
Published by the IEEE Computer Society 0272-1716/11/$26.00 © 2011 IEEE IEEE Computer Graphics and Applications 45

Practical Character Physics

for Animators
Ari Shapiro ■ Institute for Creative Technologies

Sung-Hee Lee ■ Gwangju Institute of Science and Technology

Realism is important in the production of

live-action visual effects when animated

characters occupy the same scene as the

live actors and the live environment. In such sce-

narios, a virtual character’s movements must vi-

sually match the behavior and movements in the

live environment, or the discrepancy will be obvi-

ous to the viewer. For example, a character who is

jumping and thus being brought to the ground by

gravity must visually match an object that’s being

thrown in the same scene under the same gravi-

tational force.

However, the traditional tools for creating 3D

character animation don’t include dynamical in-

formation, which means that the dynamics of

character motion can exist only implicitly in the

animation framework. Some animation systems

incorporate physical simulation of rigid and non-

rigid solids, �uids, gases, and characters.1–4 In ad-

dition, technical animators often apply dynamic

effects during postprocessing, such as creating

the secondary-motion effects of muscle bulging

and hair bouncing. However, the vast majority of

character animators create most character move-

ment through kinematic means. Character anima-

tion in feature �lms often requires a �ne-grained

level of control over all parts of the character’s

movement that can’t be achieved by current char-

acter dynamics simulation methods. In addition,

a particular shot’s constraints might require that

an animated character’s motion violate the laws

of physics. For example, this might occur when a

character needs to move unnaturally to stay in a

camera’s view. Also, animators are typically trained

using kinematic tools and thus develop a high level

of pro�ciency using them.

So, conventional keyframe animation has remained

the method of choice for animation studios. To gen-

erate realistic-looking motion, professional anima-

tors typically combine methods such as keyframing,

inverse kinematics, and other traditional tools such

as curve editors. Animators also frequently use refer-

ence motion, such as videos of people and creatures

performing a motion they need to replicate. These

references help animators approximate the dynam-

ics of motion, because traditional rigs don’t include

dynamical aspects such as masses

and moments of inertia. Thus,

animators must create physical

plausibility without the direct in-

put of these physical aspects.

We’ve developed an interac-

tive system that helps animators

create more physically plausible

character motions. To this end,

it lets animators view a charac-

ter’s or object’s motion as if it

obeyed the laws of physics. Spe-

ci�cally, our system produces

visualizations of dynamical prop-

erties, such as the center of mass,

momentum, and balance. For example, it creates a

physically accurate ballistic motion path alongside

the original kinematic path. By comparing the two

paths and viewing the additional dynamical infor-

mation, animators can adjust the original anima-

tion to create a more physically correct animation.

In addition, our system can automatically alter the

animation to account for the discrepancy between

the original animation and the physically correct

animation. This lets nonanimators quickly correct

existing animation without an animator’s input.

This system lets animators

improve unrealistic motions

in 3D animation by visualizing

motions’ physical properties

such as the center of mass,

angular momentum, and

zero-moment point, and by

comparing the original created

path to a generated physics-

based path. Animators then

modify the original path to

match the generated path.

Physics-Based Characters

46 July/August 2011

Physics-Based Characters

The system’s main purpose is not to generate

physically correct motion automatically but to in-

form animators of the changes necessary to make

motions physically correct. (For a look at some au-

tomatic systems, see the “Related Work” sidebar.)

Because the animator ultimately has complete

control over the extent to which the original ani-

mation is changed, the system is easily adaptable

to a professional animator’s toolset.

Improving Physical Realism
We’ve found that simply visualizing the physical

properties helps animators create more realistic

animation. In addition, we’ve integrated two tools

into keyframe-based animation-authoring soft-

ware. A ballistic-path tool lets animators easily

create or modify ballistic animation. An angular-

momentum tool rotates a character’s global orien-

tation to achieve the desired angular momentum.

The main article focuses on helping animators create physi-

cally realistic character animation by visualizing dynami-

cal properties of keyframe animation. For details on the

mathematical preliminaries, see A Mathematical Introduction

to Robotic Manipulation.1 In contrast, most physics-based

animation techniques deal with automatic generation of

animation with minimal user inputs. Space-time optimiza-

tion approaches automatically create physically plausible

animation by solving optimization problems subject to

physical and other constraints.2,3 Another approach develops

algorithms that control a character under physical simulation.

Researchers have constructed such dynamic controllers to let

characters perform simple athletic maneuvers,4 swimming,5

stable walking cycles,6 reactive motions such as falling,7 and

other motions such as breathing and grasping.8,9 Such

approaches can work in concert with kinematic animation10

and motion capture.11 Researchers have also used physical

simulation to create realistic secondary motions.12,13

These physics-based techniques pursue a promising

method of animation production, but the industry has

yet to widely employ them, for the reasons we mention

in the main article. Also, physics-based animation is often

computationally heavy, which prevents its use in interac-

tive authoring environments. In contrast, we developed

our approach to improve conventional keyframing-based

techniques’ physical realism by visualizing kinematic ani-

mation’s dynamic properties. So, the animation industry

can readily employ our system.

Our approach visualizes physical properties such as the

center of mass, momentum, and the center of pressure

(COP). Researchers have explicitly used these properties

to increase the physical realism of existing animation.

Using motion capture data, Anna Majkowska and Petros

Faloutsos created �ip and back�ip motions that obey mo-

mentum preservation laws.14 Seyoon Tak and Hyeong-Seok

Ko15 and Hyun Joon Shin and his colleagues16 enforced

a zero moment point (ZMP) constraint for locomotion

or a linear- or angular-momentum constraint for ballistic

motions (COP and ZMP coincide for locomotion on the

�at ground.17). Adnan Sulejmanpasić and Jovan Popović

produced a physically valid ballistic motion by adapting an

existing motion to new constraints.18

Despite these techniques’ usefulness, many animators

still prefer to manually edit motion because they need to

control various aspects of it, ranging from kinematic con-

straints to the animation’s overall style. Our approach dif-

fers from the ones we just described in that, again, we’re

interested primarily in helping animators create physically

plausible animation and satisfy various other require-

ments, not in actually creating such motions.

Other research has shown that viewers can be sensitive

to certain types of errors in ballistic motion.19,20 Our user

studies show that animators often generate animations

that exceed these thresholds, thus creating perceptibly

implausible motion.

References

 1. R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction

to Robotic Manipulation, CRC Press, 1994.

 2. A. Witkin and M. Kass, “Spacetime Constraints,” Proc. Siggraph,

ACM Press, 1988, pp. 159–168.

 3. C.K. Liu, A. Hertzmann, and Z. Popović, “Learning Physics-

Based Motion Style with Nonlinear Inverse Optimization,”

ACM Trans. Graphics, vol. 24, no. 3, 2005, pp. 1071–1081.

 4. J. Hodgins et al., “Animating Human Athletics,” Proc. Siggraph,

ACM Press, 1995, pp. 71–78.

 5. P.-F. Yang, J. Laszlo, and K. Singh, “Layered Dynamic Control for

Interactive Character Swimming,” Proc. 2004 ACM Siggraph/

Eurographics Symp. Computer Animation, Eurographics Assoc.,

2004, pp. 39–47.

 6. J. Laszlo, M. van de Panne, and E. Fiume, “Limit Cycle Control

and Its Application to the Animation of Balancing and

Walking,” Proc. Siggraph, ACM Press, 1996, pp. 155–162.

 7. P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Com-

posable Controllers for Physics-Based Character Animation,”

Proc. Siggraph, ACM Press, 2001, pp. 251–260.

 8. V.B. Zordan et al., “Breathe Easy: Model and Control of

Simulated Respiration for Animation,” Proc. 2004 ACM

Siggraph/Eurographics Symp. Computer Animation (SCA 04),

Eurographics Assoc., 2004, pp. 29–37.

 9. N.S. Pollard and V.B. Zordan, “Physically Based Grasping

Control from Example,” Proc. 2005 ACM Siggraph/Euro-

graphics Symp. Computer Animation (SCA 05), ACM Press,

2005, pp. 311–318.

 10. A. Shapiro, F.H. Pighin, and P. Faloutsos, “Hybrid Control

Related Work in Realistic Animation

 IEEE Computer Graphics and Applications 47

Ballistic Paths
Traditional kinematic animation systems feature

manipulators that let animators easily create mo-

tion paths along the particular transformation’s

direction. For example, by specifying two keys

along an x-translation, an animator can create

a straight path in the x-direction. However, no

straightforward way exists to create a ballistic path

because creating it requires knowing

 ■ an object’s center of mass and

 ■ a constraint, such as the starting velocity.

If we assume that no external forces affect the

mass while in �ight, we can describe the point

mass’s trajectory r with respect to time t as

r a b gt t Mt()= + +
1

2

2 , (1)

in which a and b are the two parameters deter-

mined from a ballistic motion’s constraints, such

as an origin and a destination, and traveling-time

constraints. M is mass; g is the gravitational con-

stant. The system creates ballistic paths in real

time as animators move around the two endpoints

and modify the duration time. Figure 1 shows

screen captures of the ballistic paths being ma-

nipulated. To view multiple curves, users can vary

the ballistic phase’s duration.

Animators can generate a physically plausible

path by setting starting and ending points as con-

straints in 3D space. Because generating a ballistic

path between two points is an underconstrained

problem, animators can also generate multiple

ballistic trajectories by using the minimum and

maximum time span. Each curve presents a proper

ballistic trajectory by indicating the path an object

must follow to meet the location constraints at

differing times. Animators can also create ballistic

paths by specifying the �rst or last frame’s posi-

tion and velocity.

Using the ballistic paths, animators can easily

correct linear momentum—and thus the center

of momentum (COM) trajectory—of a charac-

ter’s ballistic motion. An animator chooses the

desired ballistic path, then the system computes

the character’s COM at each frame and trans-

lates its root node so that the COM coincides

with the ballistic path’s current position. The re-

sulting motion is physically correct in terms of

linear momentum.

Animators can constrain a character’s or an ob-

ject’s motion to a ballistic path by

 ■ retaining the starting and ending locations and

adjusting the timing to accommodate the bal-

listic path (see Figure 2), or

 ■ manually adjusting the ballistic path until it

mostly matches the original path and then al-

tering the character’s motion by retiming all the

motion that occurs during the ballistic phase

(see Figure 3).

When adapting a ballistic path to the original

motion path, the animator visually modi�es the

for Interactive Character Animation,” Proc. 11th

Paci�c Conf. Computer Graphics and Applications,

IEEE CS Press, 2003, pp. 455–461.

 11. V.B. Zordan et al., “Dynamic Response for Motion

Capture Animation,” ACM Trans. Graphics, vol. 24,

no. 3, 2005, pp. 697–701.

 12. M. Neff and E. Fiume, “Modeling Tension and

Relaxation for Computer Animation,” Proc. 2002

ACM Siggraph/Euro graphics Symp. Computer

Animation (SCA 02), ACM Press, 2002, pp. 81–88.

 13. M. Neff and E. Fiume, “Methods for Exploring

Expressive Stance,” Proc. 2004 ACM Siggraph/

Eurographics Symp. Computer Animation (SCA 04),

Eurographics Assoc., 2004, pp. 49–58.

 14. A. Majkowska and P. Faloutsos, “Flipping with

Physics: Motion Editing for Acrobatics,” Proc.

2007 ACM Siggraph/Eurographics Symp. Computer

Animation (SCA ’07), Euro graphics Assoc., 2007,

pp. 35–44.

 15. S. Tak and H.-S. Ko, “A Physically Based Motion

Retargeting Filter,” ACM Trans. Graphics, vol. 24,

no. 1, 2005, pp. 98–117.

 16. H.J. Shin, L. Kovar, and M. Gleicher, “Physical

Touch-Up of Human Motions,” Proc. 11th Paci�c

Conf. Computer Graphics and Applications, IEEE CS

Press, 2003, pp. 194–203.

 17. M.B. Popovic, A. Goswami, and H. Herr, “Ground

Reference Points in Legged Locomotion: De�nitions,

Biological Trajectories and Control Implications,”

Int’l J. Robotics Research, vol. 24, no. 12, 2005,

pp. 1013–1032.

 18. A. Sulejmanpasić and J. Popović, “Adaptation of

Performed Ballistic Motion,” ACM Trans. Graphics,

vol. 24, no. 1, 2005, pp. 165–179.

 19. P.S.A. Reitsma and N.S. Pollard, “Perceptual Metrics

for Character Animation: Sensitivity to Errors in

Ballistic Motion,” ACM Trans. Graphics, vol. 22, no.

3, 2003, pp. 537–542.

 20. R. McDonnell, F. Newell, and C. O’Sullivan,

“Smooth Movers: Perceptually Guided Human

Motion Simulation,” Proc. 2007 ACM Siggraph/

Eurographics Symp. Computer Animation (SCA 07),

Eurographics Assoc., 2007, pp. 259–269.

48 July/August 2011

Physics-Based Characters

ballistic path until he or she �nds a good visual

match.

We don’t pay particular attention to the smooth-

ness of the ballistic trajectory’s start and end.

Rather, we use the animator’s original preparatory

motion during the preballistic and postballistic

phases. This doesn’t introduce visual artifacts as

long as the original motion doesn’t differ much

from the corrected motion, which is usually the

case. When the artifacts are visible, animators can

use conventional animation tools to modify the

frames in the preballistic and postballistic phases

during takeoff and landing.

The Angular-Momentum Tool
You can change a character’s angular momentum

in many ways. Our tool changes it by rotating the

character’s global orientation while keeping the

original keyframe animation of each body part

unchanged. By doing this, we can preserve the

style of the animation that the animator carefully

crafted while improving its physical realism. We

provide an ef�cient algorithm to achieve this goal.

With this algorithm, modi�cation of angular mo-

mentum occurs online so that the animators get

prompt visual feedback (see Figure 4).

For notational convenience, we use the gen-

eralized notations for the velocity, inertia, and

momentum that provide the combined represen-

tation of the angular and linear properties. For

the mathematical preliminaries of the generalized

notations derived from Lie group theory, see the

“Mathematical Preliminaries” sidebar.

Let vi, Ji, and hi denote the generalized veloc-

ity, inertia, and momentum of a body part i, with

the body part 0 being the character’s root. We

can express a velocity vi as the sum of the root’s

velocity and the relative velocity of i to the root:

vi = iv0 + ui,

in which iv0 is the velocity of the root expressed

in i’s body frame. (The left superscript indicates

a symbol’s reference frame. 0vi,
cvi, and wvi are vi

expressed in the root frame, the COM frame, and

the world frame, respectively. We don’t use the

left superscript when the symbol is expressed in

its own body frame. For example, vi = ivi.)

Likewise, we can divide the generalized momen-

tum into two parts:

hi = Jivi

 = Ji(
iv0 + ui)

 = Ji
iv0 + ai,

Figure 2. Matching a ballistic path. The blue curve is the trajectory of

the center of mass of the character’s (manually created) animation. Our

system suggests the physically correct ballistic path (the red curve) that

the character’s center of mass should follow. The system lets animators

automatically change the original animation to match physical laws.

(a) (b)

Figure 1. Manipulating ballistic paths. (a) Our tool generates multiple ballistic paths between two locators.

(b) Animators can use it to pregenerate paths between two points in a scene involving motion such as

jumping or falling off a tall structure.

 IEEE Computer Graphics and Applications 49

in which ai = Jiui represents the momentum in-

duced by the velocity of i relative to the root. Then,

we compute a character’s generalized momentum

in the root frame as

0 0h h=∑ i

i

= +∑ 0

0
0J v ai

i

i

 =











+∑ ∑0

0
0J v ai

i

i

i
,

 : ˆ= +
0

0
0Jv a , (2)

in which the composite rigid-body inertia Ĵ de-

notes the aggregate inertia of the whole multibody

system of a current con�guration. 0 Ĵ and 0a are

a function of joint angles only and are indepen-

dent of the root’s motion. So, they remain con-

stant while we manipulate the root’s translation

and rotation. Using Equation 2, we can ef�ciently

compute a character’s momentum by calculating

v0 instead of recalculating each body part’s veloc-

ity as we manipulate the root.

We want to determine the con�guration of

the root T0 at a point in time at which the char-

acter has the user-speci�ed momentum ch*. We

compute the character’s velocity from the con-

�gurations of the current and previous time step.

We modify only T0 at the current time step; we

keep T0 at the previous time step �xed. Because

we keep the linear momentum �xed, the COM

frame (a coordinating frame that’s parallel to

the world frame with its origin coinciding with

the COM) doesn’t change while we rotate the

character around the COM. So, given ch*, its

transformation with respect to the world frame
w c
h hC

* * *
= −Ad 1 is also constant while we manipu-

late the character. For convenience, we �nd T0 such

that it creates wh*.

The character’s current momentum with respect

to the world frame is

w
h hT= −Ad

0

1
0* . (3)

Both AdT
0

1−
* and 0h are functions of T0, and a closed-

form solution doesn’t exist. So, we iteratively up-

date T0 so that wh approaches wh*. Speci�cally, we

update T0 by some x which is de�ned as

x̂ T T=
−

0

1
0δ ,

and �nd a suitable x that drives wh to wh*. To this

end, we �rst relate the change of v0 with x. From

the de�nition v̂ T T0
1

00=
− ɺ ,

δ δ δv̂ T T T T T T0
1

0
1

0
1

00 0 0=−() +− − −ɺ ɺ

 =− + ()−
ˆˆ ˆxv T T x0

1
00

d

dt

 =− + +()−
ˆˆ ˆ ˆxv T T x T x0

1
0 00
ɺ ɺ

 =− + +ˆˆ ˆ ˆ ˆxv v x x0 0 ɺ

 ≈ +adˆ ˆ
ˆ

v x
x

0

h
, (4)

in which h is the time step. Using Equation 4 and

recalling that 0 Ĵ and 0a are constant, we express

δ0h in terms of x:

δ δ0 0h J v= ˆ

≈ +










0
0

Ĵ x
x

vad
h

.

Figure 4. Visualization of angular momentum. The angular momentum

appears as a vector protruding from the character’s center of mass.

The yellow arrows indicate the motion’s direction (using the right-hand

rule); the vectors’ size indicates the relative amount of rotation about

that axis.

Figure 3. A character walking and jumping. The ballistic path (red)

requires two more frames to complete the trajectory than does the

animated path (blue). The keys for the ballistic path, which determine

the timing, appear at slightly different locations than those in the

animated path.

50 July/August 2011

Physics-Based Characters

Given a homogeneous representation of a moving body

frame T = (R, p) in which R ∈ ℝ3×3 denotes rotation and

p ∈ ℝ3 translation, its generalized velocity v = [ωT, υT]T ex-

pressed in the instantaneous body frame (hence dubbed

body velocity) is

v̂ T T= =
[]















−1

0

ɺ
ω υ

0

,

(A)

in which ω and υ are, respectively, the angular and linear

velocities of T expressed in the body frame. [ω] is the

skew-symmetric matrix of ω; that is, [ω]η = ω × η for any

vector η ∈ ℝ3. We use v̂ for the 4 × 4 matrix represen-

tation of v. The generalized momentum h = [kT, lT]T is

expressed as

h = Jv, (B)

in which k ∈ ℝ3 and l ∈ ℝ3 represent the angular and lin-

ear momentum (with respect to the body frame), respec-

tively. The rigid body’s generalized inertia J ∈ ℝ6×6 has this

structure:

J
I r

r
=

[]

[]



















m

m m
T

1
,

in which m is the mass, I ∈ ℝ3×3 is the rotational inertia

matrix, r ∈ ℝ3 is the position of the center of mass, and

1 ∈ ℝ3×3 is the identity matrix. Equation B is coordinate-

invariant (it holds with respect to any coordinate frame).

Given a coordinate frame T and a generalized velocity

g = [ωT, υT]T, the adjoint mapping AdT is represented as

AdTg TgTˆ ˆ=
−1 , or in matrix form as

AdTg
R

p R R
=
[]































0
ω

υ

.

We use the adjoint mapping in the coordinate transforma-

tion of the generalized velocity. The corresponding dual

adjoint mapping that performs the coordinate transforma-

tion of the generalized momentum is AdT
* ; it has the form

of the transpose of AdT; that is, Ad AdT T
*
=

T . For example,

the generalized velocity, momentum, and inertia with

respect to the world frame (wv, wh, wJ, respectively, with

the left superscript w implying the “world” reference

frame) are

wv = AdTv

w
h hT= −Ad 1

*

w J JT T= − −Ad Ad1 1
* .

We can easily verify that Ad AdT T
−

= −

1
1 and Ad Ad AdT T T T1 2 1 2= .

Assuming that link 0 of a multibody system is the root

link, the con�guration Ti of the body frame {i} of i with

respect to the world frame is

Ti = T0Gi, (C)

in which T0 is the con�guration of the root and Gi denotes

the relative con�guration of {i} with respect to the root.

Substituting Equation C into Equation A, we can decom-

pose the body velocity vi:

vi = iv0 + ui,

in which i
i

v vG0 01= −Ad is the velocity of the root ex-

pressed in the body frame {i} and ui u
T

u
T

= 





ω υ, is the rela-

tive velocity of i to the root:

ω υu u

i i

[]














= −

0 0

1
G Gɺ .

The left superscript denotes the reference frame. In the

main article, we use the transformations of the generalized

velocity, momentum, and inertia of a link i to the root:
0
v vGi ii= Ad , 0

1h hGi i
i

= −Ad
* , and 0

1 1J JG Gi i
i i

= − −Ad Ad
* .

The Lie bracket adg is another mapping for the general-

ized velocity, de�ned as adˆ ˆ ˆ ˆ ˆ ˆg g g g g g1 2 1 2 2 1= − or, in matrix

form,

adg g1 2

1

1 1

2

2

=
[]

[] []



































ω

υ ω

ω

υ

0
.

The dual adg
* for the generalized momentum is its trans-

pose ad adg g
*
=

T . Note that adgv = −advg and adg +

adv = adg+v. The Lie bracket occurs when Ad is differenti-

ated. For example, if AdT is differentiated with respect

to time t,

d

dt
Ad Ad adT T v= ,

in which v is the body velocity of T. For the proof, see

“Newton-Type Algorithms for Dynamics-Based Robot

Movement Optimization.”1

Reference
 1. S.-H. Lee et al., “Newton-Type Algorithms for Dynamics-

Based Robot Movement Optimization,” IEEE Trans. Robotics,

vol. 21, no. 4, 2005, pp. 657–667.

Mathematical Preliminaries

 IEEE Computer Graphics and Applications 51

Finally, we compute the change of wh due to x:

δ δ δw
h h hT T= () +− −Ad Ad

0

1

0

1
0 0* *

 =− +− −Ad ad AdT x Th h
0

1

0

1
0 0* * * δ

 = +− −Ad ad AdT Th
x h

0

1 0
0

1
0* * * δ

 ≈ + +










−Ad ad adT vh J J x
0

1 0 0

0 01* * ˆ ˆ

h
, (5)

in which ad0h
x

* and 0 0Ĵ xvad account for the effect

of the coordinate change of T0 due to x on 0h and

v0, respectively; 1 0h Ĵx is the added momentum

due to x. By solving Equation 5 for x, we can com-

pute the x that will create the desired δwh.

Based on the relations we just derived, here’s the

algorithm to compute T0 given ch*:

1. w c
h hC

* * *
= −Ad 1 , in which C is the COM frame

with respect to the world frame.

2. Compute 0 Ĵ and 0a (see Equation 2).

3. Compute wh (see Equation 3).

4. while δwh = wh* − wh is above a threshold, do

5. Compute x by solving Equation 5.

6. T T
x

0 0← eγˆ , in which 0 < γ ≤ 1.

7. Update v0,
0h (see Equation 2), and wh.

γ controls the distance for the next iteration. We

change only the angular part of ch* and keep the

linear momentum �xed. However, both the angu-

lar and linear parts of wh* change, owing to the

coordinate transformation.

Keyframe Animations’ Physical Accuracy
Here, we investigate the physical accuracy of pro-

fessional animators’ keyframe animations. Speci�-

cally, we compute the ballistic motions’ center of

mass, linear momentum, and angular momentum

and investigate how accurately these properties

follow Newton’s laws. For walking and running

animations, we compute the center of pressure

(COP) and verify whether it is actually in the sup-

port polygon. Figure 5 shows snapshots in which

COM and COP are visualized.

Ballistic Motions
We collected 13 ballistic motions of human-like

characters, such as jumping and falling motions.

Each motion lasted from 4 to 27 frames. We ex-

amined 150 frames total.

In the ballistic phase, the path of the COM

that’s projected to the horizontal plane should

form a straight line. Figure 6a is the histogram of

errors in the ballistic motions’ horizontal plane.

Here, the error is the distance from the COM’s

horizontal projection to the line segment con-

necting the horizontal projection of the COMs

of the �rst and last frames. The errors are nor-

malized by the line segment’s length. The �gure

shows that the error is less than 0.1 for more

than 90 percent of the frames. This relatively

low error seems due to how animators create

keyframes for ballistic motions. Because anima-

tors usually create a straight line from the root

node’s starting and ending position and adjust

the heights of the in-between keyframes, the

COM trajectory’s horizontal projection shows

a mostly straight line unless a character often

changes its pose.

Figures 6b and 6c show the histogram of nor-

malized errors of the linear momentum in the

horizontal (x-z) plane. Here, the error is the dif-

ference between the current momentum and the

average momentum, normalized by the average

momentum’s magnitude. When comparing the

error of the linear momentum with that of the

COM, we can see that the keyframe’s location in

the line is less correct from the perspective of the

linear momentum, even though the in-between

keyframes make a line that’s mostly straight.

Figures 6d, 6e, and 6f show the histogram of

normalized errors of the angular momentum in

the x, y, and z directions. Here, we de�ne the error

in the same way as in the linear momentum. The

error in the angular momentum is much greater

than that in the linear momentum. One reason

for this might be that angular momentum is less

perceptible to human eyes than linear momen-

tum is. Except for �ipping jumps, during which

(a) (b)

Figure 5. The center of mass projected on the ground (red circle), the

support polygon (red polygon), and the center of pressure (COP; the

purple circle) for keyframe animation of (a) a humanoid character and

(b) a nonhumanoid character. The nonhumanoid character’s horizontal

shape causes greater instability in the COP calculation than the

humanoid character’s shape does.

52 July/August 2011

Physics-Based Characters

the whole body’s rotation is explicit, the ballistic

motion’s angular momentum is hard to perceive

without a visualization tool such as ours.

By �tting Equation 1 to the COM trajectory, we

estimate a scene’s gravity. Table I shows this gravity

relative to earth gravity (9.8 m/s2) for each scene.

The gravity deviates considerably among scenes

ranging from 0.5 g to 3.3 g. The median of the

gravities is 0.95 g, which is close to real gravity. This

shows that the keyframe animations create ballis-

tic motions under true gravity on average, but that

large deviations exist among scenes.

Research has shown that observers can detect

deviations in horizontal or vertical accelerations.5

Our data demonstrates that hand-animated

motion often exceeds such thresholds. Another

interpretation of the variation in estimated grav-

ity is that big differences exist in animators’ no-

tions of a character’s size. If that’s true, lower

gravity in the data indicates the animator consid-

Error Error

Error Error

Error Error

(a) (b)

(c) (d)

(e) (f)

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

0

10

20

30

40

50

60

70

80

0.05 0.10 0.15 0.20 0.25 0.30 1.00
0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

0

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

35

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Infinity0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Infinity

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Infinity0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Infinity

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Infinity

Figure 6. Measuring the physical correctness of ballistic motions created by professional animators using conventional

keyframing. The normalized error of the (a) center of momentum (COM) in the horizontal plane, (b) linear momentum in the

x direction, (c) linear momentum in the z direction, (d) angular momentum in the x direction, (e) angular momentum in the y

direction, and (f) angular momentum in the z direction.

Table 1. Gravity in the test scenes.

Scene

1 2 3 4 5 6 7 8 9 10 11 12 13

g* 1.02 0.89 2.20 0.47 0.50 1.52 1.41 0.77 3.35 1.81 0.43 0.56 2.51

*g: measured gravity/9.81.

 IEEE Computer Graphics and Applications 53

ers the character bigger than it actually is; higher

gravity means the animator thinks the character

is smaller than it is. Other research has suggested

that preparatory motion might also be an impor-

tant consideration in the perceived visual quality

of ballistic motion.6 Our method doesn’t address

the preparatory or recovery phases; it leaves such

tasks to animators.

Ambulatory Motions
We collected �ve scenes of walking motions (165

frames) and �ve scenes of running motions (113

frames) of biped characters and examined whether

the COP is in the support polygon. Figure 7 shows

the histogram of the COP’s normalized distance

from the support polygon. The distance is positive

when the COP is outside the support polygon; it’s

normalized by the support polygon’s mean radius

(computed as the perimeter divided by 2π).

For walking, the COP is in the support poly-

gon in more than 60 percent of the frames and

is within the normalized distance of 1 in 85 per-

cent of frames. The experiment shows that the

keyframe animation has relatively high accuracy

in terms of the COP. This suggests that the COP

is an important indicator of ambulatory motions’

realism. Somewhat naturally, the error grows as a

character’s speed increases. For running, the COP

is in the support polygon in only 33 percent of

frames and is within the normalized distance of 1

in 70 percent of frames.

Discussion
Here, we discuss the advantages and limitations

of our system and observations made when the

system was used by animators.

Effectiveness and Impact
Many animators have found our system useful for

improving keyframe animation’s realism. The manu-

ally created animations in Figure 2 and the accom-

panying video (see http://doi.ieeecomputersociety.

org/10.1109/MCG.2010.22) are the results of sub-

stantial time and effort devoted by professional ani-

mators. So, some of these animations are already

quite realistic and leave less room for improvement

using our tool. In some sense, this shows that physi-

cal realism is a key factor for high-quality animation.

Other examples show that our system improves the

physical realism signi�cantly. Also, when our system

is used from the beginning of the animation process,

it might increase that process’s ef�ciency.

Our visualization tools can also serve as a

“gavel”—that is, con�rmation that animation is

indeed realistic. Individual animators might have

their own sense of physical correctness. This can

cause debate over how a character should move

when collaborating animators have a different

sense of physical intuition. We’ve observed that

our tool helps animators agree on physically cor-

rect animation by quantifying the motion’s dis-

crepancy. For example, the ballistic path can

indicate the exact number of frames in which an

animation should be slowed down or sped up.

We determined that in a character-heavy live-

action �lm, between 10 and 16 percent of the shots

using animated characters have ballistic motion

such as falling or jumping. Our system could im-

prove many of these shots. Of course, many more

shots bene�t from COM and COP visualization.

Our system is most effective when the animator

understands how to change the physical curves to

create better animations. So, it was useful to cre-

ate videos that showed, for example, the proper

location of the COM and COP (or zero-moment

point) during walking, running, or other motions.

(b)

(a)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 Infinity

Distance between the zero-moment point and the support polygon

0 1 2 3 4 5 Infinity

Distance between the zero-moment point and the support polygon

Fr
e
q

u
e
n

cy
 (

%
)

Fr
e
q

u
e
n

cy
 (

%
)

0

10

20

30

40

50

60

70

Figure 7. Histograms of the normalized distance between the COP and

the support polygon for animations of (a) walking and (b) running

created by professional animators using conventional keyframing. The

COPs of keyframe animation turned out to be fairly accurate, being

mostly within the normalized distance of 1 from the support polygon.

54 July/August 2011

Physics-Based Characters

Such training videos can effectively teach anima-

tors how to interpret our system, as in Figure 8.

Of course, the animator chooses whether to make

the character act human-like.

Use of COM and COP
The COM and COP guidelines explicitly expressed

the notions of physical correctness in animations.

For example, a humanoid’s COM tends to follow

a path from about the contact foot to the other

contact foot at a later time. Our system was able to

serve as an instructional aid for creating smoother

motion because, for example, users could directly

see the idea of “carrying the weight from one foot

to another” in the COM’s projection.

Scaling Large and Small Characters
The characters’ scale can dramatically impact the

resulting animation. Other research has provided

detailed explanations for scaling dynamic control

systems on the basis of time, positions, and veloci-

ties.7 We relate such scaling strategies to the appli-

cation of kinematically based animation of large

and small characters. For example, large creatures

appear to move more slowly under proper physi-

cal conditions, whereas small creatures appear to

move more quickly. The time t required for an ob-

ject to travel to a maximum height h is

t h g= 2 , (22)

in which g is the force of gravity. So, gravity-

related movements such as walking (in which

gravity pulls the character’s swinging leg to the

ground) or throwing objects will appear slower

or faster if we consider two characters of differ-

ing sizes, h1 and h2, and their respective times,

t1 and t2, to complete such actions. The ratio of

time required for that action to occur would be

t t h h1 2 1 2= .

Our observations have shown that anima-

tors often make large errors when the characters

they’re animating are either much larger or much

smaller than normal-sized objects. For example,

giant men will move too quickly for their relative

size, and small men will move much too slowly

for their real size. We hypothesize that this is due

to the familiarity of seeing characters of normal

size move and the unfamiliarity of seeing giants or

miniature people move (see Figure 9).

Limitations and Future Work
Our method for modifying angular momentum

changes only the character’s global orientation.

It doesn’t change the character’s pose. There are

many other ways to correct the angular momen-

tum that involve changing parts of the charac-

ter’s body while leaving other parts the same. For

example, a person can change his or her angular

momentum by windmilling his or her arms in a

circular manner. We don’t provide a tool to let an-

imators explore all these possibilities. Instead, we

focus on ease of use and automation. It isn’t clear

that a single useful correction method exists that

will yield better animation due to animation con-

straints, such as requiring a character’s feet to be

in contact with the ground during landing. So, it’s

the animator’s role to manually correct the char-

acter’s posture to resolve this discrepancy. In the

previous example, the angular momentum dur-

ing �ight can be automatically adjusted but would

Figure 8. Using motion capture data as a training tool for animators. The

COM is outside the support polygon while the character turns.

Figure 9. How scale affects the appearance of motion. The �gure

shows a normal-sized man and a man 10 times larger. A ball is placed

in motion around each of them. The ball moving around the larger

man will take 3.19 times as long as the one moving around the

normal-sized man.

 IEEE Computer Graphics and Applications 55

need to be manually smoothed with the landing

posture to obtain correctness.

Also, here we computed the COP under the as-

sumption that the ground is �at. However, char-

acters often walk or run on uneven ground. When

the contact points between the character and the

ground aren’t coplanar, our system can’t de�ne

the support polygon. For such cases, we’ll need to

extend the support polygon to 3D space.

The algorithms we use to generate physical vi-

sualization are straightforward to implement

and compatible with most kinematic animation

systems. In addition, the system doesn’t require

animators to change the methods by which they

generate animation, thus leveraging their existing

skills. Also, the generated motion’s quality is addi-

tive—it doesn’t replace the underlying animation.

The animator may choose to use the system only

if it enhances the motion’s realism.

Although we designed our system for live-action

visual effects, the techniques work for almost any

animation purpose that requires or desires better

physical realism for characters, such as systems for

fully 3D environments or prebaked animations for

video games.

Our system can also help enforce consistency of

character motion across an animation studio. Typ-

ically, several animators will create animations of

a particular character for different scenes. A movie

requiring heavy visual effects might require coor-

dinating dozens of animators to produce hundreds

of animations for a small number of characters.

With our system, different animators’ animations

of the same character tend to be more consistent

with each other. This is because the animators

don’t have to rely solely on their individual senses

of timing and space; they can use our system’s in-

teractive visual feedback.

Acknowledgments
This material is based mostly on research we com-

pleted while at Rhythm & Hues Studios. Both of us

are corresponding authors. We thank the anony-

mous reviewers for their helpful comments, which

improved the article. Sung-Hee Lee was supported

partly by the Global Frontier R&D Program of

the National Research Foundation, Korea (NRF-

M1AXA003-20100029751).

References
 1. Z. Kačić-Alesić, M. Nordenstam, and D. Bullock,

“A Practical Dynamics System,” Proc. 2003 ACM

Siggraph/Eurographics Symp. Computer Animation,

Eurographics Assoc., 2003, pp. 7–16.

 2. “Massive,” Massive Software, 2011; www.massivesoftware.

com.

 3. “Havok Behavior,” Havok Inc., 2011; www.havok.

com/index.php?page=havok-behavior.

 4. “Endorphin 2.7,” NaturalMotion Ltd., 2011; www.

naturalmotion.com/endorphin.

 5. P.S.A. Reitsma and N.S. Pollard, “Perceptual Metrics

for Character Animation: Sensitivity to Errors in

Ballistic Motion,” ACM Trans. Graphics, vol. 22, no.

3, 2003, pp. 537–542.

 6. P.S.A. Reitsma, J. Andrews, and N.S. Pollard, “Effect

of Character Animacy and Preparatory Motion on

Perceptual Magnitude of Errors in Ballistic Motion,”

Computer Graphics Forum, vol. 27, no. 2, 2008, pp.

201–210.

 7. N. Pollard, “Simple Machines for Scaling Human

Motion,” Proc. Computer Animation and Simulation

’99, Springer, 1999, pp. 3–11.

Ari Shapiro is a research scientist at the Institute for Cre-

ative Technologies. He previously worked as a graphics sci-

entist at Rhythm & Hues Studios, and an R&D engineer at

Industrial Light and Magic. His research interests include

realistic character motion, physics-based animation, and

animation tools. Shapiro has a PhD in computer science

from the University of California, Los Angeles. Contact him

at shapiro@ict.usc.edu.

Sung-Hee Lee is a lecturer at the Gwangju Institute of Sci-

ence and Technology’s School of Information and Communi-

cations. His research interests include human modeling and

animation, physics-based animation, multibody dynamics,

and humanoid robotics. He previously was a postdoctoral

researcher at Honda Research Institute USA. Lee has a PhD

in computer science from the University of California, Los

Angeles. He’s a member of IEEE and ACM Siggraph. Contact

him at shl@gist.ac.kr.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

Although we designed our system for live-

action visual effects, the techniques work

for almost any animation purpose that

requires or desires better physical realism.

