpoint.

For each sequence number n between h and h + L, we argue that the primary
can choose a request that satisfies conditions A or B. The cases are: (1) some
correct replica prepared a request with sequence number n; or (2) there is no
such replica. In Case (1), condition A1 will be verified because there are 2 f + 1
nonfaulty replicas and nonfaulty replicas never prepare different requests for
the same view and sequence number; A2 will also be satisfied since a request
that prepares at a nonfaulty replica pre-prepares at at least f + 1 nonfaulty
replicas. Furthermore, condition A2 implies that there is at least one correct
replica with the request that vouches for its authenticity. Therefore any replica
that is missing the chosen request can fetch it and can believe that it is au-
thentic. In Case (2), condition B will eventually be satisfied because there are
2 f + 1 correct replicas that by assumption did not prepare any request with
sequence number n.

It is important to maximize the period of time when at least 2 f + 1 nonfaulty
replicas are in the same view and one of them is the primary. In addition, we
can adjust timeouts to ensure that this period of time increases exponentially
until some operation executes. We achieve these goals by several means.

First, to avoid starting a view change too soon, a replica that multicasts a
VIEW-CHANGE message for view v + 1 waits for 2 f + 1 VIEW-CHANGE messages for
view v + 1 before starting its timer. Then, it starts its timer to expire after some

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

416 • M. Castro and B. Liskov

time T . If the timer expires before it receives a valid NEW-VIEW message for
v + 1 or before it executes a request in the new view that it had not executed
previously, it starts the view change for view v + 2 but this time it will wait 2T

before starting a view change for view v + 3.
Second, if a replica receives a set of f + 1 valid VIEW-CHANGE messages from

other replicas for views greater than its current view, it sends a VIEW-CHANGE

message for the smallest view in the set, even if its timer has not expired; this
prevents it from starting the next view change too late.

Third, faulty replicas are unable to impede progress by forcing frequent view
changes. A faulty replica cannot cause a view change by sending a VIEW-CHANGE

message, because a view change will happen only if at least f + 1 replicas send
VIEW-CHANGE messages. But it can cause a view change when it is the primary (by
not sending messages or sending bad messages). However, because the primary
of view v is the replica p such that p = v mod |R|, the primary cannot be faulty
for more than f consecutive views.

These three techniques provide liveness unless message delays grow faster
than the timeout period indefinitely, which is unlikely in a real system.

Our implementation guarantees fairness: it ensures clients get replies to
their requests even when there are other clients accessing the service. A non-
faulty primary assigns sequence numbers using a FIFO discipline. Backups
maintain the requests in a FIFO queue and they only stop the view-change
timer when the first request in their queue is executed; this prevents faulty
primaries from giving preference to some clients while not processing requests
from others.

5. BFT-PR: BFT WITH PROACTIVE RECOVERY

BFT provides safety and liveness if fewer than 1/3 of the replicas fail during the
lifetime of the system. These guarantees are insufficient for long-lived systems
because the bound is likely to be exceeded in this case. Therefore, we have
developed a recovery mechanism for BFT that makes faulty replicas behave
correctly again. BFT with recovery, BFT-PR, can tolerate any number of faults
provided fewer than 1/3 of the replicas become faulty within a small window
of vulnerability.

A Byzantine-faulty replica may appear to behave properly even when broken;
therefore recovery must be proactive to prevent an attacker from compromis-
ing the service by corrupting 1/3 of the replicas without being detected. Our
mechanism recovers replicas periodically even if there is no reason to suspect
that they are faulty.

Section 5.1 describes the additional assumptions required to provide auto-
matic recoveries and Section 5.2 presents the modified algorithm.

5.1 Additional Assumptions

To implement recovery, we must mutually authenticate a faulty replica that
recovers to the other replicas, and we need a reliable mechanism to trigger
periodic recoveries. This can be achieved by involving system administrators
in the recovery process, but such an approach is impractical given our goal of

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 417

recovering replicas frequently to achieve a small window of vulnerability. To
implement automatic recoveries, we need additional assumptions.

Secure Cryptography. Each replica has a secure cryptographic coprocessor,
for example, a Dallas Semiconductors iButton or the security chip in the moth-
erboard of the IBM PC 300PL. The coprocessor stores the replica’s private key,
and can sign and decrypt messages without exposing this key. It also contains
a counter that never goes backwards. This enables it to append the counter to
messages it signs.

Read-Only Memory. Each replica stores the public keys for other replicas
in some memory that survives failures without being corrupted. This memory
could be a portion of the flash BIOS. Most motherboards can be configured such
that it is necessary to have physical access to the machine to modify the BIOS.

Watchdog Timer. Each replica has a watchdog timer that periodically in-
terrupts processing and hands control to a recovery monitor, which is stored in
the read-only memory. For this mechanism to be effective, an attacker should
be unable to change the rate of watchdog interrupts without physical access to
the machine. There are extension cards that offer this functionality.

These assumptions are likely to hold when the attacker does not have phys-
ical access to the replicas, which we expect to be the common case. When they
fail, we can fall back on the system administrators to perform recovery.

Note that all previous proactive security algorithms [Ostrovsky and Yung
1991; Herzberg et al. 1995, 1997; Canetti et al. 1997; Garay et al. 2000] assume
the entire program run by a replica is in read-only memory so that it cannot
be modified by an attacker, and most also assume that there are authenticated
channels between the replicas that continue to work even after a replica recov-
ers from a compromise. These assumptions would be sufficient to implement
our algorithm but they are less likely to hold in practice. We only require a small
monitor in read-only memory and use the secure coprocessors to establish new
session keys between the replicas after a recovery.

The only work on proactive security that does not assume authenticated
channels is Canetti et al. [1997], but the best that a replica can do when its
private key is compromised is alert an administrator. Our secure cryptogra-
phy assumption enables automatic recovery from most failures, and secure
coprocessors with the properties we require are now readily available. We also
assume clients have a secure coprocessor; this simplifies the key exchange pro-
tocol between clients and replicas but it could be avoided by adding an extra
round to this protocol. These assumptions can be relaxed when the goal is to
tolerate faults that are not triggered by malicious intelligence.

BFT with proactive recovery needs a stronger synchrony assumption to pro-
vide liveness. We assume there is some unknown point in the execution after
which either all messages are delivered within some constant time 1 (possibly
after being retransmitted) or all nonfaulty clients have received replies to their
requests. Here, 1 is a constant that depends on the timeout values used by
the algorithm. This assumption is stronger than the one used so far to allow

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

418 • M. Castro and B. Liskov

recoveries at a fixed rate but it is still likely to hold in real systems with an
appropriate choice of 1.

5.2 Modified Algorithm

We start by providing an overview of the recovery mechanism. Then we describe
it in detail.

5.2.1 Overview. BFT uses quorums as a reliable memory to store request
ordering information. We must ensure that this memory keeps working in the
presence of proactive recoveries. In particular, the proactive recovery mecha-
nism must ensure the following.

Each quorum certificate received by a nonfaulty replica must be backed by
a quorum; that is, the states of nonfaulty quorum members must record that a
matching message was sent or they must have a later stable checkpoint.

Additionally, the recovery mechanism must ensure that the service state
kept by the replica is consistent with the protocol state:

For any nonfaulty replica, the value of the current service state (or any
checkpoint) with sequence number n must be identical to the value obtained by
running the requests with sequence numbers between h + 1 and n in order of
increasing number and starting from the stable checkpoint h. These requests
must be committed at the replica.

There are several problems that need to be addressed to ensure that these
invariants are preserved when a replica recovers. First, it is necessary to pre-
vent attackers from impersonating replicas that were faulty after they recover.
Otherwise, there is no hope of ensuring any of the invariants above. Imper-
sonation can happen if the attacker learns the MAC keys used to authenticate
messages but even if messages were signed using the secure cryptographic co-
processor, an attacker would be able to sign bad messages while it controlled a
faulty replica. We avoid this problem by changing MAC keys during recoveries
and by having replicas and clients reject messages that are authenticated with
old keys.

However, changing keys is not sufficient. If a replica collects messages for
a certificate over a sufficiently long period of time, it can end up with more
than f messages sent by replicas when they were faulty, which violates the
first invariant. We solve this problem by having replicas and clients discard
all messages that are not part of a complete certificate when they change
keys. To ensure liveness, replicas and clients authenticate the messages that
they retransmit with the latest keys. Section 5.2.2 explains how keys are
changed.

Since recovery is proactive, a recovering replica may not be faulty and recov-
ery must not cause it to become faulty; otherwise any of the invariants above
could be violated. In particular, a nonfaulty replica cannot lose its state and
we need to allow it to continue participating in the request processing proto-
col while it is recovering, since this is sometimes required for it to complete
the recovery. However, if a recovering replica is actually faulty, the recovery
mechanism must ensure that its state is brought to a value that satisfies the
invariants above and the replica must be prevented from spreading incorrect

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 419

information. The difficulty is that we do not know if the recovering replica is
faulty during recovery. We explain how to solve this problem in Section 5.2.3.

5.2.2 Key Exchanges. Replicas and clients refresh the session keys used to
authenticate messages sent to them by sending NEW-KEY messages periodically
(e.g., every minute). The same mechanism is used to establish the initial session
keys. The message has the form 〈NEW-KEY, i, . . . , {k j ,i}ǫ j

, . . . , t〉σi
. The message

is signed by the secure coprocessor (using the replica’s private key) and t is
the value of its counter; the counter is incremented by the coprocessor and
appended to the message every time it generates a signature. (This prevents
suppress-replay attacks [Gong 1992].) Each k j ,i is the key replica j should
use to authenticate messages it sends to i in the future; k j ,i is encrypted by
j ’s public key, so that only j can read it. Replicas use timestamp t to detect
spurious NEW-KEY messages: t must be larger than the timestamp of the last
NEW-KEY message received from i.

Each replica shares a single secret key with each client; this key is used for
communication in both directions. The key is refreshed by the client periodically,
using the NEW-KEY message. If a client neglects to do this within some system-
defined period, each replica discards its current key for that client, which forces
the client to refresh the key.

Let t1 and t2 (> t1) be the instants when two consecutive NEW-KEY messages
are sent by the same node. We call the interval [t1, t2] a refreshment epoch, and
its duration, t2 − t1, a refreshment period.

When a replica or client sends a NEW-KEY message, it discards all messages
in its log that are not part of a complete certificate (with the exception of
PRE-PREPARE and PREPARE messages it sent) and it rejects any messages it re-
ceives in the future that are authenticated with old keys. This ensures that
correct nodes only accept certificates with equally fresh messages, that is, mes-
sages authenticated with keys created in the same refreshment epoch.

5.2.3 Recovery. The recovery protocol makes faulty replicas behave cor-
rectly again to allow the system to tolerate more than f faults over its life-
time. To achieve this, the protocol ensures that after a replica recovers: it is
running correct code, it cannot be impersonated by an attacker, and its state
satisfies the invariants defined before. The protocol goes through the following
steps.

Reboot. Recovery is proactive—it starts periodically when the watchdog
timer goes off. If the recovering replica believes it is in a view v for which it is
the primary, it multicasts a VIEW-CHANGE message for v + 1 just before starting to
recover. Any correct replica that receives this message and is in view v changes
to view v + 1 immediately. This improves availability because the backups do
not have to wait for their timers to expire before changing to v + 1. A faulty
primary could send such a message and force a view change but this is not a
problem because it is always good to replace a faulty primary.

The recovery monitor saves the replica’s state (the log, the service state, and
checkpoints) to disk. Then it reboots the system with correct code and restarts
the replica from the saved state. The correctness of the operating system and

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

420 • M. Castro and B. Liskov

service code can be ensured by storing their digest in the read-only memory
and by having the recovery monitor check this digest. If the copy of the code
stored by the replica is corrupt, the recovery monitor can fetch the correct
code from the other replicas. Alternatively, the entire code can be stored in a
read-only medium; this is feasible because there are several disks that can be
write protected by physically closing a jumper switch (e.g., the Seagate Cheetah
18LP). Rebooting restores the operating system data structures to a correct
state and removes any Trojan horses left by an attacker.

After this point, the recovering replica’s code is correct and it did not lose
its state. The replica must retain its state and use it to process requests even
while it is recovering. This is vital to ensure both safety and liveness in the
common case when the recovering replica is not faulty; otherwise recovery could
cause the f + 1st fault. But if the recovering replica was faulty, the state may
be corrupt and the attacker may forge messages because it knows the MAC
keys used to authenticate both incoming and outgoing messages. The recovery
protocol solves these problems as described next.

The recovering replica i starts by discarding the keys it shares with clients
and it multicasts a NEW-KEY message to change the keys it uses to authenticate
messages sent by the other replicas. This is important if i was faulty because
otherwise the attacker could prevent a successful recovery by impersonating
any client or replica.

Run Estimation Protocol. Next, i runs a simple protocol to estimate an
upper bound HM on the high water mark that it would have in its log if it were
not faulty; it discards any log entries or checkpoints with greater sequence
numbers. This bounds the sequence numbers of any incorrect messages sent
by the replica while ensuring that no state is discarded when the replica is not
faulty.

Estimation works as follows: i multicasts a 〈QUERY-STABLE, i〉αi
message

to the other replicas. When replica j receives this message, it replies
〈REPLY-STABLE, c, p, i〉µ j i

, where c and p are the sequence numbers of the last
checkpoint and the last request prepared at j , respectively. Replica i keeps re-
transmitting the query message and processing replies; it keeps the minimum
value of c and the maximum value of p it receives from each replica. It also
keeps its own values of c and p. During estimation i does not handle any other
protocol messages except NEW-KEY and REPLY-STABLE.

The recovering replica uses the responses to select HM as follows. HM =
L + cM , where L is the log size and cM is a value c received from one replica j

that satisfies two conditions: 2 f replicas other than j reported values for c less
than or equal to cM , and f replicas other than j reported values of p greater
than or equal to cM .

For safety, cM must be greater than the sequence number of any stable check-
point i may have when it is not faulty so that it will not discard log entries in
this case. This is ensured because if a checkpoint is stable, it will have been
created by at least f + 1 nonfaulty replicas and it will have a sequence num-
ber less than or equal to any value of c that they propose. The test against p

ensures that cM is close to a checkpoint at some nonfaulty replica since at least

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 421

one nonfaulty replica reports a p not less than cM ; this is important because
it prevents a faulty replica from prolonging i’s recovery. Estimation is live be-
cause there are 2 f + 1 nonfaulty replicas and they only propose a value of c if
the corresponding request committed; this implies that it prepared at at least
f + 1 correct replicas. Therefore i can always base its choice of cM on the set of
messages sent by correct replicas.

After this point i participates in the protocol as if it were not recovering but
it will not send any messages with sequence numbers above HM until it has a
correct stable checkpoint with sequence number greater than or equal to HM .
This ensures a bound HM on the sequence number of any bad messages i may
send based on corrupt state.

Send Recovery Request. Next i multicasts a recovery request to the other
replicas with the form: 〈REQUEST, 〈RECOVERY, HM 〉, t, i〉σi

. This message is pro-
duced by the cryptographic coprocessor and t is the coprocessor’s counter to
prevent replays. The other replicas reject the request if it is a replay or if they
accepted a recovery request from i recently (where recently can be defined as
half of the watchdog period). This is important to prevent a denial-of-service
attack where nonfaulty replicas are kept busy executing recovery requests.

The recovery request is treated as any other request: it is assigned a se-
quence number nR and it goes through the usual three phases. But when
another replica executes the recovery request, it sends its own NEW-KEY mes-
sage. Replicas also send a NEW-KEY message when they fetch missing state (see
Section 6.2.2) and determine that it reflects the execution of a new recovery
request. This is important because these keys may be known to the attacker
if the recovering replica was faulty. By changing these keys, we bound the se-
quence number of messages forged by the attacker that may be accepted by
the other replicas—they are guaranteed not to accept forged messages with se-
quence numbers greater than the maximum high water mark in the log when
the recovery request executes; that is, HR = ⌊nR/K ⌋ × K + L.

The reply to the recovery request includes the sequence number nR . Replica
i uses the same protocol as the client to collect the correct reply to its recov-
ery request but waits for 2 f + 1 replies. Then it computes its recovery point,
H = max(HM , HR). The replica also computes a valid view: it retains its cur-
rent view vr if there are f + 1 replies to the recovery request with views greater
than or equal to vr , else it changes to the median of the views in the replies. The
replica also retains its view if it changed to that view after recovery started. If
the replica changes its view, it sends a VIEW-CHANGE message for vm and it waits
for a correct NEW-VIEW message and a matching set of VIEW-CHANGE messages
before becoming active in vm.

The mechanism to compute a valid view ensures that nonfaulty replicas
never change to a view with a number smaller than their last active view. If the
recovering replica is correct and has an active view with number vr , there is a
quorum of replicas with view numbers greater than or equal to vr . Therefore
the recovery request will not prepare at any correct replica with a view number
smaller than vr . Additionally, the median of the view numbers in replies to the
recovery request will be greater than or equal to the view number in a reply

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

422 • M. Castro and B. Liskov

from a correct replica. Therefore it will be greater than or equal to vr . Changing
to the median vm of the view numbers in the replies is also safe because at least
one correct replica executed the recovery request at a view number greater than
or equal to vm.

Check and Fetch State. While i is recovering, it uses the state transfer mech-
anism discussed in Section 6.2.3 to determine what pages of the state are cor-
rupt and to fetch pages that are out of date or corrupt.

Replica i is recovered when it has a stable checkpoint with sequence number
greater than or equal to H. If clients aren’t using the system this could delay
recovery, since request number H needs to execute for recovery to complete.
However, this is easy to fix. While a recovery is occurring, the primary sends
PRE-PREPAREs for null requests.

Our protocol has the nice property that any replica knows that i has com-
pleted its recovery when checkpoint H is stable and they have received a
CHECKPOINT message from i. This allows replicas to estimate the duration of
i’s recovery, which is useful to detect denial-of-service attacks that slow down
recovery with low false positives.

5.2.4 Improved Service Properties. BFT-PR ensures safety and liveness for
an execution τ provided at most f replicas fail within any time interval of size
Tv = 2Tk + Tr . Here, Tv is the window of vulnerability, Tk is the maximum key
refreshment period in τ for a nonfaulty node, and Tr is the maximum time
between when a replica fails and when it recovers from that fault in τ . Note
that the values of Tk and Tr are characteristic of each execution τ and unknown
to the algorithm.

It is necessary to set the window of vulnerability to a value greater than
or equal to 2Tk + Tr to ensure that correct nodes do not collect certificates with
more than f bad messages. There would be no hope of preserving the invariants
listed in Section 5.2.1 with a smaller window. The session key refreshment
mechanism ensures that nonfaulty nodes only accept certificates with messages
generated within an interval of size at most 2Tk .1 In addition, bounding the
number of replicas that can fail within an interval of size T + Tr (for any T)
ensures that there are never more than f faulty replicas within any interval of
size at most T . Therefore, any certificate collected by a correct node will include
at most f messages sent by replicas when they were faulty.

Next we argue that the recovery mechanism preserves the invariants listed
in Section 5.2.1. We designed the recovery mechanism to ensure that nonfaulty
replicas do not lose their state when they recover. Therefore the invariants are
preserved in this case. The invariants are also preserved when the recover-
ing replica is faulty. This is true because other correct replicas do not accept
bad messages sent by the recovering replica with sequence number greater
than the recovery point. In addition, the replica has a correct log and a correct
stable checkpoint with sequence number equal to the recovery point by the

1It would be Tk except that during view changes replicas may accept messages that are claimed
authentic by f + 1 replicas without directly checking their authentication token.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 423

Fig. 5. Relationship between the window of vulnerability Tv and other time intervals.

end of recovery. This ensures that the replica has a stable checkpoint with
sequence number greater than any message it sent before and during recov-
ery that may have been accepted as part of a certificate by another replica or
client.

We have little control over the value of Tv because Tr may be increased by a
denial-of-service attack. But we have good control over Tk and the maximum
time between watchdog timeouts Tw, because their values are determined by
timer rates, which are quite stable. Setting these timeout values involves a
trade-off between security and performance: small values improve security by
reducing the window of vulnerability but degrade performance by causing more
frequent recoveries and key changes. Section 8.2.3 shows that these timeouts
can be quite small with low performance degradation.

The period between key changes Tk can be small without having a signifi-
cant impact on performance (e.g., 15 seconds). But Tk should be substantially
larger than three message delays under normal load conditions to provide
liveness.

The value of Tw should be set based on Rn, the time it takes to recover a
nonfaulty replica under normal load conditions. There is no point in recovering
a replica when its previous recovery has not yet finished; and we stagger the
recoveries so that no more than f replicas are recovering at once, since oth-
erwise service could be interrupted even without an attack. Therefore we set
Tw = 4 × s × Rn. Here the factor 4 accounts for the staggered recovery of 3 f + 1
replicas f at a time, and s is a safety factor to account for benign overload con-
ditions (i.e., no attack). Figure 5 shows the relationship between the various
time intervals.

The results in Section 8.2.3 indicate that Rn is dominated by the time to
reboot and check the correctness of the replica’s copy of the service state. Since
a replica that is not faulty checks its state without placing much load on the
network or any other replica, we expect the time to recover f replicas in parallel
and the time to recover a replica under benign overload conditions to be close
to Rn; thus we can set s close to 1.

We cannot guarantee any bound on Tv under a denial-of-service attack but it
is possible for replicas to time recoveries and alert an administrator if they take
longer than some constant times Rn. The administrator can then take action
to allow the recovery to terminate. For example, if replicas are connected by
a private network, they may stop processing incoming requests and use the
private network to complete recovery. This will interrupt service until recovery
completes but it does not give any advantage to the attacker; if the attacker can
prevent recovery from completing, it can also prevent requests from executing.
It may be possible to automate this response.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

424 • M. Castro and B. Liskov

Replicas should also log information about recoveries, including whether
there was a fault at a recovering node, and how long the recovery took, since
this information is useful to strengthen the system against future attacks.

6. IMPLEMENTATION TECHNIQUES

This section describes protocol optimizations and checkpoint management.

6.1 Optimizations

This section describes optimizations that improve the performance during nor-
mal case operation while preserving the safety and liveness properties. The
most important optimization was already described: BFT uses MACs based on
symmetric cryptography to authenticate messages instead of public key sig-
natures. Since MACs can be computed three orders of magnitude faster, this
optimization is quite effective.

Digest Replies. The second optimization reduces network bandwidth con-
sumption and CPU overhead significantly when operations have large results.
A client request designates a replica to send the result. This replica may be cho-
sen randomly or using some other load balancing scheme. After the designated
replica executes the request, it sends back a reply containing the result. The
other replicas send back replies containing only the digest of the result. The
client collects at least f + 1 replies (including the one with the result) and uses
the digests to check the correctness of the result. If the client does not receive a
correct result from the designated replica, it retransmits the request (as usual)
requesting all replicas to send replies with the result.

Tentative Execution. The third optimization reduces the number of message
delays for an operation invocation from five to four. Replicas execute requests
tentatively as soon as: they have a prepared certificate for the request, their
state reflects the execution of all requests with lower sequence number, and
these requests have committed. After executing the request, the replicas send
tentative replies to the client. Since replies are tentative, the client must wait
for a quorum certificate with replies with the same result. This ensures that
the request is prepared by a quorum and, therefore, it is guaranteed to commit
eventually at nonfaulty replicas. If the client’s retransmission timer expires
before it receives these replies, the client retransmits the request and waits for
nontentative replies.

A request that has executed tentatively may abort if there is a view change.
In this case, the replica reverts its state to the checkpoint in the NEW-VIEW mes-
sage or to its last checkpointed state (depending on which one has the higher
sequence number).

It is possible to take advantage of tentative execution to eliminate COMMIT

messages: they can be piggybacked in the next PRE-PREPARE or PREPARE message
sent by a replica. Since clients receive replies after a request prepares, pig-
gybacking COMMITs does not increase latency and it reduces load both on the
network and on the replicas’ CPUs.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 425

Read-Only Operations. This optimization improves the performance of
read-only operations, which do not modify the service state. A client multicasts
a read-only request to all replicas. The replicas execute the request immediately
after checking that it is properly authenticated, the client has access, and the
request is in fact read-only. A replica sends back a reply only after all requests
it executed before the read-only request have committed. The client waits for a
quorum certificate with replies with the same result. It may be unable to collect
this certificate if there are concurrent writes to data that affect the result. In
this case, it retransmits the request as a regular read-write request after its
retransmission timer expires.

The read-only optimization preserves linearizability provided clients obtain
a quorum certificate with replies not only for read-only operations but also for
any read-write operation. This optimization reduces latency to a single round
trip for most read-only requests.

Request Batching. Batching reduces protocol overhead under load by as-
signing a single sequence number to a batch of requests and by starting a
single instance of the protocol for the batch. We use a sliding-window mecha-
nism to bound the number of protocol instances that can run in parallel. Let
e be the sequence number of the last batch of requests executed by the pri-
mary and let p be the sequence number of the last PRE-PREPARE sent by the
primary. When the primary receives a request, it starts the protocol imme-
diately unless p ≥ e + W , where W is the window size. In the latter case, it
queues the request. When requests execute, the window slides forward allow-
ing queued requests to be processed. Then the primary picks the first requests
from the queue such that the sum of their sizes is below a constant bound, it
assigns them a sequence number, and it sends them in a single PRE-PREPARE

message. The protocol proceeds exactly as it did for a single request except
that replicas execute the batch of requests (in the order in which they were
added to the PRE-PREPARE message) and they send back separate replies for each
request.

6.2 Checkpoint Management

BFT’s garbage collection mechanism (see Section 4.4) takes logical snapshots of
the service state called checkpoints. These snapshots are used to replace mes-
sages that have been garbage collected from the log. This section describes a
technique to manage checkpoints. It starts by describing checkpoint creation,
computation of checkpoint digests, and the data structures used to record check-
point information. Then, it describes a state transfer mechanism that is used
to bring replicas up to date when some of the messages that they are missing
were garbage collected. It ends with an explanation of the mechanism used to
check the correctness of a replica’s state during recovery.

6.2.1 Data Structures. We use hierarchical state partitions to reduce the
cost of computing checkpoint digests and the amount of information transferred
to bring replicas up to date. The root partition corresponds to the entire ser-
vice state and each nonleaf partition is divided into s equal-sized, contiguous

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

426 • M. Castro and B. Liskov

Fig. 6. Partition tree.

subpartitions. Figure 6 depicts a partition tree with three levels. We call the
leaf partitions pages and the interior ones metadata. For example, the experi-
ments described in Section 8 were run with a hierarchy with four levels, s equal
to 256, and 4-KB pages.

Each replica maintains one logical copy of the partition tree for each check-
point. The copy is created when the checkpoint is taken and it is discarded
when a later checkpoint becomes stable. Checkpoints are taken immediately
after tentatively executing a request batch with sequence number divisible by
the checkpoint period K (but the corresponding CHECKPOINT messages are sent
only after the batch commits).

The tree for a checkpoint stores a tuple 〈lm, d〉 for each metadata partition
and a tuple 〈lm, d, p〉 for each page. Here, lm is the sequence number of the
checkpoint at the end of the last checkpoint epoch where the partition was
modified, d is the digest of the partition, and p is the value of the page. Partition
digests are important. Replicas use the digest of the root partition during view
changes to agree on a start state for request processing in the new view without
transferring a large amount of data. They are also used to reduce the amount
of data sent during state transfer.

The digests are computed efficiently as follows. A page digest is obtained
by applying a cryptographic hash function (currently MD5 [Rivest 1992]) to
the string obtained by concatenating the index of the page within the state, its
value of lm, and p. A metadata digest is obtained by applying the hash function
to the string obtained by concatenating the index of the partition within its
level, its value of lm, and the sum modulo a large integer of the digests of
its subpartitions. Thus, we apply AdHash [Bellare and Micciancio 1997] at
each metadata level. This construction has the advantage that the digests for a
checkpoint can be obtained efficiently by updating the digests from the previous
checkpoint incrementally. It is inspired by Merkle trees [Merkle 1987].

The copies of the partition tree are logical because we use copy-on-write so
that only copies of the tuples modified since the checkpoint was taken are stored.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 427

This reduces the space and time overheads for maintaining these checkpoints
significantly.

6.2.2 State Transfer. A replica initiates a state transfer when it learns
about a stable checkpoint with sequence number greater than the high water
mark in its log. It uses the state transfer mechanism to fetch modifications to the
service state that it is missing. The replica may learn about such a checkpoint
by receiving CHECKPOINT messages or as the result of a view change.

It is important for the state transfer mechanism to be efficient because it
is used to bring a replica up to date during recovery and we perform proactive
recoveries frequently. The key issues to achieving efficiency are reducing the
amount of information transferred and reducing the burden imposed on other
replicas. The strategy to fetch state efficiently is to recurse down the partition
hierarchy to determine which partitions are out of date. This reduces the
amount of information about (both nonleaf and leaf) partitions that needs to
be fetched.

The state transfer mechanism must also ensure that the transferred state is
correct even when some replicas are faulty or the state is modified concur-
rently. The idea is that the digest of a partition commits the values of all
its subpartitions for a particular sequence number. A replica starts a state
transfer by obtaining a weak certificate with the digest of the root partition
at some checkpoint c. Then it uses this digest to verify the correctness of the
subpartitions it fetches. The replica does not need a weak certificate for the
subpartitions unless the value of a subpartition at checkpoint c has been dis-
carded. The next paragraphs describe the state transfer mechanism in more
detail.

A replica i multicasts 〈FETCH, l , x, lc, c, k, i〉αi
to all other replicas to obtain

information for the partition with index x in level l of the tree. Here lc is the
sequence number of the last checkpoint i knows for the partition, and c is either
nil or it specifies that i is seeking the value of the partition at sequence number c

from replica k.
When a replica i determines that it needs to initiate a state transfer, it mul-

ticasts a FETCH message for the root partition with lc equal to its last checkpoint
number. The value of c is not nil when i knows the correct digest of the partition
at checkpoint c; for example, after a view change completes i knows the digest
of the checkpoint that propagated to the new view but might not have it. i also
creates a new (logical) copy of the tree to store the state it fetches and initializes
a table LC in which it stores the number of the latest checkpoint reflected in
the state of each partition in the new tree. Initially each entry in the table will
contain lc.

If 〈FETCH, l , x, lc, c, k, i〉αi
is received by the designated replier k, and it has a

checkpoint for sequence number c, it sends back 〈META-DATA, c, l , x, P, k〉, where
P is a set with a tuple 〈x ′, lm, d 〉 for each subpartition of (l , x) with index x ′,
digest d , and lm > lc. Since i knows the correct digest for the partition value
at checkpoint c, it can verify the correctness of the reply without the need
for a certificate or even authentication. This reduces the burden imposed on
other replicas and it is important to provide liveness in view changes when the

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

428 • M. Castro and B. Liskov

start state for request processing in the new view is held by a single correct
replica.

Replicas other than the designated replier only reply to the FETCH mes-
sage if they have a stable checkpoint greater than lc and c. Their replies are
similar to k’s except that c is replaced by the sequence number of their sta-
ble checkpoint and the message contains a MAC. These replies are necessary
to guarantee progress when replicas have discarded a specific checkpoint re-
quested by i.

Replica i retransmits the FETCH message (choosing a different k each time)
until it receives a valid reply from some k or a weak certificate with equally fresh
responses with the same subpartition values for the same sequence number c′

(greater than lc and c). Then it compares its digests for each subpartition of
(l , x) with those in the fetched information; it multicasts a FETCH message for
subpartitions where there is a difference, and sets the value in LC to c (or c′) for
the subpartitions that are up to date. Since i learns the correct digest of each
subpartition at checkpoint c (or c′), it can use the optimized protocol to fetch
them using these digests to check if they are correct.

The protocol recurses down the tree until i sends FETCH messages for out-of-
date pages. Pages are fetched like other partitions except that META-DATA replies
contain the digest and last modification sequence number for the page rather
than subpartitions, and the designated replier sends back 〈DATA, x, p〉. Here x

is the page index and p is the page value. The protocol imposes little overhead
on other replicas; only one replica replies with the full page and it does not even
need to compute a MAC for the message since i can verify the reply using the
digest it already knows.

When i obtains the new value for a page, it updates the state of the page,
its digest, the value of the last modification sequence number, and the value
corresponding to the page in LC. Then the protocol goes up to its parent and
fetches another missing sibling. After fetching all the siblings, it checks if the
parent partition is consistent. A partition is consistent up to sequence number
c, if c is the minimum of all the sequence numbers in LC for its subpartitions,
and c is greater than or equal to the maximum of the last modification sequence
numbers in its subpartitions. If the parent partition is not consistent, the proto-
col sends another fetch for the partition. Otherwise, the protocol goes up again
to its parent and fetches missing siblings.

The protocol ends when it visits the root partition and determines that it is
consistent for some sequence number c. Then the replica can start processing
requests with sequence numbers greater than c.

Since state transfer happens concurrently with request execution at other
replicas and other replicas are free to garbage collect checkpoints, it may take
some time for a replica to complete the protocol; for example, each time it fetches
a missing partition, it receives information about a yet later modification. If
the service operations change data faster than they can be transferred, an out-
of-date replica may never catch up. The state transfer mechanism described
can transfer data fast enough that this is unlikely to be a problem for most
services. The transfer rate could be improved by fetching pages in parallel from
different replicas but this is not currently implemented. Furthermore, if the

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 429

replica fetching the state is ever actually needed (because others have failed),
the system will wait for it to catch up.

6.2.3 State Checking. It is necessary to ensure that a replica’s state is both
correct and up to date after recovery. This is done by using the state transfer
mechanism to fetch out-of-date pages and to obtain the digests of up-to-date
partitions; the recovering replica uses these digests to check if its copies of the
partitions are correct.

The recovering replica starts by computing the partition digests for all meta-
data assuming that the digests for the pages match the values it stores. Then,
it initiates a state transfer as described above except that the value of lc in the
first FETCH message for each metadata partition is set to − 1. This ensures that
the META-DATA replies include digests for all subpartitions.

The replica processes replies to FETCH messages as described before but,
rather than ignoring up-to-date partitions, it checks if the partition digests
match the ones it has recorded in the partition tree. If they do not, the partition
is queued for fetching as if it were out of date; otherwise, the partition is queued
for checking.

Partition checking is overlapped with the time spent waiting for fetch replies.
A replica checks a partition by computing the digests for each of the partition’s
pages and by comparing those digests with the ones in the partition tree. Those
pages whose digests do not match are queued for fetching.

7. THE BFT LIBRARY

The algorithm has been implemented as a generic program library with a simple
interface. The library can be used to provide Byzantine-fault-tolerant versions
of different services. Section 7.1 describes the library’s implementation and
Section 7.2 presents its interface. We used the library to implement a Byzantine-
fault-tolerant NFS file system, which is described in Section 7.3.

7.1 Implementation

The library uses a connectionless model of communication: point-to-point com-
munication between nodes is implemented using UDP [Postel 1980], and mul-
ticast to the group of replicas is implemented using UDP over IP multicast
[Deering and Cheriton 1990]. There is a single IP multicast group for each ser-
vice, which contains all the replicas. Clients are not members of this multicast
group (unless they are also replicas).

The library is implemented in C++. We use an event-driven implementation
with a structure very similar to the I/O automaton code in the formalization
of the algorithm in the Appendix. Replicas and clients are single threaded and
their code is structured as a set of event handlers. This set contains a handler
for each message type and a handler for each timer. Each handler corresponds to
an input action in the formalization and there are also methods that correspond
to the internal actions. The similarity between the code and the formalization
is intentional and it was important: it helped identify several errors in the code
and omissions in the formalization.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

430 • M. Castro and B. Liskov

Client:

int Byz_init_client(char *conf);

int Byz_invoke(Byz_req *req, Byz_rep *rep, bool ro);

Server:

int Byz_init_replica(char *conf, char *mem, int size, proc exec, proc nondet);

void Byz_modify(char *mod, int size);

Server upcalls:

int execute(Byz_req *req, Byz_rep *rep, Byz_buffer *ndet, int cid, bool ro);

int nondet(Seqno seqno, Byz_req *req, Byz_buffer *ndet);

Fig. 7. The replication library API.

The event handling loop works as follows. Replicas and clients wait in a
select call for a message to arrive or for a timer deadline to be reached and
then they call the appropriate handler. The handler performs computations
similar to the corresponding action in the formalization and then it invokes
any methods corresponding to internal actions whose preconditions become
true. The handlers never block waiting for messages.

We use the SFS [Mazières et al. 1999] implementation of a Rabin–Williams
public key cryptosystem with a 1,024-bit modulus to establish 128-bit session
keys. All messages are then authenticated using message authentication codes
computed using these keys and UMAC32 [Black et al. 1999]. Message digests
are computed using MD5 [Rivest 1992].

The implementation of public key cryptography signs and encrypts mes-
sages as described in Bellare and Rogaway [1996] and [1995], respec-
tively. These techniques are provably secure in the random oracle model
[Bellare and Rogaway 1995]. In particular, signatures are nonexistentially
forgeable even with an adaptive chosen message attack. UMAC32 is also prov-
ably secure in the random oracle model. MD5 should still provide adequate se-
curity and it can be replaced easily by another hash function (e.g., SHA-1 [SHA1
1994]) at the expense of some performance degradation.

The message formats are designed such that the MACs are computed only
over a fixed-size header. This has the advantage of making the cost of authen-
ticator computation, which grows linearly with the number of replicas, inde-
pendent of the payload size (e.g., independent of the operation argument size
in requests and the size of the batch in PRE-PREPAREs).

7.2 Interface

We implemented the algorithm as a library with a very simple interface (see
Figure 7). Some components of the library run on clients and others at the
replicas.

On the client side, the library provides a procedure to initialize the client
using a configuration file, which contains the public keys and IP addresses
of the replicas, and a procedure, invoke, that is called to cause an operation
to be executed. The last procedure carries out the client side of the protocol

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 431

Fig. 8. BFS: replicated file system architecture.

and returns the result when enough replicas have responded. The library also
provides a split interface (not shown in the figure) with separate send and
receive calls to invoke requests.

On the server side, we provide an initialization procedure that takes as argu-
ments: a configuration file with the public keys and IP addresses of replicas and
clients, the region of memory where the service state is stored, a procedure to
execute requests, and a procedure to compute nondeterministic choices. When
our system needs to execute an operation, it does an upcall to the execute pro-
cedure. The arguments to this procedure include a buffer with the requested
operation and its arguments req, and a buffer to fill with the operation result
rep. The execute procedure carries out the operation as specified for the service,
using the service state. As the service performs the operation, each time it is
about to modify the service state, it calls the modify procedure to inform the
library of the locations about to be modified. This call allows us to maintain
checkpoints and compute digests efficiently as described in Section 6.2.2.

Additionally, the execute procedure takes as arguments the identifier of the
client who requested the operation and a Boolean flag indicating whether the
request was processed with the read-only optimization. The service code uses
this information to perform access control and to reject operations that mod-
ify the state but were flagged read-only by faulty clients. When the primary
receives a request, it selects any nondeterministic input to the requested op-
eration (e.g., a timestamp) by making an upcall to the nondet procedure. The
BFT library ensures that replicas agree on this nondeterministic input and it
is passed as an argument to the execute upcall [Castro 2001].

7.3 BFS: A Byzantine-Fault-Tolerant File System

We implemented BFS, a Byzantine-fault-tolerant NFS [Sandberg et al. 1985]
service, using the replication library. BFS implements version 2 of the NFS
protocol. Figure 8 shows the architecture of BFS. A file system exported by the
fault-tolerant NFS service is mounted on the client machine like any regular

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

432 • M. Castro and B. Liskov

NFS file system. Application processes run unmodified and interact with the
mounted file system through the NFS client in the kernel. We rely on user-
level relay processes to mediate communication between the standard NFS
client and the replicas. A relay receives NFS protocol requests, calls the in-

voke procedure of our replication library, and sends the result back to the NFS
client.

Each replica runs a user-level process with the replication library and our
NFS V2 daemon, which we refer to as snfsd (for simple nfsd). The replication
library receives requests from the relay, interacts with snfsd by making upcalls,
and packages NFS replies into replication protocol replies that it sends to the
relay.

We implemented snfsd using a fixed-size memory-mapped file. All the file sys-
tem data structures (e.g., inodes, blocks, and their free lists) are in the mapped
file. We rely on the operating system to manage the cache of memory-mapped
file pages and to write modified pages to disk asynchronously. The current im-
plementation uses 4-KB blocks and inodes contain the NFS status information
plus 256 bytes of data, which are used to store directory entries in directories,
pointers to blocks in files, and text in symbolic links. Directories and files may
also use indirect blocks in a way similar to UNIX.

Our implementation ensures that all state machine replicas start in the
same initial state and are deterministic, which are necessary conditions for the
correctness of a service implemented using our protocol. The primary proposes
the values for time-last-modified and time-last-accessed, and replicas select the
larger of the proposed value and one greater than the maximum of all values
selected for earlier requests. The primary selects these values by executing the
upcall to compute nondeterministic choices, which simply returns the result of
gettimeofday in this case.

We do not require synchronous writes to implement NFS V2 protocol seman-
tics because BFS achieves stability of modified data and metadata through
replication as was done in Harp [Liskov et al. 1991]. If power failures are likely
to affect all replicas, each replica should have an uninterruptible power supply
(UPS). The UPS will allow enough time for a replica to write its state to disk
in the event of a power failure as was done in Harp [Liskov et al. 1991].

8. PERFORMANCE EVALUATION

The BFT library can be used to implement Byzantine-fault-tolerant systems
but these systems will not be used in practice unless they perform well. This
section presents results of experiments to evaluate the performance of these
systems.

We ran several benchmarks to measure the performance of BFS, our
Byzantine-fault-tolerant NFS. The results show that BFS performs 2% faster
to 24% slower than production implementations of the NFS protocol, which
are used daily by many users and are not replicated. Additionally, we ran
microbenchmarks to evaluate the performance of the replication library in a
service-independent way. We presented a detailed analytic performance model
and experiments to evaluate the impact of each optimization in Castro [2001].

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 433

8.1 Microbenchmarks

This section presents results of microbenchmarks. The experiments were per-
formed using the setup in Section 8.1.1. Sections 8.1.2 and 8.1.3 describe exper-
iments to measure the latency and throughput of a simple replicated service
with four replicas. We investigate the impact on performance as the number
of replicas increases in Section 8.1.4. The experiments in these sections eval-
uate performance without checkpoint management, view changes, or recovery.
In Sections 8.1.5 and 8.1.6, we analyze the performance overhead introduced
by checkpoint management, and view changes. Performance with recoveries is
studied in Section 8.2.3.

8.1.1 Experimental Setup. The experiments ran on nine Dell Precision 410
workstations with a single Pentium III processor, 512 MB of memory, and
a Quantum Atlas 10 K 18 WLS disk. All machines ran Linux 2.2.16-3 com-
piled without SMP support. The processor clock speed was 600 MHz in seven
machines and 700 MHz in the other two. All experiments ran on the slower
machines except where noted. The machines were connected by a 100-Mb/s
switched Ethernet and had 3COM 3C905B interface cards. The switch was
an Extreme Networks Summit48 V4.1. All experiments ran on an isolated
network.

The experiments compare the performance of two implementations of a
simple service: one implementation, BFT, is replicated using the BFT li-
brary and the other, NO-REP, is not replicated and uses UDP directly for
communication between the clients and the server without authentication.
The simple service is really the skeleton of a real service: it has no state
and the service operations receive arguments from the clients and return
(zero-filled) results but they perform no computation. We performed experi-
ments with different argument and result sizes for both read-only and read-
write operations. It is important to note that this is a worst-case com-
parison; in real services, computation or I/O at the clients and servers
would reduce the slowdown introduced by the BFT library (as shown in
Section 8.2).

The library was configured as follows: the period between checkpoints was
128 sequence numbers, the size of the log was 256 sequence numbers, and the
window size for request batching was 1.

8.1.2 Latency. We measured the latency to invoke an operation when the
service is accessed by a single client. The results were obtained by timing a
large number of invocations in three separate runs. We report the average of
the three runs. The standard deviations were always below 3% of the reported
values. Figure 9 shows the latency to invoke the replicated service as the size
of the operation result increases while keeping the argument size fixed at 8-B.
It has one graph with elapsed times and another with the slowdown of BFT
relative to NO-REP.

Figure 10 shows the latency to invoke the replicated service as the size of
the operation argument increases while keeping the result size fixed at 8 bytes.
The two figures have results for both read-write and read-only operations.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

434 • M. Castro and B. Liskov

Fig. 9. Latency with varying result sizes: absolute times and slowdown relative to NO-REP.

Fig. 10. Latency with varying argument sizes: absolute times and slowdown relative to NO-REP.

The library introduces a significant slowdown relative to NO-REP but the
slowdown decreases quickly as the operation argument or result sizes increase.
For example, the slowdown for the read-write operation decreases from 4.08
with 8-B results to 1.47 with 8-KB results, and it decreases from 1.95 to 1.25
with the read-only optimization. The two major sources of overhead are digest
computation (of requests and replies) and the additional communication due to
the replication protocol. The cost of MAC computation is negligible.

The latency increases because the communication time to send the reply (or
request) and the time to digest the reply (or request) grow with the result (or
argument) size. In our experimental setup, the communication time increases
91 ns/byte and the digest computation time increases 24 ns/byte. Since the
latency of NO-REP also increases 91 ns/byte, the slowdown decreases as the
result or argument size increases until an asymptote of (91 + 24)/91 = 1.26.

The read-only optimization is very effective at reducing the slowdown in-
troduced by the BFT library. It improves performance by eliminating the time
to prepare the requests. This time does not change as the argument or re-
sult size increases. Therefore, the speedup afforded by the read-only optimiza-
tion decreases to zero as the argument or result size increases. For exam-
ple, it reduces latency by 52% with 8-B arguments but only by 15% for 8-KB
arguments.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 435

Fig. 11. Throughput for operations 0/0, 0/4, and 4/0.

8.1.3 Throughput. This section reports the result of experiments to mea-
sure the throughput of BFT and NO-REP as a function of the number of clients
accessing the simple service. The client processes were evenly distributed over
five client machines.2 We measured throughput for operations with different
argument and result sizes. Each operation type is denoted by a/b, where a and
b are the sizes of the argument and result in KB.

The experiment ran as follows: all client processes started invoking opera-
tions almost simultaneously; each client process executed 3K operations (where
K was a large number) and measured the time to execute the middle K oper-
ations. The throughput was computed as K multiplied by the number of client
processes and divided by the maximum time (taken over all clients) to com-
plete the K operations. This methodology provides a conservative throughput
measurement: it accounts for cases where clients are not treated fairly and
take longer to complete the K iterations. Each throughput value reported is
the average of at least three independent runs.

Figure 11 shows throughput results for operations 0/0, 0/4, and 4/0. The
standard deviation was below 7% of the reported values except for read-only
operation 0/4 (where it was as high as 18%).

The bottleneck in operation 0/0 is the server’s CPU. BFT has lower through-
put than NO-REP due to extra messages and cryptographic operations that
increase the CPU load. BFT’s throughput is 52% lower for read-write oper-
ations and 35% lower for read-only operations. The read-only optimization
improves throughput by eliminating the cost of preparing the batch of re-
quests. The throughput of the read-write operation improves as the number
of clients increases because the cost of preparing the batch of requests is
amortized over the size of the batch. The throughput saturates because we
bound the number of requests in a batch as a defense against denial-of-service
attacks.

BFT has better throughput than NO-REP for operation 0/4. The bottleneck
for NO-REP is the link bandwidth (12 MB/s); it executes approximately 3,000
operations per second. BFT achieves better throughput because of the digest-
replies optimization: clients obtain the replies with the 4-KB result in parallel
from different replicas. BFT achieves a maximum throughput of 6,625 opera-
tions per second (26 MB/s) for the read-write operation and 8,698 operations

2Two client machines had 700-MHz PIIIs but were otherwise identical to the other machines.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

436 • M. Castro and B. Liskov

Fig. 12. Latency with varying argument and result sizes with f = 2.

per second (34 MB/s) with the read-only optimization. The bottleneck for BFT
is the replicas’ CPU.

The throughput for operation 0/4 with the read-only optimization is very
unstable because the system is not fair to all clients; there is a large variance in
the maximum time to complete the K operations. The average time to compute
these operations remains stable, as shown by the throughput values labeled
“avg,” which are computed using this time.

The bottleneck in operation 4/0 for both NO-REP and BFT is the time to
get the requests through the network. Since the link bandwidth is 12 MB/s,
the maximum throughput achievable is 3,000 operations per second. NO-REP
achieves a maximum throughput of 2,921 operations per second and BFT
achieves 2,591 for read-write operations (11% less than NO-REP) and 2,865
with the read-only optimization (2% less than NO-REP). There are no points
with more than 15 clients for NO-REP because of lost request messages; NO-
REP uses UDP directly and does not retransmit requests.

8.1.4 Configurations with More Replicas. The experiments in the previous
sections ran in a configuration with four replicas, which can tolerate one fault.
We believe this level of reliability will be sufficient for most applications. But
some applications will have more stringent reliability requirements and will
need to run in configurations with more replicas. Therefore, it is important
to understand how the performance of a service implemented with the BFT
library is affected when the number of replicas increases. Figure 12 compares
the latency to invoke the replicated service with four replicas (f = 1) and seven
replicas (f = 2): the first graph shows latency as a function of argument size,
and the second shows latency as a function of the result size. The standard
deviation was always below 2% of the reported value. In both configurations,
all the replicas had a 600-MHz Pentium III processor and the client had a
700-MHz Pentium III processor.

The results show that the slowdown caused by increasing the number of
replicas to seven is low. The maximum slowdown is 30% for the read-write
operation and 26% for the read-only operation. Furthermore, the slowdown de-
creases quickly as the argument or result size increases. For example, with an
argument size of 8 KB, the slowdown is only 7% for the read-write operation and

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 437

Fig. 13. Checkpoint cost with a varying number of modified pages per checkpoint epoch.

2% with the read-only optimization. The slowdown decreases as the argument
size increases because the overhead introduced by adding replicas is indepen-
dent of this size. The digest replies optimization makes the overhead introduced
by adding replicas independent of the result size, which explains why the slow-
down also decreases as the result size increases.

8.1.5 Checkpoint Management. The experiments in the previous sections
used a simple service that had no state. The only checkpoint management over-
head in those experiments was due to storing the last replies to read-write op-
erations sent to each client. This section analyzes the performance overhead
introduced by checkpoint management using a modified version of the simple
service that adds state. The state in the new service is a persistent array of
contiguous pages that is implemented by the replicas using a memory-mapped
file with 256 MB. The service operations can read or write these pages. The
experiments ran with one client and four replicas. This section presents results
of experiments to measure both the time to create checkpoints and the time for
state transfer to bring replicas up to date.

Checkpoint Creation. The checkpoints are created using the technique de-
scribed in Section 6.2. In our experimental setup, the state partition tree has
four levels, each internal node has 256 children, and the pages (i.e., the leaves
of the tree) have 4 KB. The requests that execute between two checkpoints are
said to be in the same checkpoint epoch.

The cost of checkpoint creation has two components: the time to perform copy-
on-write (COW) and the time to compute the checkpoint digest. Figure 13 shows
the values we measured for these times with a varying number of modified
pages per checkpoint epoch. The results show that both the time to perform
copy-on-write and the time to compute digests grow linearly with the number
of distinct pages modified during a checkpoint epoch: it costs approximately
72 µs to digest each page and 29 µs to copy a page.

The cost of checkpoint creation can represent a substantial fraction of the
average cost to run an operation when the rate of change is high. It is possible
to improve performance by computing checkpoint digests lazily. The protocol
can be modified not to send checkpoint digests in CHECKPOINT messages. Thus
checkpoint digests would need to be computed only before a view change or a

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

438 • M. Castro and B. Liskov

Fig. 14. State transfer latency and throughput.

state transfer. This has the potential of substantially reducing the overhead
during the normal case at the expense of potentially slower view changes and
state transfers.

State Transfer. We also ran experiments to measure the time to complete
a state transfer. A client invoked operations that modified a certain number
of pages m. Then the client was stopped and one of the backups was restarted
from its initial state. We measured the time to complete the state transfer to
bring that backup up to date in an idle system. The experiment was run for
several values of m both with randomly chosen pages and with pages chosen
sequentially. Figure 14 shows the elapsed time to complete the state transfer
and its throughput.

The results show that the time to complete the state transfer is proportional
to the number of pages that are out of date. The throughput is approximately
equal to 5 MB/s except that it is 4.5 MB/s when fetching 1,000 random pages.
The throughput is lower with random pages because it is necessary to fetch
more metadata information but this additional overhead is dwarfed by the
time to fetch a large number of pages. The time to complete the state transfer
is dominated by the time to fetch data pages and the time to compute their
digests to check correctness.

If the rate of modifications to the state is greater than the state transfer
throughput, an out-of-date replica may be unable to catch up. This problem
may decrease availability: if there is a fault, the system will stop processing
client requests until the out-of-date replica can complete the state transfer.
There are several ways to ameliorate this problem. The throughput of state
transfer can be improved by fetching pages in parallel from all replicas; this
should improve throughput to the link bandwidth (12 MB/s). In addition, the
replicas can give priority to handling of FETCH requests.

8.1.6 View Changes. The experiments described so far analyze the perfor-
mance of the system when there are no faults. This section studies the perfor-
mance of the view-change protocol. It measures the time from the moment a
replica sends a VIEW-CHANGE message until it is ready to start processing requests
in the new view. This time includes not only the time to receive and process the

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 439

Table I. Average View Change Time with
Varying Write Percentage

idle 10% 50%

View-change time (µs) 575 4162 7005

NEW-VIEW message but also the time to obtain any missing requests and, if nec-
essary, the checkpoint chosen as the starting point for request processing in the
new view.

We measured the time to complete the view change protocol using the simple
service with 256 MB of state, 4-KB pages, and four replicas. There was a single
client that invoked two types of operations: a read-only operation that returned
the value of a page, and a write operation that wrote a page to the state. The
client chose the operation type and the page randomly. View changes were
triggered by a separate process that multicast special messages that caused all
replicas to move to the next view at approximately the same time.

Table I shows the time to complete a view change for an idle system, and
when the client executes write operations with 10 and 50% probability. For
each experiment, we timed 128 view changes at each replica and present the
average value taken over all replicas.

Replicas never pre-prepare any request in the idle system. Therefore this
case represents the minimum time to complete a view-change. This time is
only 34% greater than the latency of operation 0/0 on the simple service.
The view change time increases when replicas process client requests because
VIEW-CHANGE messages include information about messages sent by the replica
in previous views.

The increase in the view-change time from 10 to 50% writes is mostly due
to one view change that took 607 ms to complete because the replica was out
of date and had to fetch a missing checkpoint before it could start processing
requests in the new view; the probability of this type of event increases with
the rate of modifications to the state.

Since the cost of the view-change protocol in our library is small, we can set
the view-change timeout to a small value (e.g., less than a second) to improve
availability without risking poor performance due to unnecessary view changes.

8.2 File System Benchmarks

Next, we present the results of a set of experiments to evaluate the perfor-
mance of a real service—BFS. The experiments compared the performance of
BFS with two other implementations of NFS: NO-REP, which is identical to
BFS except that it is not replicated, and NFS-STD, which is the NFS V2 imple-
mentation in Linux with Ext2fs at the server. The first comparison allows us to
evaluate the overhead of the BFT library accurately within an implementation
of a real service. The second comparison shows that BFS is practical: its perfor-
mance is similar to the performance of NFS-STD, which is used daily by many
users. Since the implementation of NFS in Linux does not ensure stability of
modified data and metadata before replying to the client (as required by the
NFS protocol [Sandberg et al. 1985]), we also compare BFS with NFS-DEC,

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

440 • M. Castro and B. Liskov

which is the NFS implementation in Digital UNIX and provides the correct
semantics.

The section starts with a description of the experimental setup. Then it eval-
uates the performance of BFS without view changes or proactive recovery and
it ends with an analysis of the cost of proactive recovery.

8.2.1 Experimental Setup. The experiments to evaluate BFS used the
setup described in Section 8.1.1. They ran two well-known file system bench-
marks: the modified Andrew benchmark [Ousterhout 1990; Howard et al. 1988]
and PostMark [Katcher 1997].

The modified Andrew benchmark emulates a software development work-
load. It has several phases: (1) creates subdirectories recursively; (2) copies a
source tree; (3) examines the status of all the files in the tree without examining
their data; (4) examines every byte of data in all the files; and (5) compiles and
links the files.

Unfortunately, Andrew is so small for today’s systems that it does not exercise
the NFS service. So we increased the size of the benchmark by a factor of n as
follows: Phases 1 and 2 create n copies of the source tree, and the other phases
operate in all these copies. We ran a version of Andrew with n equal to 100,
Andrew100, and another with n equal to 500, Andrew500. BFS builds a file
system inside a memory-mapped file. We ran Andrew100 in a file system file
with 205 MB and Andrew500 in a file system file with 1 GB; both benchmarks
fill more than 90% of these files. Andrew100 fits in memory at both the client
and the replicas but Andrew500 does not.

PostMark [Katcher 1997] models the load on Internet service providers. It
emulates the workload generated by a combination of electronic mail, netnews,
and Web-based commerce transactions. The benchmark starts by creating a
large pool of files with random sizes within a configurable range. Then it runs a
large number of transactions on these files. Each transaction consists of a pair
of subtransactions: the first one creates or deletes a file, and the other one reads
a file or appends data to a file. The operation types for each subtransaction are
selected randomly with uniform probability distribution. After completing all
the transactions, the remaining files are deleted.

We configured PostMark with an initial pool of 10,000 files with sizes be-
tween 512 bytes and 16 Kbytes. The files were uniformly distributed over 130
directories. The benchmark ran 100,000 transactions.

For all benchmarks and NFS implementations, the actual benchmark code
ran at the client workstation using the standard NFS client implementation in
the Linux kernel with the same mount options. The most relevant of these op-
tions for the benchmark are: UDP transport, 4,096-byte read and write buffers,
allowing write-back client caching, and allowing attribute caching. Both NO-
REP and BFS used two relay processes at the client.

Out of the 18 operations in the NFS V2 protocol only getattr is read-only
because the time-last-accessed attribute of files and directories is set by oper-
ations that would otherwise be read-only, for example, read and lookup. We
modified BFS and NO-REP not to maintain the time-last-accessed attribute
in order to apply the read-only optimization to read and lookup operations.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 441

Fig. 15. Andrew100 and Andrew500: elapsed time in seconds.

This modification violates strict UNIX file system semantics but is unlikely to
have adverse effects in practice.

8.2.2 Performance Without Recovery. We now analyze the performance of
BFS without view changes or proactive recovery. We start by presenting results
of experiments that ran with four replicas and later present results obtained
with seven replicas.

Andrew Benchmark. Figure 15 presents results for Andrew100 and An-
drew500 in a configuration with four replicas and one client machine. We report
the mean of three runs of the benchmark. The standard deviation was always
below 1% of the reported averages except for Phase 1 where it was as high
as 33%.

The comparison between BFS and NO-REP shows that the overhead of
Byzantine fault tolerance is low for this service—BFS takes only 14% more
time to run Andrew100 and 22% more time to run Andrew500. This slowdown
is smaller than the one measured with the microbenchmarks because the client
spends a significant fraction of the elapsed time computing between operations,
and operations at the server perform some computation. In addition, there are
a significant number of disk writes at the server in Andrew500. The overhead
is not uniform across the benchmark phases: it is 40% and 45% for the first
two phases and approximately 11% for the last three. The main reason for
this is a variation in the amount of time the client spends computing between
operations.

The comparison with NFS-STD shows that BFS can be used in practice; it
takes only 15% longer to complete Andrew100 and 24% longer to complete An-
drew500. The performance difference would be smaller if Linux implemented
NFS correctly. For example, the results in Castro [2001] show that BFS is 2%
faster than the NFS implementation in Digital UNIX, which implements the
correct semantics. The implementation of NFS on Linux does not ensure sta-
bility of modified data and metadata before replying to the client (as required
by the NFS protocol), whereas BFS ensures stability through replication.

PostMark. Figure 16 presents the throughput measured using PostMark.
The results are averages of three runs and the standard deviation was below 2%

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

442 • M. Castro and B. Liskov

Fig. 16. PostMark: throughput in transactions per second.

of the reported value. The overhead of Byzantine fault tolerance is higher in this
benchmark: BFS’s throughput is 47% lower than NO-REP’s. This is explained
by a reduction on the computation time at the client relative to Andrew. What
is interesting is that BFS’s throughput is only 13% lower than NFS-STD’s.
The higher overhead is offset by an increase in the number of disk accesses
performed by NFS-STD in this workload.

More Replicas. We also ran Andrew100 in a configuration with seven repli-
cas (f = 2). All replicas had a 600-MHz Pentium III processor and the client
had a 700-MHz Pentium III processor. The results show that improving the
resilience of the system by increasing the number of replicas from four to
seven does not degrade performance significantly: BFS with f = 2 is only 3%
slower than with f = 1. This outcome was predictable given the microbench-
mark results in the previous sections.

8.2.3 Performance with Recovery. Frequent proactive recoveries and key
changes improve resilience to faults by reducing the window of vulnerability,
but they also degrade performance. We ran Andrew to determine the mini-
mum window of vulnerability that can be achieved without overlapping re-
coveries. Then we configured the replicated file system to achieve this win-
dow, and measured the performance degradation relative to a system without
recoveries.

The implementation of the proactive recovery mechanism is complete ex-
cept that we are simulating the secure coprocessor, the read-only memory, and
the watchdog timer in software. We are also simulating fast reboots. The Lin-
uxBIOS project [Minnich 2000] has been experimenting with replacing the
BIOS by Linux. They claim to be able to reboot Linux in 35 s (0.1 s to get
the kernel running and 34.9 to execute scripts in /etc/rc.d) [Minnich 2000].
This means that in a suitably configured machine we should be able to reboot in
less than a second. Replicas simulate a reboot by sleeping either 1 or 30 seconds
and calling msync to invalidate the service-state pages (this forces reads from
disk the next time they are accessed).

Recovery Time. The time to complete recovery determines the minimum
window of vulnerability that can be achieved without overlaps. We measured

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 443

Table II. Andrew: Maximum Recovery Time
(seconds)

Andrew100 Andrew500

save state 2.84 6.3
reboot 30.05 30.05
restore state 0.09 0.30
estimation 0.21 0.15
send new-key 0.03 0.04
send request 0.03 0.03
fetch and check 9.34 106.81

total 42.59 143.68

the recovery time for Andrew100 and Andrew500 with 30-s reboots and with
Tk = 15 s between key changes.

Table II presents a breakdown of the maximum time to recover a replica in
both benchmarks. Since the processes of checking the state for correctness and
fetching missing updates over the network to bring the recovering replica up
to date are executed in parallel, Table II presents a single line for both of them.
The line labeled “restore state” only accounts for reading the log from disk; the
service state pages are read from disk on demand when they are checked.

The most significant components of the recovery time are the time to save
the replica’s log and service state to disk, the time to reboot, and the time
to check and fetch state. The other components are insignificant. The time to
reboot is the dominant component for Andrew100 and checking and fetching
state account for most of the recovery time in Andrew500 because the state is
bigger.

Given these times, we set the period between watchdog timeouts Tw to 3.5
minutes in Andrew100 and to 10 minutes in Andrew500. These settings corre-
spond to a minimum window of vulnerability of 4 and 10.5 minutes, respectively.
We also ran the experiments for Andrew100 with a 1-s reboot and the maxi-
mum time to complete recovery in this case was 13.3 s. This enables a window
of vulnerability of 1.5 minutes with Tw set to 1 minute.

Recovery must be fast to achieve a small window of vulnerability. Although
the current recovery times are low, it is possible to reduce them further. For
example, the time to check the state can be reduced by periodically backing up
the state onto a disk that is normally write-protected and by using copy-on-
write to create copies of modified pages on a writable disk. This way only the
modified pages need to be checked. If the read-only copy of the state is brought
up to date frequently (e.g., daily), it will be possible to scale to very large states
while achieving even lower recovery times.

Recovery Overhead. We also evaluated the impact of recovery on perfor-
mance in the experimental setup described in the previous section; Figure 17
shows the elapsed time to complete Andrew100 and Andrew500 as the win-
dow of vulnerability increases. BFS-PR is BFS with proactive recoveries. The
number in square brackets is the minimum window of vulnerability in minutes.

The results show that adding frequent proactive recoveries to BFS has a
low impact on performance: BFS-PR[4] is 16% slower than BFS in Andrew100

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

444 • M. Castro and B. Liskov

Fig. 17. Andrew: elapsed time in seconds with and without proactive recoveries.

and BFS-PR[1.5] is only 27% slower (even though every 15 s one replica starts
a recovery). The overhead of proactive recovery in Andrew500 is even lower:
BFS-PR[10.5] is 2% slower than BFS.

There are several reasons why recoveries have a low impact on performance.
The most obvious is that recoveries are staggered such that there is never more
than one replica recovering; this allows the remaining replicas to continue pro-
cessing client requests. But it is necessary to perform a view change whenever
recovery is applied to the current primary and the clients cannot obtain further
service until the view change completes. These view changes are inexpensive
because a primary multicasts a VIEW-CHANGE message just before its recovery
starts and this causes the other replicas to move to the next view immediately.

9. RELATED WORK

There is a large body of research on replication but the earlier work did not
provide an adequate solution for building systems that can tolerate software
bugs, operator mistakes, or malicious attacks.

9.1 Replication with Benign Faults

Much research on replication has focused on techniques that tolerate benign
faults (e.g., Alsberg and Day [1976], Gifford [1979], Schneider [1982], Oki and
Liskov [1988], Lamport [1989], Liskov et al. [1991], and Keidar and Dolev [1996,
1998]): this work assumes replicas fail by stopping or by omitting some steps.
This assumption is not valid with software bugs, operator mistakes, or mali-
cious attacks. For example, an attacker can replace the code of a faulty replica
to make it behave arbitrarily. Furthermore, services with mutable state may
return incorrect replies when a single replica fails because this replica may
propagate corrupt information to the others. Consequently, replication may de-
crease resilience to these types of faults because the probability of incorrect
service behavior increases with the number of replicas.

Viewstamped replication [Oki and Liskov 1988] and Paxos [Lamport 1989]
use a combination of primary-backup [Alsberg and Day 1976] and quorum
[Gifford 1979] techniques to tolerate benign faults in an asynchronous system.
They use a primary to assign sequence numbers to requests and they replace

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 445

primaries that appear to be faulty using a view-change protocol. Both algo-
rithms use quorums to ensure that request ordering information is propagated
to the new view. BFT borrows these ideas from the two algorithms but tolerating
Byzantine faults requires a protocol that is significantly more complex.

9.2 Replication with Byzantine Faults

Techniques that tolerate Byzantine faults [Pease et al. 1980; Lamport et al.
1982] make no assumptions about the behavior of faulty components and, there-
fore, can tolerate even malicious attacks. However, most earlier work (e.g., Pease
et al. [1980], Lamport et al. [1982], Schneider [1990], Cristian et al. [1985],
Reiter [1996], Garay and Moses [1998], and Khilstrom et al. [1998]) assumes
synchrony. This assumption is reasonable in some systems, for example, avion-
ics control [Wensley et al. 1978]. But it is particularly dangerous when mali-
cious attackers can launch denial-of-service attacks to flood the processors or
the network with spurious requests.

9.2.1 Agreement and Consensus. Some agreement and consensus algo-
rithms tolerate Byzantine faults in asynchronous systems (e.g., Bracha and
Taueg [1985], Canetti and Rabin [1992], Malkhi and Reiter [1996b], Doudou
et al. [1999], and Cachin et al. [2000]). However, they do not provide a complete
solution for state machine replication and, furthermore, most of them are too
slow to be used in practice.

BFT’s protocol during normal case operation is similar to the Byzantine
agreement algorithm in Bracha and Toueg [1985]. However, this algorithm
is insufficient to implement state machine replication: it guarantees that non-
faulty processes agree on a message sent by a primary but it is unable to survive
primary failures.

9.2.2 State Machine Replication. Our work is inspired by Rampart [Reiter
1994, 1995, 1996; Malkhi and Reiter 1996a] and SecureRing [Kihlstrom et al.
1998], which also implement state machine replication. However, these systems
rely on synchrony assumptions for safety.

Both Rampart and SecureRing use group communication techniques with
dynamic group membership. They must exclude faulty replicas from the group
to make progress (e.g., to remove a faulty primary and elect a new one), and to
perform garbage collection. For example, a replica is required to know that a
message was received by all the replicas in the group before it can discard the
message, so it may be necessary to exclude faulty nodes to discard messages.

These systems rely on failure detectors to determine which replicas are
faulty. However, failure detectors cannot be accurate in an asynchronous sys-
tem [Lynch 1996]; that is, they may misclassify a replica as faulty. Since cor-
rectness requires that fewer than 1/3 of group members be faulty, a misclas-
sification can compromise correctness by removing a nonfaulty replica from
the group. This opens an avenue of attack: an attacker gains control over a
single replica but does not change its behavior in any detectable way; then it
slows correct replicas or the communication between them until enough are ex-
cluded from the group. It is even possible for these systems to behave incorrectly

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

446 • M. Castro and B. Liskov

without any compromised replicas. This can happen if all the replicas that send
a reply to a client are removed from the group and the remaining replicas never
process the client’s request.

To reduce the probability of misclassification, failure detectors can be cali-
brated to delay classifying a replica as faulty. However, for the probability to
be negligible the delay must be very large, which is undesirable. For example,
if the primary has actually failed, the group will be unable to process client
requests until the delay has expired, which reduces availability. Our algorithm
is not vulnerable to this problem because it only requires communication be-
tween quorums of replicas. Since there is always a quorum available with no
faulty replicas, BFT never needs to exclude replicas from the group.

Public key cryptography was the major performance bottleneck in Rampart
and SecureRing despite the fact that these systems include sophisticated tech-
niques to reduce the cost of public key cryptography at the expense of security
or latency. These systems rely on public key signatures to work correctly and
cannot use symmetric cryptography to authenticate messages. BFT uses MACs
to authenticate all messages and public key cryptography is used only to ex-
change the symmetric keys to compute the MACs. This approach improves
performance by up to two orders of magnitude without losing security.

Rampart and SecureRing provide group membership protocols that can be
used to implement recovery, but only in the presence of benign faults. These
approaches cannot be guaranteed to work in the presence of Byzantine faults
for two reasons: the system may be unable to provide safety if a replica that is
not faulty is removed from the group to be recovered; and the algorithms rely
on messages signed by replicas even after they are removed from the group and
there is no way to prevent attackers from impersonating removed replicas that
they controlled.

The algorithm that we described in Castro and Liskov [1999b] and the algo-
rithm in Doudou et al. [2000] are similar to BFT. They also work correctly in
asynchronous systems but they rely on public key cryptography to sign mes-
sages. Therefore they perform poorly and do not support recovery. In addition,
the algorithm in Doudou et al. [2000] does not provide garbage collection and
state transfer mechanisms.

9.2.3 Quorum Replication. Phalanx [Malkhi and Reiter 1998a,b] and its
successor Fleet [Malkhi and Reiter 2000] apply quorum replication tech-
niques [Gifford 1979] to achieve Byzantine fault tolerance in asynchronous
systems. This work does not provide generic state machine replication. Instead,
it offers a data repository with operations to read or write individual variables,
and it offers consensus objects that can be used by clients to implement more
complex operations. This makes Fleet more vulnerable to malicious clients be-
cause it relies on clients to group and order reads and writes to preserve any
invariants over the service state. It is nontrivial for correct Fleet replicas to
check invariants because they do not necessarily agree on the value of the state
when they execute a write operation.

Fleet provides an algorithm with optimal resilience (n> 3 f replicas to tol-
erate f faults) but malicious clients can make the state of correct replicas

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 447

diverge when this algorithm is used. To prevent this, Fleet requires n> 4 f

replicas.
Fleet does not provide a recovery mechanism for faulty replicas. However,

it includes a mechanism to estimate the number of faulty replicas in the sys-
tem [Alvisi et al. 1999] and a mechanism to adapt the threshold f on the
number of faults tolerated by the system based on this estimate [Alvisi et al.
2000]. This is interesting but it is not clear whether it will work in practice:
a clever attacker can make compromised replicas appear to behave correctly
until it controls more than f and then it is too late to adapt or respond in any
way.

There are no published performance numbers for Fleet or Phalanx but we
believe our system is faster because it has fewer message delays in the criti-
cal path and because of our use of MACs rather than public key cryptography.
In Fleet, writes require three message round trips to execute whereas BFT
executes read-write operations in two round trips. More precisely, a write in
Fleet requires three 1-to-many message exchanges and three many-to-1 mes-
sage exchanges whereas in BFT read-write operations require two 1-to-many
exchanges, one many-to-many exchange, and one many-to-1 exchange. Most
reads in Fleet and read-only operations in BFT require one round trip and
involve the same type of message exchanges.

In addition, all communication in Fleet is between the client and the replicas.
This reduces opportunities for request batching and may result in increased
latency since we expect that in most configurations communication between
replicas will be faster than communication with the client.

The approach in Fleet offers the potential for improved scalability: each op-
eration is processed by only a subset of replicas. However, the load on each
replica decreases slowly with n (it is Ä(1/

√
n)). Therefore we believe that client

caching and partitioning the state by several replica groups is a better approach
to achieve scalability for most applications.

There has been some recent work on augmenting Fleet with support for state
machine replication [Chockler et al. 2001]. This work uses an algorithm similar
to BFT with clients playing the role of primary. The algorithm assumes that
clients are correct and it assumes eventual time bounds on delays for liveness
but it is safe in asynchronous systems. It requires n> 5 f replicas with public
key signatures or n> 6 f without signatures, and four round trips per operation.

COCA [Zhou et al. 2000] uses quorum replication techniques combined with
proactive recovery to implement an online certification authority. Like BFT, it
provides strong safety and liveness guarantees if fewer than 1/3 of the repli-
cas fail within any window of vulnerability. COCA specifies the semantics of
certificate operations carefully to be able to provide liveness without relying on
any synchrony assumption. BFT must rely on a weak synchrony assumption
for liveness due to its generality.

COCA’s proactive recovery uses an interesting asynchronous proactive sig-
nature sharing mechanism to ensure that the certification authority’s signing
key is not compromised when replicas fail and recover. It does not rely on secure
coprocessors to perform recoveries but it may need to involve administrators in
the recovery of compromised replicas.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

448 • M. Castro and B. Liskov

COCA provides defenses against denial-of-service attacks that are similar
to those in BFT [Castro 2001]. COCA has been implemented and its perfor-
mance has been evaluated with and without denial-of-service attacks. The per-
formance is worse than BFT’s due to extensive use of public key cryptography
but some of this cryptography cannot be avoided with the certification authority
specification used in COCA.

9.3 Other Related Work

The problem of efficient state transfer has not been addressed by previous work
on Byzantine-fault-tolerant replication. We present an efficient state transfer
mechanism that enables frequent proactive recoveries with low performance
degradation.

The SFS read-only file system [Fu et al. 2000] uses a technique to transfer
data between replicas and clients that is similar to our state transfer tech-
nique. They are both based on Merkle trees [Merkle 1987] but the read-only
SFS uses data structures that are optimized for a file system service. Another
difference is that our state transfer handles modifications to the state while
the transfer is in progress whereas their file system is read-only. Our tech-
nique to check the integrity of the replica’s state during recovery is similar to
those in Blum et al. [1994] and Maheshwari et al. [2000] except that we obtain
the tree with correct digests from the other replicas rather than from a secure
coprocessor.

The concept of a system that can tolerate more than f faults provided no
more than f nodes in the system become faulty in some time window was
introduced in Ostrovsky and Yung [1991]. This concept has previously been ap-
plied in synchronous systems to secret-sharing schemes [Herzberg et al. 1995],
threshold cryptography [Herzberg et al. 1997], and more recently secure infor-
mation storage and retrieval [Garay et al. 2000] (which provides single-writer
single-reader replicated variables). But our algorithm is more general; it allows
a group of nodes in an asynchronous system to implement an arbitrary state
machine.

10. CONCLUSION

The growing reliance of our society on computers demands highly available sys-
tems that provide correct service without interruptions. Byzantine faults such
as software bugs, operator mistakes, and malicious attacks are the major cause
of service interruptions. We present a new replication algorithm and imple-
mentation techniques to build highly available systems that tolerate Byzantine
faults and can be used in practice.

This article describes BFT, a state machine replication algorithm that toler-
ates Byzantine faults provided fewer than 1/3 of the replicas are faulty. BFT
provides linearizability, which is a strong safety property, without relying on
any synchrony assumption. Additionally, it guarantees liveness provided mes-
sage delays are bounded eventually. BFT provides safety and liveness regard-
less of the number of Byzantine-faulty clients.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 449

The article also describes a proactive recovery mechanism that allows the
replicated system to tolerate any number of faults over the lifetime of the sys-
tem provided fewer than 1/3 of the replicas become faulty within a window
of vulnerability. Replicas can be recovered frequently to shrink the window of
vulnerability to a few minutes with a low impact on performance. The mech-
anism also provides detection of denial-of-service attacks aimed at increasing
the window and detects when the state of a replica is corrupted by an attacker.

BFT has been implemented as a generic program library with a simple inter-
face and the article describes a service that was implemented using the library:
the first Byzantine-fault-tolerant NFS file system, BFS. The BFT library and
BFS perform well. For example, BFS with four replicas performs 2% faster to
24% slower than production implementations of the NFS protocol that are not
replicated. This good performance is due to several optimizations. The most
important optimization is the use of symmetric cryptography to authenticate
messages. Public key cryptography, which was the major bottleneck in previous
systems, is used only to exchange the symmetric keys.

APPENDIX

This appendix presents a detailed formal specification of the BFT algorithm
described in Section 4. We specified a simplified version of BFT to improve clar-
ity. In particular, the formal specification omits code to defend against denial-
of-service attacks aimed at consuming replicas’ memory space, and code to en-
sure fair scheduling of requests. Our actual implementation ensures a constant
bound on the amount of memory used and fair scheduling even in the presence
of denial-of-service attacks. In addition, the specification uses simple but ineffi-
cient state transfer and retransmission strategies. Finally, it does not model the
mechanism to trigger view changes and improve liveness; instead, each replica
decides nondeterministically when to change to the next view.

The appendix starts by providing an overview of the system, and by defining
BFT’s safety property formally. Then it describes the models for the algorithms
run by clients and replicas.

A. OVERVIEW

We model the service replicated by BFT as a deterministic state machine, which
is a tuple 〈S, U , O, O′, g , so〉. It has a state in a set S (initially equal to so) and
its behavior is defined by a transition function:

g : U × O × S → O′ × S.

The arguments to the function are a client identifier in a set of users U , an
operation in a set O, which encodes an operation identifier and any arguments
to that operation, and an initial state. These arguments are mapped by g to
the result of the operation in O′ and a new state. The client identifier is in-
cluded explicitly as an argument to g because the algorithm authenticates the
client that requests an operation and provides the service with its identity. This
enables the service to enforce access control.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

450 • M. Castro and B. Liskov

The distributed system that implements the replicated service is modeled
as a set of I/O automata [Lynch 1996]. An I/O automaton has a state and a set
of actions that define state transitions. Each action has a precondition, which
determines whether it is enabled, and effects, which determine how the state
is modified when it executes. The actions of an I/O automaton are classified
as input, output, and internal actions, where input actions are required to be
always enabled. Automata execute by repeating the following two steps: an
enabled action is selected nondeterministically, and then it is executed atomi-
cally. Several automata can be composed by combining input and output actions.
Lynch’s book [Lynch 1996] provides a good description of I/O automata.

There is a proxy automaton Pc for each client c. Pc provides an input action
for c to invoke an operation o on the state machine, REQUEST(o)c, and an output
action for c to learn the result r of an operation it requested, REPLY(r)c. Pc

communicates with a set of replicas to implement the interface it offers to the
client. Each replica has a unique identifier i in a set R and is modeled by an
automaton Ri.

Replicas and proxies execute in different nodes in the distributed system. The
network between replicas and proxies is an automaton with a SEND(m, N)i and
a RECEIVE(m)i action for each proxy and replica i. These actions allow automata
to send messages in a universal message set M to any subset of automata with
identifiers in N =U ∪ R. The assumptions about this network were discussed
in Section 2.

We use the notation from Section 2 to denote message authentication. For
example, mαi

denotes a message with a valid authenticator produced by i. Since
a replica cannot verify the correctness of all the entries in authenticators it
receives, we use the notation mαi j

to denote a message with an authenticator
from i with a valid entry for j .

B. SAFETY PROPERTY

The safety property offered by BFT is a form of linearizability [Herlihy and
Wing 1987]: the replicated service behaves as a centralized implementation
that executes operations atomically one at a time.

We modified the definition of linearizability because the original definition
does not work with Byzantine-faulty clients. The problem is that these clients
are not restricted to use the REQUEST and REPLY interface provided by the proxy
automata. For example, they can make the replicated service execute their
requests by injecting appropriate messages directly into the network. There-
fore, the modified linearizability property treats faulty and nonfaulty clients
differently.

A similar modification to linearizability was proposed concurrently in Malkhi
et al. [1998]. Their proposal uses conditions on execution traces to specify the
modified linearizability property. We specify the property using an I/O automa-
ton, Safe, with the same external signature as the composition of the proxy
automata. Our approach has several advantages: it produces a simpler specifi-
cation and it enables the use of state-based proof techniques such as invariant
assertions and simulation relations to reason about linearizability. These proof

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 451

Fig. 18. Specification of safe behavior, Safe. Here o ∈ O, t ∈ IN, c ∈ U , i ∈ R, and r ∈ O′.

techniques are better than those that reason directly about execution traces
because they are more stylized and better suited to produce automatic proofs.

The specification of modified linearizability, Safe, is a simple, abstract, cen-
tralized implementation of the state machine 〈S, U , O, O′, g , so〉 that is defined
in Figure 18. We say that the replicated service (obtained by composing proxy,
replica, and network automata) satisfies the safety property if it implements
Safe according to the definition in Lynch [1996].

The state of Safe includes the following components: val is the current value
of the state machine, in records requests to execute operations, and out records
replies with operation results. Each last-reqc component is used to times-
tamp requests by client c to totally order them, and last-rep-tc remembers the
value of last-reqc that was associated with the last operation executed for c.
The faulty-clientc and faulty-replicai indicate which clients and replicas are
faulty.

The CLIENT-FAILURE and REPLICA-FAILURE actions are used to model failures;
they set the faulty-clientc or the faulty-replicai variables to true. The REQUEST(o)c

actions increment last-reqc to obtain a new timestamp for the request, and add
a triple to in with the requested operation o, the timestamp value last-reqc,
and the client identifier. The FAULTY-REQUEST actions are similar. They model

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

452 • M. Castro and B. Liskov

execution of requests by faulty clients that bypass the external signature, for
example, by injecting the appropriate messages into the multicast channel.

The EXECUTE(o, t, c) actions pick a request with a triple 〈o, t, c〉 in in for ex-
ecution and remove the triple from in. They execute the request only if the
timestamp t is greater than the timestamp of the last request executed on c’s
behalf. This models a well-formedness condition on nonfaulty clients: they are
expected to wait for the reply to the last requested operation before they issue
the next request. Otherwise, one of the requests may not even execute and the
client may be unable to match the replies with the requests. When a request
is executed, the transition function of the state machine g is used to compute
a new value for the state and a result r for operation o. The client identifier is
passed as an argument to g to allow the service to enforce access control. Then
the actions add a triple with the result r, the request timestamp, and the client
identifier to out.

The REPLY(r)c actions return an operation result with a triple in out to client
c and remove the triple from out. The REPLY precondition is weaker for faulty
clients to allow arbitrary replies for such clients. The algorithm cannot guaran-
tee safety if more than ⌊(|R| − 1)/3⌋ replicas are faulty. Therefore, the behavior
of Safe is left unspecified in this case.

C. PROXY AUTOMATON

The proxy automaton Pc is defined in Figure 19. The proxy remembers the last
request sent to the replicas in outc and it collects replies that match this request
in inc. It uses last-reqc to generate timestamps for requests. The REQUEST actions
add a request for the argument operation to outc. This request is sent on the
network by the send actions and it is retransmitted until a reply is generated.
The RECEIVE actions collect replies in inc that match the request in outc. Once
there are more than f replies with the same r in inc, the REPLY action becomes
enabled and returns the result of the requested operation to the client.

D. REPLICA AUTOMATON

Figure 20 defines the signature and state of replica automaton Ri. The state
variables include the current value of the i’s copy of the state machine vali,
the last reply last-repi sent to each client, and the timestamps in those replies
last-rep-ti. There is also a set of checkpoints chkptsi, whose elements contain
not only a snapshot of vali but also of last-repi and last-rep-ti. The log with
messages received or sent by i is stored in ini, and outi buffers messages that
are about to be sent. Pi and Qi are used during view changes as explained in
Section 4.5. Replicas also maintain the current view number viewi, a flag that
indicates whether the view change into viewi is complete activei, the sequence
number of the last request executed last-execi, and the last sequence number
they picked for a request seqnoi.

Figure 20 also defines a few auxiliary functions. The most interesting are:
in-w(n, i) that checks if n is between the low and high water marks in i’s log;
and pre-prepared, prepared, and committed that define the various states that
client requests go through during the protocol (as explained in Section 4).

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 453

Fig. 19. Proxy automaton Pc: signature, state, and transitions. Here o ∈ O, v, t ∈ IN, c ∈ U , i ∈ R,
r ∈ O′, m ∈ M, R ⊆ R, and N ⊆ N .

Figure 21 presents the actions associated with the normal case protocol.
The actions match the description in Section 4.3 closely. The execute action
is the most complex. To ensure exactly once semantics, a replica executes a
request only if its timestamp is greater than the timestamp in the last re-
ply sent to the client. When it executes a request, the replica uses the state
machine’s transition function g to compute a new value for the state and a
reply to send to the client. Then, if n mod K = 0, the replica takes a check-
point by adding a snapshot of vali, last-repi, and last-rep-ti to the checkpoint
set and puts a matching CHECKPOINT message in outi to be multicast to the other
replicas.

Figure 22 presents the garbage collection actions. The RECEIVE action collects
CHECKPOINT messages in the log and the COLLECT-GARBAGE action discards old
messages and checkpoints when the replica has a stable certificate logged.

Section 4.5 presented a number of correctness conditions on VIEW-CHANGE and
NEW-VIEW messages. These conditions are formalized in Figure 23. In particular,
correct-X corresponds to the decision procedure in Figure 4.

The last set of actions is presented in Figure 24. The formalization follows the
description in Section 4.5 closely but the last four actions deserve further expla-
nation. The RETRANSMIT action retransmits the checkpoint and requests chosen
by a valid NEW-VIEW message to any replicas that might be missing them. The two
RECEIVE actions that follow are used by replicas to receive these retransmitted

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

454 • M. Castro and B. Liskov

Fig. 20. Replica automaton Ri : signature, state, and auxiliary functions. Here t, v, n, h, d ∈ IN,
c ∈ U , i, j , k ∈ R, m ∈ M, s ∈ S ′, V, X , C ⊆ IN2, P, Q ⊆ IN3, and N ⊆ N .

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 455

Fig. 21. Replica automaton Ri : normal case actions.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

456 • M. Castro and B. Liskov

Fig. 22. Replica automaton Ri : garbage collection actions.

Fig. 23. Replica automaton: auxiliary functions for view-change actions.

checkpoints or requests. These actions use the information in the VIEW-CHANGE

and NEW-VIEW messages to check the correctness of the messages. Therefore, the
messages do not need to be authenticated.

This retransmission strategy is simple but inefficient. In our actual imple-
mentation, replicas ask for requests that they are missing and they use the state
transfer protocol from Section 6.2.2 to fetch missing checkpoints efficiently.

The PROCESS-NEW-VIEW action processes the NEW-VIEW message when the replica
has a correct NEW-VIEW message, the checkpoint chosen in the message or a later
one is stable at the replica, and the replica has all chosen requests with numbers
greater than its stable checkpoint. This action makes the replica active in viewi,

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 457

Fig. 24. Replica automaton Ri : view-change actions.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

458 • M. Castro and B. Liskov

and adds PRE-PREPARE messages for chosen requests to its log. Replicas other
than the primary also send matching PREPARE messages.

ACKNOWLEDGMENTS

We would like to thank Fred Schneider, Marc Shapiro, and the anonymous
referees for their helpful comments on drafts of this article.

REFERENCES

ALSBERG, P. AND DAY, J. 1976. A principle for resilient sharing of distributed resources. In Proceed-

ings of the Second International Conference on Software Engineering, IEEE Computer Society
Press, San Francisco, 627–644.

ALVISI, L., MALKHI, D., PIERCE, E., REITER, M., AND WRIGHT, R. 2000. Dynamic Byzantine quorum
systems. In International Conference on Dependable Systems and Networks (DSN, FTCS-30 and

DCCA-8), IEEE Computer Society Press, New York, 283–292.
ALVISI, L., PIERCE, E., MALKHI, D., AND REITER, M. 1999. Fault detection for Byzantine quorum

systems. In Proceedings of the Seventh IFIP International Working Conference on Dependable

Computing for Critical Applications (DCCA-7), IEEE Computer Society Press, San Jose, Calif.
357–371.

BELLARE, M. AND MICCIANCIO, D. 1997. A new paradigm for collision-free hashing: Incrementality at
reduced cost. In Advances in Cryptology—EUROCRYPT’ 97, Lecture Notes in Computer Science,
vol. 1233, W. Fumy, Ed., Springer-Verlag, Konstanz, Germany, 163–192.

BELLARE, M. AND ROGAWAY, P. 1995. Optimal asymmetric encryption—How to encrypt with RSA.
In Advances in Cryptology—EUROCRYPT 94, Lecture Notes in Computer Science, vol. 950, A. D.
Santis, Ed., Springer-Verlag, Perugia, Italy, 92–111.

BELLARE, M. AND ROGAWAY, P. 1996. The exact security of digital signatures. How to sign with RSA
and Rabin. In Advances in Cryptology—EUROCRYPT 96, Lecture Notes in Computer Science,
vol. 1070, U. Maurer, Ed., Springer-Verlag, Zaragoza, Spain, 399–416.

BENNETT, C., BESSETTE, F., BRASSARD, G., SALVAIL, L., AND SMOLIN, J. 1992. Experimental quantum
cryptography. J. Cryptol. 5, 1, 3–28.

BLACK, J., HALEVI, S., KRAWCZYK, H., KROVETZ, T., AND ROGAWAY, P. 1999. UMAC: Fast and secure
message authentication. In Advances in Cryptology—CRYPTO’99, Lecture Notes in Computer

Science, vol. 1666, M. Wiener, Ed., Springer-Verlag, Santa Barbara, Calif., 216–233.
BLUM, M., EVANS, W., GEMMEL, P., KANNAN, S., AND NAOR, M. 1994. Checking the correctness of

memories. Algorithmica 12, 225–244.
BRACHA, G. AND TOUEG, S. 1985. Asynchronous consensus and broadcast protocols. J. ACM 32, 4,

824–240.
CACHIN, C., KURSAWE, K., AND SHOUP, V. 2000. Random oracles in Constantinople: Practical asyn-

chronous Byzantine agreement using cryptography. In Proceedings of the Nineteenth ACM Sym-

posium on Principles of Distributed Computing (PODC 2000), ACM Press, Portland, Ore.
CANETTI, R. AND RABIN, T. 1992. Optimal asynchronous byzantine agreement. Tech. Rep. #92-15,

Computer Science Department, Hebrew University.
CANETTI, R., HALEVI, S., AND HERZBERG, A. 1997. Maintaining authenticated communication in the

presence of break-ins. In Proceedings of the Fourth ACM Conference on Computers and Commu-

nication Security, ACM Press, Zurich, Switzerland.
CASTRO, M. 2001. Practical Byzantine fault tolerance. Tech. Rep. MIT/LCS/TR-817, MIT Labora-

tory for Computer Science. January.
CASTRO, M. AND LISKOV, B. 1999a. A Correctness proof for a practical byzantine-fault-tolerant repli-

cation algorithm. Tech. Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science.
CASTRO, M. AND LISKOV, B. 1999b. Practical Byzantine fault tolerance. In Proceedings of the Third

Symposium on Operating Systems Design and Implementation (OSDI), USENIX, New Orleans.
CHOCKLER, G., MALKHI, D., AND REITER, M. 2001. Backoff protocols for distributed mutual exclusion

and ordering. In Proceedings of the 21st International Conference on Distributed Computing

Systems, IEEE Computer Society Press, Phoenix, Ariz.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 459

CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. 1985. Atomic broadcast: From simple message
diffusion to Byzantine agreement. In Proceedings of the Fifteenth International Conference on

Fault Tolerant Computing, IEEE Computer Society Press, Ann Arbor, Mich.
DEERING, S. AND CHERITON, D. 1990. Multicast routing in datagram internetworks and extended

LANs. ACM Trans. Comput. Syst. 8, 2 (May), 85–110.
DOUDOU, A., GARBINATO, B., AND GUERRAOUI, R. 2000. Modular abstractions for devising Byzantine-

resilient state machine Replication. In Proceedings of the IEEE Symposium on Reliable Dis-

tributed Systems, IEEE Computer Society Press, Nurnberg, Germany, 144–153.
DOUDOU, A., GARBINATO, B., GUERRAOUI, R., AND SCHIPER, A. 1999. Muteness failure detectors: Speci-

fication and implementation. In Proceedings of the Third European Dependable Computing Con-

ference (EDCC-3), Lecture Notes in Computer Science, vol. 1667, J. Hlavicka, E. Maehle, and
A. Pataricza, Eds., Springer-Verlag, Prague, Czech Republic, 71–87.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2 (April), 374–382.

FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. 2000. Fast and secure distributed read-only file system.
In Proceedings of the Fourth USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 2000), USENIX, San Diego.
GARAY, J. AND MOSES, Y. 1998. Fully polynomial Byzantine agreement for n> 3t processors in t +1

rounds. SIAM J. Comput. 27, 1 (Feb.), 247–290.
GARAY, J., GENNARO, R., JUTLA, C., AND RABIN, T. 2000. Secure distributed storage and retrieval.

Theo. Comput. Sci. 243, 1–2 (July), 363–389.
GIFFORD, D. K. 1979. Weighted voting for replicated data. In Proceedings of the Seventh Sympo-

sium on Operating Systems Principles, ACM Press, Pacific Grove, Calif., 150–162.
GONG, L. 1992. A security risk of depending on synchronized clocks. Oper. Syst. Rev. 26, 1 (Jan.),

49–53.
GRAY, J. 2000. FT 101. Talk at the University of California at Berkeley.
HERLIHY, M. P. AND WING, J. M. 1987. Axioms for concurrent objects. In Proceedings of the

Fourteenth ACM Symposium on Principles of Programming Languages, ACM Press, Munich,
13–26.

HERZBERG, A., JAKOBSSON, M., JARECKI, S., KRAWCZYK, H., AND YUNG, M. 1997. Proactive public key
and signature systems. In Proceedings of the Fourth ACM Conference on Computers and Com-

munication Security, ACM Press, Zurich, Switzerland.
HERZBERG, A., JARECKI, S., KRAWCZYK, H., AND YUNG, M. 1995. Proactive secret sharing, or: How to

cope with perpetual leakage. In Advances in Cryptology—CRYPTO’95, Lecture Notes in Computer

Science, vol. 963, D. Coppersmith, Ed., Springer-Verlag, Santa Barbara, Calif.
HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDEBOTHAM, R., AND WEST, M.

1988. Scale and performance in a distributed file system. ACM Trans. Comput. Syst. 6, 1 (Feb.),
51–81.

KATCHER, J. 1997. PostMark: A new file system benehmark. Tech. Rep. TR-3022, Network Appli-
ance. October.

KEIDAR, I. AND DOLEV, D. 1996. Efficient message ordering in dynamic networks. In Proceedings of

the Fifteenth ACM Symposium on Principles of Distributed Computing, ACM Press, Philadelphia,
68–76.

KEIDAR, I. AND DOLEV, D. 1998. Increasing the resilience of distributed and replicated database
systems. J. Computer Syst. Sci. 57, 3 (Dec.), 309–324.

KIHLSTROM, K., MOSER, L., AND MELLIAR-SMITH, P. 1998. The SecureRing protocols for securing
group communication. In Proceedings of the Hawaii International Conference on System Sciences,
IEEE Computer Society Press, Hawaii.

LAMPORT, L. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3, 2
(Nov.), 125–143.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM 21, 7 (July), 558–565.
LAMPORT, L. 1984. Using time instead of timeout for fault-tolerant distributed systems. ACM

Trans. Program. Lang. and Syst. 6, 2 (Apr.), 254–280.
LAMPORT, L. 1989. The part-time parliament. Research Rep. 49, Digital Equipment Corporation

Systems Research Center, Palo Alto, Sept.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

460 • M. Castro and B. Liskov

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The Byzantine generals problem. ACM Trans. Pro-

gram. Lang. Syst. 4, 3 (July), 382–401.
LAMPSON, B. 2001. The ABCDs of Paxos. Presented at Principles of Distributed Computing. Avail-

able at http://www.research.microsoft.com/lampson.
LISKOV, B. AND ZILLES, S. 1975. Specification techniques for data abstractions. IEEE Trans. Softw.

Eng. SE-1, 1 (Mar.), 7–17.
LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P., SHRIRA, L., AND WILLIAMS, M. 1991. Replication

in the Harp file system. In Proceedings of the Thirteenth ACM Symposium on Operating System

Principles (SOSP), ACM Press, Pacific Grove, Calif., 226–238.
LYNCH, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, Calif.
MAHESHWARI, U., VINGRALEK, R., AND SHAPIRO, B. 2000. How to build a trusted database system

on untrusted storage. In Proceedings of the Fourth USENIX Symposium on Operating Systems

Design and Implementation (OSDI 2000), USENIX, San Diego.
MALKHI, D. AND REITER, M. 1996a. A high-throughput secure reliable multicast protocol. In Pro-

ceedings of the Ninth Computer Security Foundations Workshop, IEEE Computer Society Press,
Ireland, 9–17.

MALKHI, D. AND REITER, M. 1996b. Unreliable intrusion detection in distributed computations.
In Proceedings of the Ninth Computer Security Foundations Workshop, IEEE Computer Society
Press, Ireland, 9–17.

MALKHI, D. AND REITER, M. 1998a. Byzantine quorum systems. J. Distrib. Comput. 11, 4, 203–213.
MALKHI, D. AND REITER, M. 1998b. Secure and scalable replication in phalanx. In Proceedings of the

Seventeenth IEEE Symposium on Reliable Distributed Systems, IEEE Computer Society Press,
West Lafayette, Ind.

MALKHI, D. AND REITER, M. 2000. An architecture for survivable coordination in large distributed
systems. IEEE Trans. Knowl. Data Eng. 12, 2 (Apr.), 187–202.

MALKHI, D., REITER, M., AND LYNCH, N. 1998. A correctness condition for memory shared by Byzan-
tine processes (Submitted).

MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. 1999. Separating key management
from file system security. In Proceedings of the Seventeenth ACM Symposium on Operating System

Principles, ACM Press, Kiawah Island, S.C.
MERKLE, R. 1987. A digital signature based on a conventional encryption function. In Advances in

Cryptology—Crypto’87, Lecture Notes in Computer Science, vol. 293, C. Pomerance, Ed., Springer-
Verlag, Santa Barbara, Calif., 369–378.

MINNICH, R. 2000. The Linux BIOS home page. Available at http://www.acl.lanl.gov/linuxbios.
MURPHY, B. AND LEVIDOW, B. 2000. Windows 2000 dependability. In Proceedings of IEEE In-

ternational Conference on Dependable Systems and Networks, IEEE Computer Society Press,
New York.

OKI, B. AND LISKOV, B. 1988. Viewstamped replication: A new primary copy method to support
highly-available distributed systems. In Proceedings of ACM Symposium on Principles of Dis-

tributed Computing, ACM Press, Toronto, 8–17.
OSTROVSKY, R. AND YUNG, M. 1991. How to withstand mobile virus attack. In Proceedings of

the Nineteenth Symposium on Principles of Distributed Computing, ACM Press, Montreal,
51–59.

OUSTERHOUT, J. 1990. Why aren’t operating systems getting faster as fast as hardware? In Pro-

ceedings of USENIX Summer Conference, USENIX, Anaheim, Calif., 247–256.
PEASE, M., SHOSTAK, R., AND LAMPORT, L. 1980. Reaching agreement in the presence of faults. J.

ACM 27, 2 (April), 228–234.
POSTEL, J. 1980. User datagram protocol. DARPA-Internet RFC-768.
REITER, M. 1994. Secure agreement protocols. In Proceedings of the Second ACM Conference on

Computer and Communication Security, ACM Press, Fairfax, Va., 68–80.
REITER, M. 1995. The Rampart toolkit for building high-integrity services. In Theory and Practice

in Distributed Systems. Lecture Notes in Computer Science, vol. 938, Springer Verlag, New York,
99–110.

REITER, M. 1996. A secure group membership protocol. IEEE Trans. Softw. Eng. 22, 1 (Jan.),
31–42.

RIVEST, R. 1992. The MD5 message-digest algorithm. Internet RFC-1321.

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

Practical Byzantine Fault Tolerance and Proactive Recovery • 461

RODRIGUES, R., CASTRO, M., AND LISKOV, B. 2001. BASE: Using abstraction to improve fault toler-
ance. In Proceedings of the Eighteenth Symposium on Operating System Principles, ACM Press,
Banff, Canada.

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. 1985. Design and implementation
of the sun network filesystem. In Proceedings of the Summer 1985 USENIX Conference, USENIX,
Portland, Oreo, 119–130.

SCHNEIDER, F. 1990. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv. 22, 4 (Dec.), 299–319.

SCHNEIDER, F. 1982. Synchronization in distributed programs. ACM Trans. Program. Lang.

Syst. 4, 2 (Apr.), 125–148.
SCHNEIER, B. 1996. Applied Cryptography. Wiley, New York.
SHA1 1994. Announcement of Weakness in Secure Hash Standard.
WENSLEY, J., LAMPORT, L., GOLDBERG, J., GREEN, M., LEVITT, K., MELLIAR-SMITH, M., SHOSTAK, R., AND

WEINSTOCK, C. 1978. SIFT: Design and analysis of a fault-tolerant computer for aircraft control.
Proc. IEEE 66, 10 (Oct.), 1240–1255.

ZHOU, L., SCHNEIDER, F., AND RENESSE, R. 2000. COCA: A secure distributed on-line certification
authority. Tech. Rep. 2000-1828, Department of Computer Science, Cornell University, Ithaca,
NY., Dec. ACM Trans. Comput. Syst. (to appear).

Received February 2001; revised May 2002; accepted June 2002

ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002.

