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Eight neural net and conventional pattern classifiers (Bayesian

unimodal Gaussian, k-nearest neighbor, standard back-propagation, 

adaptive-stepsize back-propagation, hypersphere, feature-map, learn

ing vector quantizer, and binary decision tree) were implemented 

on a serial computer and compared using two speech recognition 

and two artificial tasks. Error rates were statistically equivalent on 

almost all tasks, but classifiers differed by orders of magnitude in 

memory requirements, training time, classification time, and ease 

of adaptivity. Nearest-neighbor classifiers trained rapidly but re

quired the most memory. Tree classifiers provided rapid classifica

tion but were complex to adapt. Back-propagation classifiers typ

ically required long training times and had intermediate memory 

requirements. These results suggest that classifier selection should 

often depend more heavily on practical considerations concerning 

memory and computation resources, and restrictions on training 

and classification times than on error rate. 

-This work was sponsored by the Department of the Air Force and the Air Force Office of 

Scientific Research. 
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1 Introduction 

A shortcoming of much recent neural network pattern classification research has 

been an overemphasis on back-propagation classifiers and a focus on classification 

error rate as the main measure of performance. This research often ignores the many 

alternative classifiers that have been developed (see e.g. [10]) and the practical 

tradeoffs these classifiers provide in training time, memory requirements, classifica

tion time, complexity, and adaptivity. The purpose of this research was to explore 

these tradeoffs and gain experience with many different classifiers. Eight neural net 

and conventional pattern classifiers were used. These included Bayesian-unimodal 

Gaussian, k-nearest neighbor (kNN), standard back-propagation, adaptive-stepsize 

back-propagation, .hypersphere, feature-map (FM), learning vector quantizer (LVQ) , 

and binary decision tree classifiers. 
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Dimensionality: 2 
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VOWEL 
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Talker Independent 

Figure 1: Four problems used to test classifiers. 

Classifiers were implemented on a serial computer and tested using the four prob

lems shown in Fig. 1. The upper two artificial problems (Bullseye and Disjoint) 

require simple two-dimensional convex or disjoint decision regions for minimum er

ror classification. The lower digit recognition task (7 digits, 22 cepstral parameters, 
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16 talkers, 70 training and 112 testing patterns per talker) and vowel recognition 

task (10 vowels, 2 formant parameters, 67 talkers, 338 training and 330 testing pat

terns) use real speech data and require more complex decision regions. These tasks 

are described in [6, 11] and details of experiments are available in [9]. 

2 Training and Classification Parameter Selection 

Initial experiments were performed to select sizes of classifiers that provided good 

performance with limited training data and also to select high-performing versions 

of each type of classifier. Experiments determined the number of nodes and hidden 

layers in back-propagation classifiers, pruning techniques to use with tree and hyper

sphere classifiers, and numbers of exemplars or kernel nodes to use with feature-map 

and LVQ classifiers. 

2.1 Back-Propagation Classifiers 

In standard back-propagation, weights typically are updated only after each trial 

or cycle. A trial is defined as a single training pattern presentation and a cycle is 

defined as a sequence of trials which sample all patterns in the training set. In group 

updating, weights are updated every T trials while in trial-by-trial training, weights 

are updated every trial. Furthermore, in trial-by-trial updating, training patterns 

can be presented sequentially where a pattern is guaranteed to be presented every 

T trials, or they can be presented randomly where patterns are randomly selected 

from the training set. Initial experiments demonstrated that random trial-by-trial 

training provided the best convergence rate and error reduction during training. It 

was thus used whenever possible with all back-propagation classifiers. 

All back-propagation classifiers used a single hidden layer and an output layer with 

as many nodes as classes. The classification decision corresponded to the class of 

the node in the output layer with the highest output value. During training, the 

desired output pattern, D, was a vector with all elements set to 0 except for the 

element corresponding to the correct class of the input pattern. This element of 

D was set to 1. The mean-square difference between the actual output and this 

desired output error is minimized when the output of each node is exactly the Bayes 

a posteriori probability for each correct class [1, 10]. Back-propagation with this 

"1 of m" desired output is thus well justified theoretically because it attempts to 

estimate minimum-error Bayes probability functions. The number of hidden nodes 

used in each back-propagation classifier was determined experimentally as described 

in [6, 7, 9, 11]. 

Three "improved" back-propagation classifiers with the potential of reduced training 

times where studied. The first, the adaptive-stepsize-classifier, has a global stepsize 

that is adjusted after every training cycle as described in [4]. The second, the 

multiple-adaptive-stepsize classifier, has multiple stepsizes (one for each weight) 

which are adjusted after every training cycle as described in [8]. The third classifier 

uses the conjugate gradient method [9, 12] to minimize the output mean-square 

error. 
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The goal of the three "improved" versions of back-propagation was to shorten the of

ten lengthy training time observed with standard back-propagation. These improve

ments relied on fundamental assumptions about the error surfaces. However, only 

the multiple-adaptive-stepsize algorithm was used for the final classifier comparison 

due to the poor performance of the other two algorithms. The adaptive-stepsize 

classifier often could not achieve adequately low error rates because the global step

size (7]) frequently converged too quickly to zero during training. The multiple

adaptive-stepsize classifier did not train faster than a standard back-propagation 

classifier with carefully selected stepsize value. Nevertheless, it eliminated the need 

for pre-selecting the stepsize parameter. The conjugate gradient classifier worked 

well on simple problems but almost always rapidly converged to a local minimum 

which provided high error rates on the more complex speech problems. 
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Figure 2: Decision regions formed by the hypersphere classifier (A) and by the 

binary decision tree classifier (B) on the test set for the vowel problem. Inputs 

consist of the first two formants for ten vowels in the words A. who'd, <> hawed, + 
hod, 0 hud, x had, > heed, ~ hid, 0 head, V heard, and < hood as described in 

[6, 9]. 

2.2 Hypersphere Classifier 

Hypersphere classifiers build decision regions from nodes that form separate hyper

sphere decision regions. Many different types of hypersphere classifiers have been 

developed [2, 13]. Experiments discussed in [9], led to the selection of a specific ver

sion of hypersphere classifier with "pruning". Each hypersphere can only shrink in 

size, centers are not repositioned, an ambiguous response (positive outputs from hy

perspheres corresponding to different classes) is mediated using a nearest-neighbor 
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rule, and hyperspheres that do not contribute to the classification performance are 

pruned from the classifier for proper "fitting" of the data and to reduce memory 

usage. Decision regions formed by a hypersphere classifier for the vowel classifica

tion problem are shown in the left side of Fig. 2. Separate regions in this figure 

correspond to different vowels. Decision region boundaries contain arcs which are 

segments of hyperspheres (circles in two dimensions) and linear segments caused by 

the application of the nearest neighbor rule for ambiguous responses. 

2.3 Binary Decision Tree Classifier 

Binary decision tree classifiers from [3] were used in all experiments. Each node in a 

tree has only two immediate offspring and the splitting decision is based on only one 

of the input dimensions. Decision boundaries are thus overlapping hyper-rectangles 

with sides parallel to the axes of the input space and decision regions become more 

complex as more nodes are added to the tree. Decision trees for each problem were 

grown until they classified all the training data exactly and then pruned back using 

the test data to determine when to stop pruning. A complete description of the 

decision tree classifier used is provided in [9] and decision regions formed by this 

classifier for the vowel problem are shown in the right side of Fig. 2. 

2.4 Other Classifiers 

The remaining four classifiers were tuned by selecting coarse sizing parameters to 

"fit" the problem imposed. Some of these parameters include the number of ex

emplars in the LVQ and feature map classifiers and k in the k-nearest neighbor 

classifier. Different types of covariance matrices (full, diagonal, and various types 

of grand averaging) were also tried for the Bayesian-unimodal Gaussian classifier. 

Best sizing parameter values for classifiers were almost always not those that that 

best classified the training set. For the purpose of this study, training data was used 

to determine internal parameters or weights in classifiers. The size of a classifier 

and coarse sizing parameters were selected using the test data. In real applications 

when a test set is not available, alternative methods, such as cross validation[3, 14] 

would be used. 

3 Classifier Comparison 

All eight classifiers were evaluated on the four problems using simulations pro

grammed in C on a Sun 3/110 workstation with a floating point accelerator. Clas

sifiers were trained until their training error rate converged. 

3.1 Error Rates 

Error rates for all classifiers on all problems are shown in Fig. 3. The middle 

solid lines in this figure correspond to the average error rate over all classifiers 

for each problem. The shaded area is one binomial standard deviation above and 

below this average. As can be seen, there are only three cases where the error 

rate of anyone classifier is substantially different from the average error. These 

exceptions are the Bayesian-unimodal Gaussian classifier on the disjoint problem 
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Figure 3: Error rates for all classifiers on all four problems. The middle solid 

lines correspond to the average error rate over all classifiers for each problem. The 

shaded area is one binomial standard deviation above and below the average error 
rate. 

and the decision tree classifier on the digit and the disjoint problem. The Bayesian

unimodal Gaussian classifier performed poorly on the disjoint problem because it 

was unable to form the required bimodal disjoint decision regions. The decision 

tree classifier performed poorly on the digit problem because the small amount of 

training data (10 patterns per class) was adequately classified by a minimal13-node 

tree which didn't generalize well and didn't even use all 22 input dimensions. The 

decision tree classifier worked well for the disjoint problem because it forms decision 

regions parallel to both input axes as required for this problem. 

3.2 Practical Characteristics 

In contrast to the small differences in error rate, differences between classifiers on 

practical performance issues such as training and classification time, and memory 

usage were large. Figure 4 shows that the classifiers differed by orders of magnitude 

in training time. Shown in log-scale, the k-nearest neighbor stands out distinctively 
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Figure 4: Training time of all classifiers on all four problems. 

as the fastest trained classifier by many orders of magnitude. Depending on the 

problem, Bayesian-unimodal Gaussian, hypersphere, decision tree, and feature map 

classifiers also have reasonably short training times. LVQ and back-propagation 

classifiers often required the longest training time. It should be noted that alterna

tive implementations, for example using parallel computers, would lead to different 

results. 

Adaptivity or the ability to adapt using new patterns after complete training also 

differed across classifiers. The k-nearest neighbor and hypersphere classifiers are 

able to incorporate new information most readily. Others such as back-propagation 

and LVQ classifiers are more difficult to adapt and some, such as decision tree 

classifiers, are not designed to handle further adaptation after training is complete. 

The binary decision tree can classify patterns much faster than others. Unlike most 

classifiers that depend on "distance" calculations between the input pattern and all 

stored exemplars, the decision tree classifier requires only a few numerical compar

isons. Therefore, the decision tree classifier was many orders of magnitude faster 
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Figure 5: Classification memory usage versus training program complexity for all 

classifiers on all four problems. 

in classification than other classifiers. However, decision tree classifiers require the 

most complex training algorithm. As a rough measurement of the ease of imple

mentation, subjectively measured by the number of lines in the training program, 

the decision tree classifier is many times more complex than the simplest training 

program- that of the k-nearest neighbor classifier. However, the k-nearest neighbor 

classifier is one of the slowest in classification when implemented serially without 

complex search techniques such as k-d trees [5]. These techniques greatly reduce 

classification time but make adaptation to new training data more difficult and 

increase complexity. 

4 Trade-Offs Between Performance Criteria 

Noone classifier out-performed the rest on all performance criteria. The selection 

of a "best" classifier depends on practical problem constraints which differ across 

problems. Without knowing these constraints or associating explicit costs with 

various performance criteria, a classifier that is "best" can not be meaningfully 

determined. Instead, there are numerous trade-off relationships between various 

criteria. 
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One trade-off shown in Fig. 5 is classification memory usage versus the complexity 

of the training algorithm. The far upper left corner, where training is very simple 

and memory is not efficiently utilized, contains the k-nearest neighbor classifier. In 

contrast, the binary decision tree classifier is in the lower right corner, where the 

overall memory usage is minimized and the training process is very complex. Other 

classifiers are intermediate. 
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Figure 6: Training time versus classification memory usage of all classifiers on the 

vowel problem. 

Figure 6 shows the relationship between training time and classification memory 

usage for the vowel problem. The k-nearest neighbor classifier consistently provides 

the shortest training time but requires the most memory. The hypersphere clas

sifier optimizes these two criteria well across all four problems. Back-propagation 

classifiers frequently require long training times and require intermediate amounts 

of memory. 

5 Summary 

This study explored practical characteristics of neural net and conventional pattern 

classifiers. Results demonstrate that classification error rates can be equivalent 

across classifiers when classifiers are powerful enough to form minimum error de

cision regions, when they are rigorously tuned, and when sufficient training data 

is provided. Practical characteristics such as training time, memory requirements, 

and classification time, however, differed by orders of magnitude. In practice, these 

factors are more likely to affect classifier selection. Selection will often be driven 
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by practical considerations concerning memory and computation resources, restric

tions on training, test, and adaptation times, and ease of use and implementation. 

The many existing neural net and conventional classifiers allow system designers to 

trade these characteristics off'. Tradeoffs will vary with implementation hardware 

(e.g. serial versus parallel, analog versus digital) and details of the problem (e.g. 

dimension of the input vector, complexity of decision regions). Our current research 

efforts are exploring these tradeoff's on more difficult problems and studying addi

tional classifiers including radial-basis-function classifiers, high-order networks, and 

Gaussian mixture classifiers. 
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