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1 Introduction

The security of almost any cryptographic primitive (such as public-key encryption or digital signatures) has
to rely on the computational hardness of a certain number-theoretic problem. Unfortunately, since there are
currently no tools available to rigorously prove lower bounds on the complexity of such problems, one has
to base security on (unproven) cryptographic hardness assumptions. The only confidence we have in such
assumptions is that after a sufficiently large period of time, nobody could successfully refute them. The most
established cryptographic hardness assumption is without doubt the so called factoring assumption which
states that, given the product of two distinct large primes, it is computationally infeasible to reconstruct
the primes. Despite of intensive research, no algorithm has been found that can efficiently factor composite
numbers.

Main result. In this paper we propose a new public-key encryption scheme that is based on Rabin’s
trapdoor one-way permutation [42]. We can prove that the security of our scheme against adaptive chosen-
ciphertext attacks (CCA security) is equivalent to the factoring assumption. Furthermore, the scheme is
practical as its encryption performs only roughly two, and its decryption roughly one modular exponentiation.
This is the first scheme that simultaneously enjoys those two properties.

History. The notion of CCA security is due to Rackoff and Simon [43] and is now widely accepted as the
standard security notion for public-key encryption schemes. In contrast to security against passive adversaries
(security against chosen-plaintext attacks aka semantic security), in a chosen-ciphertext attack the adversary
plays an active role by obtaining the decryptions of ciphertexts (or even arbitrary bit-strings) of his choosing.
The practical significance of such attacks was demonstrated by Bleichenbacher [4] by means of a CCA attack
against schemes following the encryption standard PKCS #1.

Historically, the first scheme that was provably secure against CCA attacks is due to Dolev, Dwork, and
Naor [18] (building on an earlier result by Naor and Yung [38]). Their generic construction is based on
non-interactive zero-knowledge proofs, and therefore, (using the proof systems from [21]) yields a scheme
CCA secure under the factoring assumption. However, in practice these schemes are prohibitively impractical.
The first practical schemes provably CCA secure under standard cryptographic hardness assumptions were
due to Cramer and Shoup [17,16]. However, their framework of “hash proof systems” inherently relies on
decisional assumptions such as the assumed hardness of deciding if a given integer has a square root modulo
a composite number with unknown factorization (DQR assumption), or of deciding if a given tuple is a Diffie-
Hellman tuple or not (DDH assumption). Until today, Cramer and Shoup’s framework of hash proof systems
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(with its variations from [34,20,11,32,27,31]) and the recent concept of lossy trapdoor functions [40] yield
the only known CCA secure practical encryption schemes based on an assumption related to factoring: the
DQR assumption and Paillier’s decisional composite residuosity (DCR) assumption. Currently, no practical
scheme is known that is CCA secure solely under the factoring assumption (or even under the potentially
stronger RSA assumption).

In general, decisional assumptions are a much stronger class of assumptions than computational assump-
tions. For example, deciding if a given integer has a modular square root or not may be much easier than
actually computing a square root (or, equivalently, factoring the modulus). It is noteworthy that there are
known ways to achieve CCA security that do not inherently rely on decisional assumptions (e.g., [9,13,14,25]).
In particular, the first practical encryption scheme CCA secure under the Computational Diffie-Hellman
(CDH) assumption was only recently proposed by Cash, Kiltz, and Shoup [14] and improved by Hanaoka
and Kurosawa [25], and Haralambiev et. al. [26]. On the other hand, [9] provide a practical encryption scheme
CCA secure under the Bilinear Computational Diffie-Hellman (BCDH) assumption.

Random oracle schemes. In a different line of research, Bellare and Rogaway [2,3] presented practical
schemes for which they give heuristic proofs of CCA security under standard computational hardness as-
sumptions. Their proofs are in the so-called random oracle model [2] where a hash function is treated as an
ideal random function. We stress that although a proof in the random oracle model has a certain value it
is still only a heuristic security argument for any implementation of the scheme. In particular, there exist
cryptographic schemes that are provably secure in the random oracle model yet that are insecure with any
possible standard-model instantiation of the hash function [12].

Details of our construction. In 1979 Rabin [42] proposed an encryption scheme based on the “modular
squaring” trapdoor permutation whose one-wayness is equivalent to the factoring assumption. A semantically
secure variant was later proposed by Goldwasser and Micali [23]. Our construction is based on the latter
scheme [23] in its more efficient variant by Blum and Goldwasser [6] (which uses the Blum-Blum-Shub
pseudorandom generator [5] to obtain an efficient hard-core function with linear output length). The Blum-
Goldwasser scheme can easily be shown insecure against a CCA attack. Our main contribution consists
of modifying the Blum-Goldwasser scheme such that it is provably CCA secure under the same hardness
assumption yet it retains its high efficiency. Surprisingly, it is sufficient to add one additional group element
to the ciphertexts that is then used for a consistency check in the decryption algorithm. For the consistency
check itself, we also need to add two group elements to the public key. Another important ingrident of our
scheme is that we work in the group of “signed quadratic residues“ in which the computational problem of
computing square roots is as hard as factoring, while the problem of recognizing group elements (i.e., signed
quadratic residues) is easy.

Note that Paillier and Villar [39] (building on work of Williams [45]) show that the CCA security of
schemes which only include an RSA modulus in the public key cannot be proven (using a black-box reduc-
tion) equivalent to factoring. In particular, this applies to the Blum-Goldwasser scheme [6] from which we
start, so we have to modify the scheme’s public key (and not only the ciphertexts). And indeed, given our
modifications, our scheme’s CCA security is equivalent to the factoring problem.

Proof Details. At a more technical level, the additional group elements in the public key can be set up by a
simulator such that it is possible to decrypt (without the knowledge of the scheme’s secret key) all consistent
ciphertexts, except the ciphertext that is used to challenge the adversary. This “all-but-one” simulation
technique can be traced back at least to [36], where it was used in the context of pseudorandom functions.4

In the encryption context, “all-but-one” simulations have been used in identity-based encryption [8] and
were already applied to several encryption schemes in [9,10,14,27,29].

4 We stress that our use of the term “all-but-one” refers to the ability to generate a secret key that can be used
to decrypt all consistent ciphertexts except for an externally given ciphertext. This is very different from the
techniques of, e.g., [38,18,17]: in these latter frameworks, the first step in the proof consists in making the challenge
ciphertext inconsistent, and then constructing a secret key that can be used to decrypt all consistent ciphertexts.
Hence, “all-but-one” really refers to an “artificially punctured” secret key.
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The main novelty is that our proof makes direct use of the fact that the underlying primitive is a trapdoor
one-way permutation, rather than the Diffie-Hellman problem. Therefore, the scheme’s consistency check can
be directly implemented by the simulator without having access to some external gap-oracle (as in [9,10,29])
or using other extrinsic rejection techniques (such as “hash proof systems” [17,16], “twinning” [14], or
authenticated symmetric encryption [32,27]5). Thus, our proof technique is fundamentally different from all
known approaches to obtain CCA security. This also includes the recent class of schemes based on lossy
trapdoor functions [40].

Efficiency. The resulting encryption scheme (which is actually a key encapsulation mechanism, see [17])
is very efficient: encryption needs roughly two, and decryption roughly one modular exponentiations; the
public-key contains the modulus plus two group elements. (The modulus and one element can be viewed
as systems parameters shared among all parties). To the best of our knowledge this is much more efficient
than all known CCA-secure schemes based on an assumption related to factoring, even the ones based on a
decisional assumption.

Follow-Up Work. Cramer et al. [15] explain our construction as a hard algebraic set system; Wee [44]
explains our construction as an extractable hash proof system. Both works give abstractions of the “all-but-
one” decryption in our simulation. In particular, both [15] and [44] provide an abstraction of the extra
group elements in our ciphertext that enable us to set up decryption keys that can be used to decrypt all
ciphertexts, except the challenge ciphertext. Mei et al. [35] propose a variant of our scheme with improved
efficiency.

2 Preliminaries

2.1 Notation

We write [N ] = {1, . . . , N}. For group elements g, h, we denote by dloggh the discrete logarithm of h to the

base g, i.e., the smallest i ≥ 0 with h = gi. A probabilistic polynomial-time (PPT) algorithm is a randomized
algorithm which runs in strict polynomial time. If A is a probabilistic algorithm, we write y ← A(x) to denote
that the random variable y is defined as the output of A when run on input x and with fresh random coins.
On the other hand, if S is a set, then s ← S defines s as being uniformly and independently sampled from
S. By k we denote the security parameter, which indicates the “amount of security” we desire. Typically, an
adversarial advantage should be bounded by 2−k, and a typical value for k is 80.

2.2 Key encapsulation mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler KEM framework. It is well-
known that an IND-CCA secure KEM combined with a (one-time-)IND-CCA secure symmetric cipher (DEM)
yields a IND-CCA secure public-key encryption scheme [17]. Efficient one-time IND-CCA secure DEMs can
be constructed even without computational assumptions by using an encrypt-then-MAC paradigm [17] (or,
alternatively, using computational assumptions such as strong pseudorandom permutations [41]).

A key encapsulation mechanism (KEM) KEM = (Gen,Enc,Dec) consists of three PPT algorithms. Via
(pk , sk)← Gen(1k), the key generation algorithm produces public/secret keys for security parameter k ∈ N;
via (K,C) ← Enc(pk), the encapsulation algorithm creates a symmetric key6 K ∈ {0, 1}`K together with a
ciphertext C; via K ← Dec(sk , C), the possessor of secret key sk decrypts ciphertext C to get back a key K
which is an element in {0, 1}`K or a special reject symbol ⊥. For correctness, we require that for all possible
k ∈ N, and all (K,C)← Enc(pk), we have Pr[Dec(sk , C) = K] = 1, where the probability is taken over the
choice of (pk , sk)← Gen(1k), and the coins of all the algorithms in the expression above.

The common requirement for a KEM is indistinguishability against chosen-ciphertext attacks (IND-
CCA) [17], where an adversary is allowed to adaptively query a decapsulation oracle with ciphertexts to

5 As opposed to generic CCA-secure symmetric encryption, a potentially weaker primitive.
6 For simplicity we assume that the KEM’s keyspace are bitstrings of length `K.
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obtain the corresponding key. We are using the slightly simpler but equivalent one-phase definition from
[30]. Formally:

Definition 1 (IND-CCA security of a KEM). Let KEM = (Gen,Enc,Dec) be a KEM. For any PPT
algorithm A, we define the following experiments ExpCCA-realKEM,A and ExpCCA-randKEM,A :

Experiment ExpCCA-realKEM,A (k)

(pk , sk)← Gen(1k)

(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk ,K∗, C∗)

Experiment ExpCCA-randKEM,A (k)

(pk , sk)← Gen(1k)
R← {0, 1}`K
(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk , R, C∗)

In the above experiments, the decryption oracle Dec(sk , ·), when queried with a ciphertext C 6= C∗, returns
K ← Dec(sk , C). (Dec(sk , ·) ignores queries C = C∗.) We define A’s advantage in breaking KEM’s IND-CCA
security as

AdvCCAKEM,A(k) :=
1

2

∣∣∣Pr [ExpCCA-realKEM,A (k) = 1
]
− Pr

[
ExpCCA-randKEM,A (k) = 1

]∣∣∣ .
A (tKEM, εKEM)-breaks KEM’s IND-CCA security (short: A (tKEM, εKEM)-breaks KEM) if A runs in time at most
tKEM = tKEM(k) and we have AdvCCAKEM,A(k) ≥ εKEM(k). We say that KEM has indistinguishable ciphertexts

under chosen-ciphertext attacks (short: KEM is IND-CCA secure) if for all PPT A, the function AdvCCAKEM,A(k)
is negligible in k.

2.3 Target-collision resistant hashing

Informally, we say that a function T : X → Y is a target-collision resistant (TCR) hash function (aka
universal one-way hash function [37]), if, given a random preimage x ∈ X, it is hard to find x′ 6= x with
T(x′) = T(x).

Definition 2 (TCR hash function). Let T : X → Y be a function. For an algorithm B, define

AdvTCRT,B (k) := Pr [x← X,x′ ← B(x) : x′ 6= x ∧ T(x′) = T(x)] .

We say that B (tT, εT)-breaks T’s TCR property (short: B (tT, εT)-breaks T) iff B’s running time is at most
tT(k) and AdvTCRT,B (k) ≥ εT(k). We say that T is target-collision resistant if for all PPT B, the function

AdvTCRT,B (k) is negligible in k.

3 The group of Signed Quadratic Residues

3.1 Factoring Assumption

A prime number P is called a safe prime iff P = 2p + 1 for a prime p. We assume a PPT algorithm IGen
that, on input a security parameter k in unary, generates two random safe primes P = 2p+1 and Q = 2q+1
with bitlength(p) = bitlength(q) = `N(k)/2 − 1. We assume that p and q are odd, such that P and Q are
congruent 3 modulo 4 and N = PQ is a Blum integer. IGen returns N along with P and Q. Here `N(k)
denotes a function that represents, for any given security parameter k, the recommended (bit-)size of the
composite modulus N . For simplicity, we will assume that `N(k) ≥ 2k, so that `N(k)/2 ≥ k. For the rest of
the paper, we assume that N is generated by the factoring instance generator IGen.

Definition 3 (Factoring assumption). For an algorithm F, we define its factoring advantage as

AdvfacIGen,F(k) := Pr
[
(N,P,Q)← IGen(1k) : F(N) = {P,Q}

]
.

We say that F (tfac, εfac)-factors composite integers if F runs in time tfac and AdvfacIGen,F(k) ≥ ε(k). The

factoring assumption (with respect to IGen) states that AdvfacIGen,F(k) is negligible in k for every PPT F.
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The best algorithms currently known for factoring N = PQ of length `N = bitlength(N) = logN have
(heuristic) running time

LN (1/3, (64/9)1/3) = e1.92`N
1/3+o(1)(log `N)

2/3

.

(See, e.g., [33].) Therefore, if we want k bits of security, we need to choose the function `N(k) such that the
above term is lower bounded by 2k. As an example, one commonly uses `N(80) = 1024.

3.2 Quadratic Residues

The group Z∗N consists of all elements of ZN that have an inverse modulo N . Z∗N has order φ(N) = (P −
1)(Q−1), where φ(N) is Euler’s totient function. By JN we denote the subgroup of all elements from Z∗N with
Jacobi symbol 1. JN has index 2 in Z∗N and has order (P − 1)(Q− 1)/2. Since N is Blum, −1 ∈ JN . The set
QRN ⊆ Z∗N of quadratic residues modulo N is defined as QRN := {x ∈ Z∗N : ∃y ∈ Z∗N with y2 = x mod N}.
Since Z∗N ∼= Z2 × Z2 × Zpq, QRN is a cyclic group of order pq. Note that this implies that a uniformly
chosen element of QRN is a generator (of QRN ) with overwhelming probability. Computations in QRN
are computations modulo N . If it is implied by context, we omit writing explicitly “mod N” for calculations
modulo N . Note that QRN is a subgroup of JN with index 2 and has order (P −1)(Q−1)/4. We remark that
distinguishing random QRN -elements from random JN -elements is generally believed to be a hard problem
(the quadratic residuosity problem).

3.3 Signed Quadratic Residues

For x ∈ ZN we define |x| as the absolute value of x, where x is represented as a signed integer in the set
{−(N − 1)/2, . . . , (N − 1)/2}. We define the group of signed quadratic residues as

QR+
N := {|x| : x ∈ QRN} ,

where the group operation ◦ in QR+
N is defined through |x| ◦ |y| := |xy|. Henceforth, all computations will

take place in QR+
N , and hence we will omit the absolute values from the notation and simply write xy or x ·y

for x ◦ y. Note that taking the absolute value is a surjective homomorphism from QRN to QR+
N with trivial

kernel. (This is since N is a Blum integer and hence −1 6∈ QRN .) The following basic facts have already
been noted in earlier works such as [1,24,19].

Lemma 1. Let N be a Blum integer. Then:
1. (QR+

N , ◦) is a group of order φ(N)/4.
2. If we let J+N := {|x| : x ∈ JN}, then J+N = QR+

N . In particular, QR+
N is efficiently recognizable (given

only N).
3. If QRN is cyclic, so is QR+

N .

Proof. First, note that | · | : (ZN , ·) → (Z+
N , ◦) is a group homomorphism so (QR+

N , ◦) is a group. Since
−1 6∈ QRN , the map QRN → QR+

N has kernel {1}, and so ord(QR+
N ) = ord(QRN ) = φ(N)/4. On the other

hand, the map JN → J+N has kernel {±1}, and so ord(J+N ) = ord(JN )/2 = φ(N)/4. Since QRN ⊆ JN , we
have QR+

N ⊆ J+N , so ord(QR+
N ) = ord(J+N ) implies QR+

N = J+N . Elements in QR+
N can be efficiently recognized

since QR+
N = J+N = JN ∩ [(N − 1)/2]. If QRN is cyclic, a generator g of QRN is mapped to a generator |g|

of QR+
N , so QR+

N is a cyclic group.

4 Chosen-ciphertext security from factoring

4.1 The scheme

In this section, we will present our KEM construction.7 We will make use of two building blocks: a target
collision-resistant hash function, and the Blum-Blum-Shub (BBS) pseudorandom number generator [5].

7 Compared to the construction from the conference version [28], we work in the group of signed quadratic residues.
Since the signed quadratic residues are efficiently recognizable no extra protection against trivial malleability
attacks (such as sign-flipping attacks) needs to be added to our schemes.
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Concretely, for a Blum integer N = PQ and u ∈ ZN , we establish the following notation: LSBN (u) =
u mod 2 the least significant bit of u, where u is interpreted as a signed integer with −(N − 1)/2 ≤ u ≤
(N − 1)/2. Furthermore, let

BBSN (u) =
(
LSBN (u), LSBN (u2) . . . , LSBN (u2

`K−1

)
)
∈ {0, 1}`K

denote the BBS generator applied to u ∈ QR+
N and modulo N .8 We stress that we use the BBS generator in

the group QR+
N ; this does not affect its security [19].

Furthermore, for N as above, let T : QR+
N → {1, . . . , 2`T−1} be a target-collision resistant hash function.

The scheme. We are ready to define the following key encapsulation mechanism KEM = (Gen,Enc,Dec):
Key generation. Gen(1k) chooses uniformly at random

• a modulus N = PQ = (2p+ 1)(2q + 1) (using IGen(1k), cf. Section 3.1),
• a signed quadratic residue g ∈ QR+

N ,
• an exponent α ∈ [(N − 1)/4],

Gen then sets X = gα2
`K+`T and outputs a public key pk and a secret key sk , where

pk = (N, g,X) sk = (N, g, α).

Encapsulation. Enc(pk) chooses uniformly r ∈ [(N − 1)/4], sets

R = gr2
`K+`T

t = T(R) ∈ {1, . . . , 2`T − 1} S =
(
gtX

)r
and outputs the key K = BBSN (gr2

`T ) ∈ {0, 1}`K and the ciphertext C = (R,S) ∈ QR+
N ×QR+

N .
Decapsulation. Dec(sk , (R,S)) verifies that (R,S) ∈ QR+

N ×QR+
N and rejects if not. Then, Dec computes

t = T(R) ∈ {1, . . . , 2`T − 1}, checks whether

S2`K+`T ?
= Rt+α2

`K+`T
(1)

holds, and rejects if not. If (1) holds, Dec computes a, b, c ∈ Z such that

2c = gcd(t, 2`K+`T) = at+ b2`K+`T . (2)

Note that c < `T since 0 < t < 2`T . Then, Dec derives

T =
(
Sa ·Rb−aα

)2`T−c

(3)

and from this K = BBSN (T ) ∈ {0, 1}`K , which is the output.

We remark that decapsulation (or, rather, generation of the secret keys) does not require knowledge about
the factorization of N . Indeed, the modulus N as well as the generator g can be viewed as global system
parameters shared by many parties. Then pk only contains the value X ∈ QR+

N and sk only contains
α ∈ [(N − 1)/4].

Our scheme uses an RSA modulus N that consists of safe primes. In Section 6 we show how to avoid this
assumption and allow N to be an arbitrary Blum integer.

Correctness. The correctness of the scheme might not be obvious, so we prove it here. Fix a public key pk
and a secret key sk as produced by Gen(1k), and assume that (R,S) is a ciphertext for a key K as generated
by Enc(pk). We have to show that Dec(sk , (R,S)) outputs K. First, it is clear that (R,S) ∈ QR+

N × QR+
N .

Also,

S2`K+`T
=
((
gtX

)r)2`K+`T

= g(t+α2
`K+`T )r2`K+`T (∗)

= Rt+α2
`K+`T

8 For efficiency, and at the price of a worse reduction, one can even simultaneously extract dlog2 log2 Ne bits of

each u2i instead of only the least significant bit [1,19]. However, our analysis treats the original BBS generator for
simplicity.
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(where (∗) uses R = gr2
`K+`T ), so (1) holds. Hence, (R,S) is not rejected by Dec. Now (1) implies

S = R
t+α2`K+`T

2`K+`T = R
t

2`K+`T
+α
, (4)

where the division in the exponent is computed modulo pq = |QRN | = |QR+
N |. This gives

T
(3)
=
(
Sa ·Rb−aα

)2`T−c

=
((
SR−α

)a ·Rb)2`T−c (4)
=

((
R

t
2`K+`T

)a
·Rb

)2`T−c

=

(
R
at+b2`K+`T

2`K+`T

)2`T−c

(2)
= R

2c

2`K+`T
·2`T−c

= R
1

2`K
(∗)
= gr2

`T
, (5)

where, again, (∗) uses R = gr2
`K+`T . But (5) shows that Dec outputs BBSN (T ) = BBSN (gr2

`T ) = K as
desired.

Theorem 1 (IND-CCA security of KEM). Assume T is a target collision resistant hash function and the
factoring assumption holds. Then KEM is IND-CCA secure in the sense of Definition 1.

The proof of Theorem 1 will be given in Section 5.

Efficiency. We claim that, with some trivial optimizations, encapsulation uses roughly two exponentiations,
and decapsulation roughly one exponentiation. Namely, encapsulation can first compute A = gr and B =
Xr, which are two full exponentiations. Then, the remaining computations require only multiplications or

exponentiations with very small exponents: K = BBSN (A2`T ), R = A2`K+`T , and S = AtB. (In fact, R is a
by-product of computing K.) Similarly, decapsulation can first compute D = S/Rα, which requires one full

exponentiation. From D, (1) can be checked with D2`K+`T ?
= Rt, which requires only two exponentiations

with very small exponents. The key K can then be computed as BBSN (T ) for T = (RbDa)2
`T−c

, which
requires three exponentiations with small exponents (note that the bit-length of a and b is at most `K + `T).

For concreteness let us assume that one regular exponentiation with an exponent of length ` requires
1.5·` modular multiplications and that one squaring takes the same time as one multiplication. Let us further
assume that `N := bitlength(N) = 1024 and `K = `T = 80. Then encapsulation requires 3`N+`K+2.5`T = 3352
multiplications; decapsulation requires 1.5`N + 4`K + 6.5`T = 2376 multiplications.

We remark that, by adding the prime factors P and Q to the secret key, we can further improve the
scheme’s efficiency. For example, using Chinese Remaindering will speed up decapsulation by a factor between
3 and 4.

5 Proof of security

We split up the proof of Theorem 1 into two parts:
– We first recall that the BBS generator is pseudorandom if factoring Blum integers is hard. This holds

even if the modulus N and the 2`K -th power u2
`K of the BBS seed u are published, as is the case in our

KEM. (Theorem 2.)
– We then prove that KEM is IND-CCA secure under the assumption that the BBS generator is pseudo-

random and the employed hash function is target-collision resistant. This reduction is the heart of our
proof. (Theorem 3.)

Combining both parts yields Theorem 1.
We start by recalling that the BBS generator is pseudorandom, in the following sense.

Definition 4 (PRNG experiment for BBS generator). For an algorithm D, define

AdvBBSD (k) = Pr [D(N, z,BBSN (u)) = 1]− Pr
[
D(N, z, U{0,1}`K ) = 1

]
,

where
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– N ∈ N is distributed as IGen(1k),

– u ∈ QR+
N is uniformly chosen, and z = u2

`K ,
– U{0,1}`K ∈ {0, 1}`K is independently and uniformly chosen.

We say that D (t, ε)-breaks BBS if D’s running time is at most t = t(k) and AdvBBSD (k) ≥ ε = ε(k).

Concretely, any BBS-distinguisher can be used to factor Blum integers. This result has already been used
in the Blum-Goldwasser scheme [6].

Theorem 2 (BBS-distinguisher⇒ factoring algorithm [7,5,1,19]). For every algorithm D that (tBBS, εBBS)-
breaks BBS, there is an algorithm F that (tfac, εfac)-factors Blum integers, where

tfac ≈ `K4tBBS/ε
2
BBS εfac = εBBS/`K.

Proof. Let D be an algorithm that (tBBS, εBBS)-breaks BBS. That is, D distinguishes pseudorandom from truly
random bitstrings. First, using a (by now standard) hybrid argument, [7] show that then D can be converted
to an algorithm that distinguishes individual pseudorandom bits from truly random bits. Concretely, D gives
rise to an algorithm D′ that (tLSB, εLSB)-distinguishes tuples (N, u2, LSB(u)) from tuples (N, u2, U{0,1}), where

u ∈ QR+
N and U{0,1} ∈ {0, 1} are uniformly chosen, tLSB ≈ tBBS, and εLSB = εBBS/`K.

Next, we can use that the least significant bit is a hard-core bit of the squaring function modulo N . In
particular, any algorithm that, given N and u2, successfully distinguishes LSB(u) from a random bit, can be
used to recover a square root of u2. This in turn yields a nontrivial factor of N with significant probability.
Concretely, building on [1], [19] show how to transform D′ into an algorithm F that (tfac, εfac)-factors Blum
integers, where tfac ≈ `K

2tLSB/ε
2
LSB ≈ `K

4tBBS/ε
2
BBS and εfac = εLSB = εBBS/`K. (We use the quantitative

interpretation [36, Theorem 6.1] of the results from [19] here.) The claim follows.

The following theorem contains the heart of our proof, namely, a simulation that shows that any successful
IND-CCA adversary on KEM implies a successful BBS-distinguisher (and hence, using Theorem 2, can be
used to factor Blum integers).

Theorem 3 (IND-CCA adversary⇒ BBS-distinguisher). For every adversary A that (tKEM, εKEM)-breaks
KEM’s IND-CCA property, there exists an algorithm D that (tBBS, εBBS) breaks BBS and an adversary B that
(tT, εT)-breaks T, such that

tBBS ≈ tT ≈ tKEM εBBS + εT + 2−k+3 ≥ εKEM.

Proof. Setting up the variables for simulation. Assume an adversary A on KEM’s IND-CCA security.
We define a BBS-distinguisher D, which acts on input (N, z, V ) as follows. D first uniformly selects a signed
quadratic residue g ∈ QR+

N , as well as exponent β ∈ [(N − 1)/4], and sets

R∗ = z t∗ = T(R∗) ∈ {1, . . . , 2`T − 1} X = gβ2
`K+`T−t∗ .

The public key used in the simulation is pk = (N, g,X). It will be convenient to write X = gα2
`K+`T as in

Gen, for α = β − t∗/2`K+`T unknown to D. (Here and in the following, a division of exponents is computed
modulo pq, the order of QR+

N .) Furthermore, in the following, we will silently assume that g generates QR+
N ,

which is very likely, but not guaranteed. A rigorous justification that takes into account error probabilities
follows below.

Preparation of challenge ciphertext and key. To complete the definition of the challenge ciphertext

C∗ = (R∗, S∗), write R∗ = gr
∗2`K+`T . Since we assumed that g is a generator, this is possible, but of course

r∗ is unknown. D defines

S∗ = R∗β
(

= gr
∗β2`K+`T

=
(
gt
∗
X
)r∗)

(6)

as Enc would have computed. The (real) corresponding key K∗ is defined as

K∗ = BBSN
(
g2

`Tr∗
)

= BBSN

(
R∗

1
2`K

)
= BBSN

(
z

1
2`K

)
= BBSN (u) . (7)
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D then invokes A with public key pk = (N, g,X), challenge ciphertext C∗ = (R∗, S∗), and challenge key V .
Note that V is either the real challenge key BBSN (u), or it is a uniform string.

On the distribution of simulated public key and challenge ciphertext. We claim that the distribu-
tion of public key pk and challenge ciphertext C∗ is almost identical in simulation and IND-CCA experiment.
Concretely, we postpone the straightforward but somewhat tedious proof of the following lemma until after
the description of our simulation.

Lemma 2. There exists an event badkey such that, conditioned on ¬badkey, public key pk and challenge
ciphertext C∗ are identically distributed in simulation and IND-CCA experiment. Also, ¬badkey implies that
g is a generator. We have

Pr [badkey] ≤ 2−k+3 (8)

both in the simulation and in the IND-CCA experiment.

Thus, conditioned on ¬badkey, D perfectly simulates A’s input as in the real IND-CCA experiment if

V = BBSN (u) = BBSN (z1/2
`K ), and as in the ideal IND-CCA experiment if V is random.

How to handle A’s decryption queries. It remains to describe how D handles decryption queries of A
as in the IND-CCA experiment. So say that A submits a ciphertext (R,S) for decryption. We may assume
that (R,S) ∈ QR+

N × QR+
N since QR+

N is efficiently recognizable. Let t = T(R) ∈ {1, . . . , 2`T − 1}. We call
a ciphertext consistent iff the original decryption algorithm would not have rejected it. Hence, by (1), a
ciphertext is consistent iff

S2`K+`T ?
= Rt−t

∗+β2`K+`T
(

= Rt+α2
`K+`T

)
. (9)

By our setup of variables, D can check (9) by itself, and hence detect and reject inconsistent ciphertexts.

How to decrypt consistent ciphertexts. Now assume that C is consistent and t 6= t∗. Then, (4) and
(5) follow (except for the deduction (∗)) just as in the correctness proof, and we get

T = R
1

2`K (10)

for the raw key T that would have been computed by Dec. We will now show how D can compute T . Namely,
D computes a′, b′, c′ ∈ Z such that

2c
′

= gcd(t− t∗, 2`K+`T) = a′(t− t∗) + b′2`K+`T . (11)

Since 1 ≤ t, t∗ < 2`T and t 6= t∗, we have c′ < `T. Similarly to (4) and (5), Equation (9) implies

S = R
t−t∗

2`K+`T
+β
, (12)

from (9), and from this

(
Sa
′
·Rb

′−a′β
)2`T−c′

=
((
SR−β

)a′ ·Rb′)2`T−c′
(12)
=

((
R

t−t∗
2`K+`T

)a′
·Rb

′

)2`T−c′

=

(
R
a′(t−t∗)+b′2`K+`T

2`K+`T

)2`T−c′

(11)
= R

2c
′

2`K+`T
·2`T−c′

= R
1

2`K
(10)
= T. (13)

Note that from T , the final decryption key can be computed as K = BBSN (T ). Hence, using (13), D can
correctly decrypt every consistent ciphertext with t 6= t∗.

The case t = t∗. So let us turn to the case that t = t∗ and the ciphertext is consistent. Then, if R = R∗

holds, we have

S
(9)
= R

t−t∗
2`K+`T

+β (∗)
= R∗β = S∗ (14)
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where in (∗) we use R = R∗ and t = t∗. Since A is not allowed to query (R,S) = (R∗, S∗) for decryption, we
may hence assume that R 6= R∗.

But if T(R) = t = t∗ = T(R∗) and R 6= R∗, then A has broken the target-collision resistance of T.
Formally, let badTCR denote the event that t = t∗ and R 6= R∗. If badTCR occurs, D can safely give up, since

Pr [badTCR] ≤ AdvTCRT,B (k) (15)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the decryption procedure. We summarize the decryption cases:
– inconsistent (R,S) (consistency check (9)⇔(1) not passed): reject,
– consistent (R,S) and t 6= t∗: decrypt using (13),
– consistent (R,S), t = t∗, and R = R∗: cannot happen since then (R,S) = (R∗, S∗) by (14),
– consistent (R,S), t = t∗, and R 6= R∗: give up simulation (A has found a T-collision).

Hence, also decryption is faithfully simulated unless badTCR occurs.

Finishing the proof. We conclude that, unless badTCR or badkey occurs, D perfectly simulates the real
IND-CCA experiment upon input V = BBSN (u), and the ideal IND-CCA experiment if V is random. If we
let D output whatever the simulated experiment outputs, we obtain:∣∣∣Pr [D(N, z,BBSN (u)) = 1]− Pr

[
ExpCCA-realKEM,A (k) = 1

]∣∣∣ ≤ Pr [badTCR] + Pr [badkey]∣∣∣Pr [D(N, z, U{0,1}`K ) = 1
]
− Pr

[
ExpCCA-randKEM,A (k) = 1

]∣∣∣ ≤ Pr [badTCR] + Pr [badkey] .
(16)

Using (8) and (15), Theorem 3 follows from (16).
It remains to prove Lemma 2.

Proof of Lemma 2. Observe that pk and C∗ are distributed slightly differently in the IND-CCA experiment
(i.e., as generated by Gen and Enc) and in the simulation:

– R∗ = gr
∗2`K+`T for uniform (hidden) r∗ ∈ [(N − 1)/4] in the experiment, while R∗ ∈ QR+

N is a uniform
group element in the simulation.

– X = gα2
`K+`T for uniform (hidden) α ∈ [(N −1)/4] in the experiment, while X = gβ2

`K+`T−t∗ for uniform
(hidden) β ∈ [(N − 1)/4] in the simulation.

However, conditioned on the following event goodkey:

(in the experiment:) g is a generator, and r∗, α ≤ |QR+
N |,

(in the simulation:) g is a generator, and β ≤ |QR+
N |,

pk and C∗ are distributed identically in experiment and simulation: goodkey implies that N , g, X, and R∗

are uniformly and independently chosen over their respective domains, and S∗ follows deterministically from
pk and R∗ according to (7). Hence we only need to bound the probability of badkey := ¬goodkey. Since

|QR+
N | = |QRN | = pq and we assumed that p and q are `N/2-bit primes (for `N/2 ≥ k), a uniform QRN -

element is a generator except with probability (p+ q − 1)/pq ≤ 2−n/2+2. Furthermore, (N − 1)/4 is a close
approximation of the group order |QR+

N | = pq = (N − 1)/4 − (p + q)/2, so that, e.g., r∗ ≤ |QR+
N | except

with probability 2(p+ q)/(N − 1) ≤ 2−`N/2+1. Hence,

Pr [badkey] ≤ max
{

2−`N/2+2 + 2 · 2−`N/2+1, 2−`N/2+2 + 2−`N/2+1
}

= 2−`N/2+3
n/2≥k
≤ 2−k+3

both in the experiment and in the simulation.

6 Avoiding safe primes

In our KEM, we assume that N = PQ is composed of two safe primes (i.e., primes of the form P = 2p+1 for
prime p). We can drop this assumption and allow arbitrary Blum integers N , if we employ a Goldreich-Levin
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[22] based pseudorandom generator instead of the Blum-Blum-Shub generator. Namely, all we actually need
to prove that KEM is IND-CCA is that(

N, g, gr2
`K+`T

,Extpk (gr2
`T

)
)

c
≈
(
N, g, gr2

`K+`T
, U{0,1}`K

)
, (17)

where
c
≈ denotes computational indistinguishability, N is a Blum integer, g ∈ QR+

N , r ∈ [N/4], and U{0,1}`K ∈
{0, 1}`K are uniform, and Ext is a suitable randomness extractor. In our original description of KEM, we have

Extpk (u) = BBSN (u). In that case, we only know that the hardness of factoring N implies (17) if u = gr2
`T is

a uniform element of QR+
N (which is the case when N = PQ for safe primes P,Q, since then g is a generator

with high probability). But if g is not a generator at least with high probability, then u may not be uniformly
distributed.

Now suppose we set

Extpk (u) =
(
GLs(u),GLs(u

2), . . . ,GLs(u
2`K−1

)
)
∈ {0, 1}`K

for the Goldreich-Levin predicate GLs that maps u to the bitwise inner product of s and u. Then a hybrid
argument and the hard-core property of GLs show that (17) is implied by the hardness of computing u with
u2 = v mod N from (N, g, v) (with v = gr). But any algorithm B that computes such a u from (N, g, v)
can be used to factor N . Namely, given N , choose uniformly h ∈ ZN and r̃ ∈ [N/4], and set g = h2 and
v = g2r̃+1. (Observe that v is almost uniformly distributed over 〈g〉, since N is a Blum integer.) Then, invoke
B(N, g, v) to obtain a square root u of v. We can then compute a square root of g as h̃ = uagb (for a, b ∈ Z
with a(2r̃+ 1) + 2b = gcd(2r̃+ 1, 2) = 1). With probability 1/2, then gcd(h− h̃, N) yields a non-trivial factor
of N . Hence (17) is implied by the hardness of factoring arbitrary Blum integers, and our KEM (instantiated
with the Goldreich-Levin predicate) is IND-CCA secure. The price to pay is that we need to place a seed
s ∈ {0, 1}`N for the Goldreich-Levin hard-core function in the public key. (However, note that s can be made
a global system parameter, like N and g.)
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