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Practical Codes for Photon Communication: 

ROBERT J. McELIECE, MEMBER, IEEE 

Abstract-In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa recent paper, Pierce studied the problems of communi- 
cating at optical frequencies using photon-counting techniques, and con- 

cluded that “at low temperatures we encounter insuperable problems of 
encoding long before we approach [channel capacity].”  In this paper it is 

shown that even assuming a noiseless model for photon communication for 

which capacity (measured in nats/photon) is infinite, it is unlikely that a 
signaling efficiency of even 10 nats/photon could be achieved practically. 

On the ‘positive side, it is shown that pulse-position modulation plus 
Reed-Solomon coding yields practical results in the range of 2 to 3 

nats/photon. 

I. INTRODUCTION 

I 
N [14], Pierce argued that if one uses photon-counting 

techniques for communication at optical frequencies, 

channel capacity is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhf/kT nats/photon’ where f is the 

photon center frequency and T is the noise temperature (h 

is Plan&s constant, k is Boltzmann’s constant). Later 

Pierce, Posner, and Rodemich [15] derived the same result 

more rigorously. In [14] Pierce also observed that the 

techniques of linear amplification (which are used success- 

fully at microwave frequencies) yield a capacity of 1 

nat/photon. If one has deep-space applications in mind, 

these results strongly favor photon-counting techniques. 

For example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 6 X lOI Hz (green light) and if T = 

400” K (an average temperature of space at optical fre- 

quencies [5]), we find hf/kT = 72 nats/photon. However, 

channel capacity is an absolute limit on performance and 

only tells us what is possible using arbitrarily complex 

encoding and decoding strategies. This paper is a study of 

the “practical” limits of photon communication. 

Of course it is a general rule that the closer one ap- 

proaches channel capacity, the more complex and costly 

the needed coding strategies become. In the case of photon 

communication, however, coding problems seem to become 

serious much sooner than usual, and for an unexpected 

reason. We shall see below that it is not the noise tempera- 

ture, but the nature of the photon-counting process itself, 

that causes the most serious problems; so that even in the 

limiting case T = 0, when capacity is in principle infinite, 

it seems unlikely that a signalling efficiency of even 10 
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‘The unit nafs/photon is somewhat unorthodox, but in the present 

context seems very natural. Its main advantage is that it is independent of 

time, which allows us to avoid questions of absolute bandwidth and power 

and to focus on more fundamental physical limitations. 

nats/photon could be achieved practically. This is because, 

as we will show, when the signalling rate increases beyond 

1 nat/photon one encounters an explosive increase in the 

required bandwidth expansion. This negative result was 

predicted by Pierce [14] who wrote “at low temperatures 

we [will] encounter insuperable problems of encoding long 

before we approach the theoretical limit of [hf/kT 

nats/photon]“. 

On the positive side, however, we will show that with 

pulse position modulation combined with Reed- Solomon 

coding, it is possible to design a practical photon-counting 

system which operates at about 3 nats/photon. Since chan- 

nel capacity for linear amplification is only 1 nat/photon, 

we can conclude from this that photon counting is in fact 

significantly superior to linear amplification. 

In Section II we present a channel model appropriate for 

the study of noiseless photon communication which we call 

the photon channel. In Section III we study the use of 

q-ary pulse position modulation (q-PPM) on the photon 

channel. There we show that q-PPM channel capacity is 

log q nats/photon, and we give performance curves (error 

probability versus signalling efficiency) for coded and un- 

coded q-PPM. We conclude by showing that if p denotes 

the signalling rate in nats/photon, and if p denotes the 

minimum required bandwidth expansion, then p 1 ep/p 

for PPM. In Section IV we show that this exponential 

growth of /3 as a function of p is not due to some inherent 

weakness of PPM by proving that p > (e”-’ - 1)/p no 

matter what modulation scheme is used. Finally in Section 

V, we discuss the &,-parameters involved in photon com- 

munication. We show that for q-PPM, R, = 1 - l/q 

nats/photon, whereas for the unrestricted photon channel 

R, = 1. If one believes that R, is the rate above which 

reliable communication becomes extremely difficult, our 

claim that p = 10 is a “practical” limit even though chan- 

nel capacity is infinite, is perhaps less baffling. 

II. THE PHOTON CHANNEL MODEL 

We assume that any photon communication system 

works as follows. The time interval during which communi- 

cation takes place is divided into many subintervals 

(“slots”), each of duration t, seconds. The transmitter is a 

laser which is pulsed during each time slot; it may be 

pulsed with a different intensity in each slot. At the re- 

ceiver is a photon counter which accurately counts the 

number of photons received during each time slot. We 

denote by xi the expected number of photons received 

00 18-9448/8 l/0700-0393$00.75 0 198 1 IEEE 
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during the ith time slot; xi will be called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintensity of the 

i th pulse. 

It may be that “noise photons” are present in such a 

system, but in many cases of practical interest, noise pho- 

tons are extremely rare. (For example, in a careful analysis 

of a potentially practical system, Katz [6] estimated the 

rate of arrival of noise photons to be around 10 -’ per 

second.) In any event we shall make the assumption that 

no noise photons exist.2 In this case, because of the Poisson 

nature of photon arrivals, the probability that exactly k 

photons will be received during a slot in which the laser 

was pulsed with intensity x is e -Xx k/k !. 

Thus we have a discrete memoryless channel with an 

input alphabet equal to the set of nonnegative real num- 

bers (the possible values for the intensities xi), and output 

alphabet equal to the set of nonnegative integers (the 

possible outputs of the photon counter). If a real number x 

is transmitted, the probability that the integer k will be 

received is given by 

p(klx) = eeX$. (2.1) 

We call the channel described by (2.1) the photon channel. 

A code for this channel is a set of vectors X, = 

(Xi,,. . .> x,,), i = 1; . .) M, of length n. Each component 

xjj is a nonnegative real number, and represents an inten- 

sity of the transmitting laser. Assuming that each compo- 

nent of a codeword requires one time slot for transmission, 

the rate of such a code is 

R = log M/n nats/slot.3 (2.2) 

On the other hand, each component xii represents an 

average number of (received) photons, and so the code’s 

rate in nats/photon is 

p = R/p nats/p hoton, where (2.3) 

p = 
i 1 

2 xij /nM, photons/slot (average). (2.4) 
i,j 

The reciprocal of the rate R in (2.2) is a measure of 

“bandwidth expansion”. If we are transmitting at a rate of 

say A nats/s, using a code of rate R nats/slot, it follows 

that we require A/R slots/second. Thus the slot rate is 

equal to the nat rate multiplied by the factor l/R. We thus 

define 

R = l/R = n/log M slots/t-rat, (2.5) 

and call p the bandwidth expansion factor. 

In the following sections, we will make various informa- 

tion-theoretic calculations using this model. The reader 

should bear in mind that since our chief aim is to show 

what is not possible, more elaborate models incorporating 

external noise sources could only strengthen our conclu- 

sions. 

‘A careful information-theoretic analysis of the photon channel when 

noise photons are present is given in [ 151. 

‘Throughout the paper all logarithms are natural. 

III. PULSE POSITION MODULATION 

In [ 141, Pierce suggested the use of pulse position modu- 

lation (PPM) for optical communication. In PPM, a fixed 

integer q L 2 is selected, and the transmission interval is 

divided into consecutive blocks of q slots each. In each 

such block the laser is pulsed in exactly one of the q slots at 

a fixed intensity h. We regard each of these q patterns as a 

letter in the sender’s alphabet. For example with q = 4, if 

we denote “no pulse” by 0 and “pulse” by 1, the letters are 

1000, 0100, 0010, 0001. There are, however, q + 1 possibili- 

ties for the received letter, because of the possibility that no 

photons may be received in a slot in which the laser was 

pulsed. This erasure symbol (e.g. 0000 if q = 4), is by (2.1) 

received with probability PE = e -‘. On the other hand, if 

each of the q letters is sent with probability q -‘, each will 

carry log q nats of information, using an average of A 

photons, so the rate of this primitive signalling strategy is 

p = (log q)/A nats/photon. Hence for uncoded PPM, the 

relation between the error probability PE and the rate p is 

pE = q-U/P) 
(3.1) 

It follows from (3.1) that for any fixed p > 0, and e > 0, 

there exists a q such that the corresponding PPM system 

has rate exceeding p nats/photon and error probability less 

than e. This shows that the capacity of the photon channel 

(measured in nats/photon) is infinite; indeed, this is essen- 

tially the argument given by Pierce in [ 141. 

As a practical system, uncoded PPM leaves much to be 

desired, however. In Fig. 1 we have plotted PE versus p for 

PPM and q = 25, 2”, 220. With q = 2” for example, we 

can achieve PE = 10 -’ and p = 1.0, but only at the cost of 

an enormous bandwidth expansion factor (cf. (2.5)) of 

/3 = 2”/20 log 2 = 75639. But we can do much better using 

coded PPM. 

In coded PPM, the idea is to regard the q letter transmis- 

sion alphabet as the input alphabet of a discrete memory- 

less channel with q + 1 output letters. The (q + 1)st letter 

(symbolically 00000) is regarded as an erasure symbol; thus 

the photon channel of Section II, combined with q-ary 

PPM becomes a q-ary erasure channel with erasure proba- 

bility e -‘. The capacity of this channel, which is achieved 

by a uniform probability distribution on the input al- 

phabet, is (1 - e -“) log q nats/letter. Since each letter 

requires an average of X photons, the channel capacity 

measured in nats/photon is 

C(q, X) = ’ -{-’ logqnats/photon. (3.2) 

If q is fixed, the supremum of C(q, h) over A > 0 occurs as 

A + 0, and is 

C(q) = log q nats/photon. (3.3) 

What (3.3) says is that if q-PPM is used, then for small 

error probability the largest possible value of p (cf. (2.3)), 

in the limit of arbitrarily complex coding, is log q 

nats/photon. 

But what can be achieved practically? We have found 

that if q is a power of two, Reed-Solomon (RS) codes, 
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NATS,‘PHOTON 

Fig. 1. Performance of uncoded PPM. 

NATS/PHOTON 

which are extremely efficient at correcting erasures, give 

good performance. An (n, k) Reed-Solomon code with 

symbol alphabet GF( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq), and n = q - 1, can correct any 

pattern of up to n - k erasures. Furthermore, when q is a 

power of two, very efficient encoding and decoding proce- 

dures exist; indeed Berlekamp [2] has described a hardware 

implementation of a q = 256 RS decoder which operates at 

40 Mbits/s. 

If we use an (n, k) RS code for the present application, 

each of the qk codewords carries klog q nats of informa- 

tion, and each codeword requires n pulses. Thus if we are 

transmitting p nats/photon, the average number of pho- 

tons/pulse is 

,+klong9 photons/pulse. (3.4) 

It follows that the erasure probability for the correspond- 

ing q-ary erasure channel is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c = e-“= ~=VP, 
(3.5) 

where R = k/n is the rate of the RS code. Since the RS 

code can correct all patterns of up to n - k erasures, the 

decoding error probability PE satisfies 

where c is given in (3.5). In Fig. 2 we have plotted this 

bound on PE versus p for five typical RS codes. The curve 

labelled q = 16 is for a (15,s) RS code with q = 16. The 

others are (31,16), q = 32; (63,32), q = 64; (127,64), q = 

128; and (255,128), q = 256. (Recall that as codes for the 

photon channel, the length is actually n = 16% 15 = 240 for 

the q = 16 code; n = 31.32 = 992 for q = 32; n = 4032 

for q = 64; n = 16256 for q = 128; and n = 65280 for 

q = 256.) Each of these codes is the best RS code of its 

length, at least in the limit as p + 0, and so no significant 

improvement is possible merely by altering the code rate 

k/n. 

We see by comparing Figs. 1 and 2 that, for example, at 

PE = 10 -’ coded PPM with q = 32 works as well as un- 

coded PPM with q = 2 *’ This represents an enormous . 

reduction in bandwidth exnansion (from 220/10g(220) = 

Fig. 2. Performance of Reed-Solomon coded PPM 

75639 down to (32/log(32)) X (31/16) = 18) at only a 

modest increase in receiver complexity. 

On the other hand, by extrapolation we can see from 

Fig. 2 that even using coded PPM, one needs a very large q 

to obtain say PE = 10 -6 at p = 5. More generally, if q-ary 

PPM is used, each of the q input letters carries at most 

log q nats of information, so the bandwidth expansion j3 

must be 2 q/log q. However, from (3.3), p < log q, and so 

for p > 1, we must have 

(3.7) 

Thus if PPM is used, the bandwidth occupancy must grow 

exponentially with p. In the next section we will see that 

any communication strategy for the photon channel will 

encounter similar difficulties. 

IV. A NEGATIVE RESULT 

In the last section we saw that PPM forces an exponen- 

tial increase in bandwidth expansion as a function of p. We 

now show that any reliable coded communication system 

for the photon channel must encounter similar difficulties, 

viz. : 

13’ “7 l. 
(4.1) 

To prove (4. l), we return to the photon channel model of 

Section II, and consider the mutual information 1(X, K), 

where X is a nonnegative random variable and K is a 

nonnegative integer-valued random variable related to X 

by the conditional probabilities (2.1). We now define 

C(p) = sup{I(X; K): E(X) = ,u}. (4.2) 

According to Shannon’s noisy-channel coding theorem (see 

[4, ch. 7]), C(p) represents the maximum possible rate (in 

nats per slot) of a reliable communication system which is 

restricted to operate at an average of p photons per slot. By 

a well-known inequality (see e.g. [9, ch. l]), 

1(X; K) I H(K), (4.3) 

where H(K) denotes the entropy Zp, log pk of the random 

variable K. Since for the nhoton channel ECK I X) = X, it 
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follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(K) = E( E( K 1 X)) = E(X), and so K has 

the same mean as X, viz., p. 

The problem of maximizing the entropy of a nonnega- 

tive integer-valued random variable with given mean was 

solved by Stern [17], indeed in essentially this context. 

(Stern’s problem was that of finding the maximum-entropy 

photon source, given an average-power constraint.) The 

result is 

H(K)Ilog(l+p)+plog l+; , 
i 1 

with equality if and only if Pr{K = k} = (1 - p)pk, p = 

p/(1 + p). Thus from (4.2) we have the estimate 

1 
c(p) I log(1 + p) + plog 1 + - . 

( i P 
(4.4) 

It follows then from (4.4) and the converse to the noisy- 

channel coding theorem, [4, th. 7.3.11, that the rate R of a 

reliable communication system which operates at an aver- 

age of p photons per slot is bounded by the right side of 

(4.4). Using the inequality log (1 + p) I p, we have 

R < ~(1 + log(1 + l/p)). (4.5) 

The rate R in (4.5) is in nats per slot. The rate measured in 

nats/photon is by (2.3) R/p, and so 

p < 1 + log(1 + l/p). (4.6) 

For p > 1 a simple manipulation of (4.6) yields 

w4e 
P-l- 1 

)-I. 
(4.7) 

Now since the bound on the right side of (4.5) is an 

increasing function of p, it follows from (4.5) and (4.7) that 

Rc ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eP-lL 1 ’ 

which proves (4.1) since R = /3 -  '. 

Equation (4.1) implies that one encounters an explosive 

increase in the required bandwidth expansion beyond p = 

1. In the next section we will show that the R,-parameter 

for the photon channel is p. = 1 nat/photon. 

Thus for the photon channel, (4.1) gives rigorous 

mathematical substantiation to the widely believed “ Ro- 

conjecture”, which is that for any channel R, is the rate 

above which the implementation of reliable communication 

becomes very difficult. Conversely, if one believes the 

R,-conjecture, our claim that p = 10 is perhaps the ulti- 

mate limit of a practical photon communication system, 

even when channel capacity is infinite, may appear less 

baffling. 

IV. THE ~~~~~~~~~~~ . 

In this section we will show that the R,-parameter for 

the photon channel of Section II is 1 nat/photon. We will 

also show that if q-PPM is being used, R, is (q - 1)/q 

nats/photon. Thus although the capacity of q-PPM is 

infinitely far removed from the capacity of the unrestricted 

photon channel, R, for PPM is very close to the unre- 

stricted R, for even small values of q. This result perhaps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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justifies our feeling that there is no essential loss of perfor- 

mance involved when PPM is used. (This feeling is rein- 

forced by the results of Snyder and Rhodes [ 161 which 

imply that among all modulation schemes using q letters, 

q-PPM gives the largest possible value for R,.) 

Recall the definition of R, for a time-discrete memory- 

less channel. Let A denote the input alphabet and B the 

output alphabet, which we assume to be finite or count- 

able. For x E A, y E B, denote by p(y Ix) the probability 

that y will be received given that x is transmitted. For each 

pair of input letters x,, x2, define the Bhattacharyya dis- 

tance between them as 

43h%) = -1% x \lPblX,)P(Yl4. (5.1) 

YEB 

If X is a random variable taking values in the set A, and if 

X,, X, are independent random variables with the same 

distribution as X, define 

R,(X) = -log E(exp - d,(X,, X2)). (5 4 

Finally, the quantity R, is defined as 

R, = sup R,( X), (5 -3) 
X 

the supremum in (5.3) being taken over all possible ran- 

dom variables X taking values in the set A. 

Since the function f(t) = e et is convex upwards, it 

follows from Jensen’s inequality [9, appendix B] that E(exp 

- d) 1 exp - E(d), and hence from (5.2) that 

R,(x) 5 E&& x,>), (5 4 

R,s supE(d,(X,, X,)). 
X 

(5.9 

These two inequalities prove to be very useful in estimating 

R, in specific cases, as we will see below. 

We consider the photon channel with q-PPM first. Here 

]A] = q, B = A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU {?}, where “?” is the erasure symbol, 

and the channel transition probabilities are given by 

(1 -e-“, ify = x, 

P(YlX)= e-" , 

i 0, 

From this we easily compute 

tances are given by 

ify = ?, 

otherwise. 

that the Bhattacharyya dis- 

dB(x,, x2) = 

0, ifx1=x2, 

A, if x, # x2. (5.6) 

Hence by (5.4) we have, for any random variable X, 

R,(X) 5 X.Pr{X, # X2}, (5 *7) 

the units in (5.7) being nats/letter. If we denote the 

probability Pr{ X = x} by p(x), then 

W ,#X*l = 1 -xz~P(x)2 

51-i 
4’ 

since by Schwarz’s inequality @p(x)* 1)2 5 Zp(~)~.xl* = 
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q*Ep(x)*. Thus from (5.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R,(X) I A 1 - f nats/letter, 
i i 

(5 4 

or since each transmitted letter requires A photons on the 

average, 

R, 5 1 -.f nats/photon. (5 *9> 

On the other hand, if X is uniformly distributed on the 

input alphabet, a simple calculation gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R,(X) = -i log(e-” + (1 - e-‘)/q) nats/photon. 

(5.10) 

The limit of (5.10) as h + 0 is easily seen to be (q - 1)/q, 

and so we conclude that R, 2 (q - 1)/q. This, combined 

with (5.9) shows that for q-PPM, 

R,(q) = (q - 1)/q nats/photon. (5.11) 

We turn now to the unrestricted photon channel. Here 

the input alphabet A is the set of nonnegative real num- 

bers, and the output alphabet B is the set of nonnegative 

integers, with the transition probability given by (2.1). The 

first step in computing R, for this channel is the computa- 

tion of the Bhattacharyya distances. According to (5.1) and 

(2. I>, 

exp - 4-h x2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= g ~pb+dp(klx2) 
k=O 

Hence 

=e -(XI +xd/2 k;. & ggk 

=e -(x1 +xd/*e* 

= exp - (6 - 6)*/Z. (5.12) 

dB(-% x2) = (cl - 62)2/2. (5.13) 

Note also that if we only take the term k = 0 in the sum in 

(5.12) we get the estimate 

dB(% x2) 5 b, + x2)/2. (5.14) 

It thus follows immediately from (5.14) and the bound 

(5.4) that 

R,(X) I E(X) nats per slot. (5.15) 

391 

In words, (5.15) says that if the average laser intensity is 

E(X) = p photons per slot, then the R,-parameter is at 

most p nats per slot. In units of nats/photon then, it 

follows from (5.15) that 

R,I 1 nat/photon. (5.16) 

But we have seen in (5.11) that R,(q) = 1 - l/q. Thus by 

taking q sufficiently large, R, can be made as close to one 

as desired. This fact combined with (5.16) shows that 

R, = 1, as claimed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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To Get a Bit of Information May Be As 
Hard As to Get Full Information 

RUDOLF AHLSWEDE AND IMRE CSISZAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Absfruct-The following coding problem for correlated discrete mem- 
oryless sources is considered. The two sources can be separately block 

encoded, and the values of the encoding functions are available to a 
decoder who wants to answer a certain question concerning the source 

outputs. Typically, this question has only a few possible answers (even as 
few as two). The rates of the encoding functions must be found that enable 

the decoder to answer this question correctly with high probability. It is 

proven that these rates are often as large as those needed for a full 

reproduction of the outputs of both sources. Furthermore, if one source is 
completely known at the decoder, this phenomenon already occurs when 

what is asked for is the joint type (joint composition) of the two source 
output blocks, or some function thereof such as the Hamming distance of 

the two blocks or (for alphabet sire at least three) just the parity of this 

Hamming distance. 

I. INTRODUCTION 

W 
E ARE given a discrete memoryless double source 

(DMDS) with alphabets %, 3, and generic variables 

X, Y, i.e., a sequence of independent replicas (Xi, Y), i = 

1,2; . .) of the pair of random variables (X, Y) taking 

values in the finite sets % and 3, respectively. Slepian and 

Wolf [9] considered the problem of encoding the source 

output blocks X” k X, . . -X,, resp. Y” 4 Y, . . . Y, by two 

separate encoders in such a way that a common decoder 

could reproduce both blocks with small probability of 

error. They proved that such an encoding is possible with 

rates (R,, R2) if and only if 

R,2H(XIY), R,LH(Y1X), R,+R,LH(X,Y). 

(1.1) 
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It may happen, however, that what is actually required 

at the decoder is to answer a certain question concerning 

(X”, Y”). Such a question can of course be described by a 

function F of (Xn, Y”). We are interested in those func- 

tions for which the number k, of possible values of 

F( X”, Yn) satisfies 

/ma ilogk,= 0. O-2) 

This means that the questions asked have only “a few” 

possible answers. For example, Xi and Y may be the results 

of two different quality control tests performed on the i th 

item of a lot. Then for certain purposes, e.g., for determin- 

ing the price of the lot, one may be interested only in the 

frequencies of the various possible pairs (x, y) among the 

results, their order, i.e., the knowledge of the individual 

pairs (Xi, Y,), being irrelevant. In this case k, I (n + 

l)l%ll’l, and (1.2) holds. A natural first question is whether 

or not it is always true in this case that, for large n, 

arbitrarily small encoding rates permit the decoder to 

determine F(X”, Y”). To our knowledge, even this seem- 

ingly simple question had not been answered prior to this 

paper, except for the particular case of independent binary 

X and Y, where one of them takes the values 0,l with 

equal probabilities. In this particular case, Korner [6] 

showed the necessity of positive rates if both entropies are 

positive. 

We also consider here other choices of F and first obtain 

the following result. For every DMDS with 

H(XIY) > 0, H(YIX) > 0 

there exists a binary question (function F with only two 

possible values) such that in order to answer this question 
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