1992 ACC/TM14

Practical Computation of the Mixed u Problem

Peter M. Young *

Abstract

Upper and lower bounds for the mixed u problem have recently
been developed, and this paper examines the computational as-
pects of these bounds. In particular a practical algorithm is de-
veloped to compute the bounds. This has been implemented as
a Matlab function (m-file), and will be available shortly in a test
version in conjunction with the u-Tools toolbox. The algorithm
performance is very encouraging, both in terms of accuracy of
the resulting bounds, and growth rate in required computation
with problem size. In particular it appears that one can handle
medium size problems (less than 100 perturbations) with reason-
able computational requirements.

1 Introduction

In recent years a great deal of interest has arisen with regard to
robustness problems involving real (e.g. parametric) uncertainty.
These problems involve uncertain parameters that are not only
norm bounded, but also constrained to be real. This type of
problem can be addressed within the u framework by extending
the definition of u so as to allow both real and complex uncer-
tainties in the block structure. This mixed u problem can have
fundamentally different properties from the more familiar com-
plex u problem, and these properties have important implications
for computation (see [1] for a review of the mixed u problem).

In particular it is now known that the general (real or) mixed
u problem is NP hard [2], and furthermore it appears that the
problem of computing guaranteed bounds may be NP hard as well
[3]. These results strongly suggest that any algorithm to compute
(bounds for) the mixed s problem must suffer from worst case
exponential (nonpolynomial) growth rate in required computa-
tion, or from bounds which are not guaranteed to be tight, so
that it appears futile to pursue exact methods for computing 4 in
the purely real or mixed case for even medium size problems (less
than 100 real parameters). Note however that these results do not
mean that one cannot develop “practical” algorithms to compute
upper and lower bounds for medium size problems, where “practi-
cal” means avoiding exponential growth in computation with the
number of parameters for any problems which arise in engineering
applications. Important issues then become the efficient compu-
tation of the bounds and the degree to which they approximate
4, together with techniques for refining the bounds for a better
approximation (at an additional computational cost).

Upper and lower bounds for the mixed u problem have re-
cently been developed [4, 5], and this paper examines the com-
putational aspects of these bounds. In particular a practical al-
gorithm is developed to compute the bounds. The theoretical
bounds described in [4, 5] require some reformulation before they
can be implemented in an efficient manner, and this is described
in sections 3 and 4, together with details of the algorithm con-
struction. The bounds involve solving certain optimization prob-
lems, and it is shown that the specific structure of these problems
can be exploited so as to speed up the computation considerably.
Some results from our extensive numerical experience with the
algorithm, regarding both the quality of the bounds and the com-
putation time, are presented in section 6, and it is seen that one

*Electrical Engineering, 116-81, California Institute of Technology,
Pasadena, CA 91125. This work was supported by ONR, NSF, NASA, and
Rockwell International.

Matthew P. Newlin *

John C. Doyle *

can handle medium size problems with reasonable computational
requirements. Finally in section 7 we briefly mention some ar-
eas for improvement on the present scheme, and in particular the
use of these bounds as part of a Branch and Bound scheme to
compute guaranteed bounds for the mixed u problem (see [6]).

2 Notation and Definitions

The notation used here is fairly standard and is essentially taken
from [4] and [5]. For any square complex matrix M we de-
note the complex conjugate transpose by M*, and the Frobenius
norm by |M|r. The largest singular value and the structured
singular value are denoted by (M) and ux(M) respectively.
The spectral radius is denoted p(M) and pr(M) = maz{]}] :
X is a real eigenvalue of M}, with pp(M) = 0 if M has no
real eigenvalues. For a Hermitian matrix M, then A(M) denotes
the largest (real) eigenvalue. For any complex vector z, then z*
denotes the complex conjugate transpose and |z} the Euclidean
norm. We denote the k X k identity matrix and zero matrix by I;
and Oy respectively.

The definition of x4 is dependent upon the underlying block
structure of the uncertainties, which is defined as follows. Given
a matrix M € C**" and three non-negative integers m,, m,,
and mg with m := m, + m. + m¢ < n, the block structure
K(m,,m., m¢) is an m-tuple of positive integers

x=(kh'--vkmnkmﬁ-l"“’EMy+m9kmr+m¢+h-'-ikﬂ) (1)

where we require Y 72, &; = n in order that the dimensions are
compatible with M. This determines the set of allowable pertur-
bations, namely define

Xk = {A = block diag(8]1s,, .., 80 To ,05Ta_41s---s
6 Fimym A, AS)
7 € R, & € C,Af € ChmetmetixXbmrimeti} ()
Note that Xx C C**® and that this block structure is suffi-
ciently general to allow for repeated real scalars, repeated complex
scalars, and full complex blocks. Note also that the full complex
blocks need not be square, but we restrict them as such for no-
tational convenience. The purely complex case corresponds to
m, = 0.
Definition 1 ([7]) The structured singular value, ux(M), of a
matriz M € C"** with respect to a block structure K(m,, m,,m¢)
is defined as

weM) = (mip) den - M) =0)) " (3)

with ux(M) =0 if no A € X solves det(I -AM)=0.

In order to develop the upper and lower bounds for u we need
to define some sets of block diagonal scaling matrices (which are
also dependent on the underlying block structure).

Qc={AeXx: 6 €[-11],578 =1,A0*A¢ = I,}
4
D[= {block diag(D;, . -7Dm,-+m¢, d;Ih"““‘n gacey
ducli):0< D; = Df € Ck*% 0 < d; e R} (5)

Ox = {Mock diag(G,...,Gm, Ok, y1r+ -1 Ok) :
Gi =G} € Chxk} (6)

2190

= {block diag(D1. ..., Dm4mer G1dkpy pmeprre-os
dmcr,) s det D)) #0,D; € CH*% d; £ 0,d;€C} (7)

Gx = {bIOCk diag(gl" . -9gur’on¢) :gi e R} (8)

where n, = Y70 ki and n, = n — n,.

3 The Lower Bound for Mixed u

The theoretical basis for the mixed u lower bound lies in the
fact that the u problem may be reformulated as a real eigenvalue
maximization. The following theorem is taken from [5].

Theorem 1 ([5]) For any matriz M € C**", and any compati-
ble block structure K

Jaax PrR(QM) =
This immediately gives us a theoretical lower bound since we have
that for any Q € Qx, prR(QM) < px(M). The idea then is to
find an efficient way to compute a local maximum of the function
pr(QM) over Q € Q. It turns out that this can be done by
means of a power iteration. The iteration scheme usually con-
verges fairly rapidly, and each iteration of the scheme is very
cheap, requiring only such operations as matrix-vector multiplica-
tions and vector inner products. This gives rise to a lower bound
algorithm which is much faster than would be obtained by di-
rectly solving (9) via standard optimization techniques (although
this maximization is carried out implicitly by the power itera-
tion). The theoretical development of the power iteration is fully
described in [5] and we will not go into any of the details here.

In fact this scheme is a very simple power iteration, and al-
though it usunally converges to a satisfactory equilibrium point,
the convergence is not always guaranteed. However in all cases
one can still obtain a candidate mixed perturbation from the itera-
tion scheme. From this one can compute a lower bound (provided
that the mixed u problem contains some complex uncertainty) by
simply wrapping in the real perturbations, and then evaluating
the spectral radius of the associated complex x4 problem, scaled
by the candidate complex perturbations. This scheme is imple-
mented in the “rmu” code so that the algorithm always returns
a valid lower bound, regardless of convergence. In fact the per-
formance data presented in section 6 was collected regardless of
whether or not the power algorithm converged on the problem
(i.e. no data points were excluded).

Of course it is still desirable that the power iteration con-
verges, since in that case it is more likely that the lower bound
obtained is a good one. It is well known that the convergence
properties of standard eigenvalue and singular value power algo-
rithms (which can be obtained as special cases of this algorithm)
can be improved by inverse iteration, and similar adaptations to
the mixed p power algorithm are being investigated. Preliminary
results have shown an improvement in the convergence properties,
and it is hoped that further refinements will enable the conver-
gence to a local maximum of (9) to be guaranteed [8]. Note that
we cannot expect to be able to guarantee to find the global max-
imum of (9), since the problem is not convex.

px(M) 9

4 The Upper Bound for Mixed u

The standard upper bound for complex i involves a singular value
minimization problem, or equivalently an eigenvalue minimization
problem on a Hermitian matrix, with respect to a certain “D
scaling matrix” [7]. The mixed u upper bound takes the form of
a more complicated version of the same problem, now involving
an additional “G scaling matrix”. The following theorem is taken
from [4] (though stated here in a slightly different form).

Theorem 2 ([4]) For any matriz M € C"*", and any compati-
ble block stricture K suppose o, is the result of the minimization

problem

a, = inf
DED;
Gegx

then pc(M) < /max(0, a.)

Note that the above minimization involves a LMI (Linear Matrix
Inequality), and hence it is convex. Note also that if we impose
the restriction G = 0, we recover the standard complex u upper
bound.

Since the upper bound is a convex problem there are a whole
array of numerical techniques one could use to tackle this min-
imization. Note however that for even medium size problems
(n < 100) then depending on the block structure K, the optimiza-
tion over the D and G scaling matrices could involve optimizing
several thousand parameters. Therefore, in order to tackle such
problems with reasonable computation times, a straightforward
application of brute force optimization techniques will not suffice.
Instead we will exploit the specific structure of this problem, so
as to develop an efficient algorithm, which can handle problems
of this size.

The algorithm implementation relies heavily on the fact that
the upper bound may be reformulated several different ways, as
stated in the following theorem.

[mm{a (M*DM + j(GM - M*G) - aD)<0}]

(10)

Theorem 3 Suppose we have a matriz M € C**™ and a real
scalar B > 0, and for any D € C*** denote Mp = DMD™1,
Then the following statements are equivalent;

I There ezist matrices D; € Dx,G; € Gx such that:
X(M*D,M + j(G.:M - M*G;) - #D) <0 (1)

II. There erist matrices D;; € Dx,Gy; € G¢ (or D, €
Dx:, Gn € gx) such that:

X (M, Mp,, + j(GuMp,, - Mp,,Gu)) < (12)

III. There exist matrices Dy € Dx,Gur € G (or Dy €
Dk, G s € G) such that:

7 ((-M—Zm - jG,,,) Un+ G?,,)‘%) <1 (13)

IV. There ezist matrices Dy € Dx,Gpy € Gk (or Dy €
va GIV € gx} such that:

7 ((I,. +G3)t (- JG,V) (I.+G v)'*) <1 (14)

The equivalence between I, I, I for D,, D;;, Dy € Dx and
G1,G11, G111 € G was shown in [4]. Note also that we can easily
obtain the formulae to convert between the various forms (there
are several more equivalent forms, slight variations on the above,
which can also easily be obtained).

These different formulations, whilst mathematically equiva-
lent, have quite different numerical properties. For the purposes
of developing an upper bound algorithm, we will be concerned
mostly with the formulations in (11) and (14). It is clear from
(14) that as an alternative to carrying out the minimization in
(10) we could compute the ‘minimum’ 8 > 0 such that

? -1
DEﬁx,GE¢: ((I+ GZ)— (% - JG) (I+ Gg)-*) s 1
(15)

Note that the theoretical equivalence of the two problems breaks
down at 8 = 0 (and so for these cases strictly speaking there is no

2191

‘minimum’) but this presents no problem for a practical compu-
tation scheme since we merely quit if the upper bound falls below
some prespecified tolerance (which can be arbitrarily small). Each
of these two different formulations of the upper bound problem
has its own advantages. The problem statement from (10) has the
advantages that it is linear in the matrices D and G, and is con-
vex (and hence one will not have problems associated with local
minima). The problem statement from (15) has the advantages
that one is trying to minimize the norm of a given matrix (which
offers some numerical advantages), that [} enters the problem ex-
actly as in the standard complex u upper bound, that G enters
the problem in a balanced symmetric fashion, and that G is now
a real diagonal matrix.
The upper bound algorithm implemented here uses a mixture
{ the formulations in theorem 3. Initially we tackle the problem
:n the form of (15). Here we can use some methods from the com-
plex u bounds, together with various other techniques, to obtain
fairly good estimates of D,G and B. These are then converted
into an initial guess for the problem in the form of (10) and the
algorithm then proceeds to improve on these. More specifically
the algorithm structure is as follows:

1. First we balance the matrix. This involves computing D to
solveinfp .y |DM D using a generalization of Osborne’s
method {9) (as in the standard complex u upper bound). The
matrix M = DM D! is then balanced, and this procedure
generates our initial guess for D € Dr.

2. The lower bound is now computed using the algorithm from
section 3, applied to the balanced matrix M.

3. Now we have a lower hound, and (M) serves as a first guess
for the upper bound. This is then improved upon in the
following way. For any fixed level of # compute each block
of G as G; = g35(M; — M) where M; is the corresponding
sub-matrix of M (i.e. G; cancels the Skew-Hermitian part of
M;). Then bisect on 3 between the lower and current upper
bound to find the smallest 8 such that

((I + 6yt (—— - ;G‘) I+GH)

Finally perform an eigenvalue decomposition on Gas G =
UAU* (with U Unitary, A diagonal and real), and convert to
Ge G;c by redefining & as A and absorbing the U matrix
into D € D and M.

4. We now have initial guesses for D € Dr and G € Ox. The
next step is to compute a descent direction for G € Ok, to-
gether with an appropriate step length, and a new G is com-
puted by taking this descent step. This entire procedure is
then repeated once more.

5. The matrix D € Dx is updated by computing a diagonal
matrix D € Dx (so that it commutes with G €) which
minimizes

inf
Deelr
Dy diagonal
again using a generalized Osborne’s method. We then absorb
Diinto D € Dr.

6. Step 4 is repeated.

7. We now have guesses for De i)x,é € Gx and B for the
upper bound problem in (15). These are converted into
D € Dx,G € Gx which form guesses for the upper bound
problem in (10). We now improve these guesses using a de-
scent algorithm, which iteratively computes a descent direc-
tion, and an appropriate step length, for both D € Dx and

Du(I+ G4 (% - jG) (I+6Y)th

F

G € Gx simultaneously. At each step we compute a new up-

per bound by solving the associated eigenvalue problem, and

quit when the bound stops decreasing (within tolerance).
The balancing in step 1 of the algorithm serves several pur-
poses. Flrstly we obtain a D € D which approximately solves
inf Deby (DM D), or in other words the standard apper bound
for the associated complex problem. Since we have reformulated
the problem in (15) so that the D matrix enters exactly as in the
complex p upper bound, and the G matrix enters in a balanced
symmetiic fashion, this D matrix also serves as a good first guess
for the mixed p upper bound. A good deal of numerical experience
with the generalized Osborne’s method for computing complex u
upper bounds has shown that is very fast and usually works well,
and so by reformulating the problem in this fashion we can exploit
these properties in the mixed problem as well. This balancing also
numerically preconditions the problem, and can greatly improve
the performance of the subsequent steps.

Step 3 of the algorithm generates our initial guess for G. The
approach is somewhat intuitive, but although there are no firm
guarantees, it appears in general to work quite well. Thus our
D, estimates, which require very little computation time, are
usually quite good before we enter the descent portion of the al-
gorithm, and hence we can restrict ourselves to a small number of
descent steps. This is crucial in obtaining a fast implementation,
since the descent steps are quite computationally expensive.

Note that in step 7 we are required to compute a descent
direction for D € D, G € Gk, together with an appropriate step
length. We compute matriz descent directions for D, G in one shot
by computing a generalized gradient of the upper bound function
(details will appear elsewhere). In this way we avoid separate
computation for the individual elements of the D,G matrices.
This is important not only for speed of computation, but also
because in the case of repeated eigenvalues there may not be a
descent direction with respect to any individual elements of D, G,
when there is a descent direction if all the elements are allowed to
move simultaneously. In the case that the maximum eigenvalue
is distinct, then this descent direction coincides with the usual
gradient direction. The step length computation is somewhat
ad-hoc, but ensures that the maximum eigenvalue of the upper
bound function decreases, and that we satisfy the constraint D >
0. Similar comments with regard to the computation of descent
directions and step lengths apply to steps 4 and 6.

This implementation of the upper bound results in an algo-
rithm which is quite efficient, and can handle medium size prob-
lems (n < 100) with reasonable computational requirements. It
has been implemented as as Matlab function (m-file) “rmu”, and
will be available shortly in a test version in conjunction with the -
Tools toolbox {10]. The software returns upper and lower bounds
for ux(M), together with appropriate scaling matrices D € Dy,
G € G for the upper bound problem in (15), and @ € Qx for the
lower bound problem (9). Results regarding both the quality of
the bounds and their computational requirements (as a function
of problem size) are presented in section 6.

The mixed s upper bound (in the form of (10)) can be viewed
as a special case of a class of LMI problems. The solution of
LMT’s is a subject of much research interest right now [11], since
they appear in many control problems. This algorithm represents
a first attempt at solving one particular LMI. As more refined
algorithms for the solution of LMI's appear, then they can be
used to improve the x4 upper bound computation.

5 Generating Test Matrices

It was stated in section 1 that the mixed u problem is NP hard,
whick implies that the worst case performance of our (or any

2192

other) algorithm will be poor, either in terms of the accuracy of
the bounds, or the growth rate in computation. In fact we can
construct examples for which the bounds in theorems 1 and 2 are
arbitrarily far apart. For engineering purposes then the real issue
becomes whether or not we can develop a “practical” algorithm,
whose typical performance is acceptable. In order to examine
the typical performance in section 6, we will run the algorithm
repeatedly on a large number of test matrices, randomly generated
from within certain classes, and collect statistical data. In this
section we describe three specific types of random matrices that
will be used.

The most straightforward way to generate random complex
matrices in Matlab is with the u-Tools “crand” command. This
generates matrices whose elements are complex random variables,
and by setting “rand(’normal’)” in Matlab we can choose these
elements to be normally distributed with zero mean. We will refer
to this type of random matrix as a “crand” matrix.

Unfortunately it is doubtful that crand matrices are very rep-
resentative of those of practical interest. Since the matrices that
the 4 software will be ran on are typically obtained from control
problems, a fairly natural class of random complex matrices is
to randomly generate State Space ‘A,B,C,D’ matrices using the
u-Tools “sysrand” command, and then evaluate the transfer ma-
trix at some frequency (usually placed roughly in the middle of
the modes). We will refer to this type of random matrix as a
“gysrand” matrix.

For the purposes of testing algorithms it is desirable to be
able to generate problems for which we know the answer a-priori.
The following algorithm provides us with the means to generate
such problems:

1. Randomly generate matrices D € Dx,G € Ox and @ € Qx
with the added restriction that Q*Q = I,. In addition ran-
domly generate a Unitary matrix Y € C***, and a real non-
negative diagonal matrix T = diag(e; ...q,) with

o;=1 for i=1l...r

0;<1 for i=r+1l...n (16)

where r is some integer satisfying 1 < r < n. Finally generate
a random unit norm vector 77 € C* with the restriction that:

=0 for i=r+l...n Qan

2. Compute X € C**" as gny Unitary matrix which satisfies
the equation

Xn=(Q™' - jG)I. + G*) Yy (18)

It is easy to check that the matrix (Q~! — jG)(I. + G?)~?Y
is Unitary, so that this is always possible.

3. Compute M € C**" as
M =D (XSY' (I, + Gt + jG) D (19)

Theorem 4 Suppose we have a matriz M € C**" and a block
structure K. Then denoting the upper bound from theorem 2 by
/2, we have that the following two conditions are equivalent:

1. There ezist matricecs D € Dx and G € Gk achieving the
infimum in theorem 2, and fix(M) = ux(M) = 1.
2. M can be generated by the above algorithm.

The above algorithm was first developed for the purely complex
case in [12]. Note that we can control the number of eigenvalues
coalesced at the minimum of the upper bound function in theorem
2, and a simple extension to the algorithm allows us to also control
the number of eigenvalues coalesced at the maximum of the lower
bound function in theorem 1.

" CmpunTee &

oot

A _ :_;/Ev,-’

47
-3 B B
Marix Sae

Figure 1: Typical computation requirements versus matrix size
for mixed-u problem (solid) and complex-y problem (dashed).

Roughly speaking this algorithm allows us to randomly gen-
erate (all) problems with 4 equal to its upper bound, equal to
one (together with optimal scaling matrices achieving the upper
and lower bounds). Note that for these problems there is no gap
between the bounds from theorems 1 and 2, although the optimal
lower bound requires the solution of a non convex maximization
problem. We will refer to a random matrix generated by the above
algorithm as a “nogap” matrix.

6 Algorithm Performance

There are many questions one could ask with regard to the algo-
rithm performance, both in terms of computation time and accu-
racy of the resulting bounds. We decided to focus on the algo-
rithm performance versus matrix size for a fixed set of uncertainty
descriptions. The first test performed was to examine the aver-
age computational requirements for the algorithm implemented in
Matlab. For this purpose we used crand matrices (although the
results are not too different for the different classes). The com-
putational requirements versus matrix size are shown in Figure
1 for block structures consisting of all scalar uncertainties, with
90% of them chosen as real and the rest complex. The same data
for the appropriate complex pz problem is shown for comparison.
The results were obtained running Matlab on a Sparc 1 worksta-
tion, and it can be seen that we can reasonably expect to handle
problems of size 10 in about 10 seconds, up to problems of size 50
in about 2-3 minutes.

It can also be seen that the {experimental) growth rate in
computation time for the existing implementation is approxi-
mately n?. This is probably an artifice of the implementation in
Matlab, which is an interprative language. A more realistic mea-
sure of the computational growth rate is in terms of total floating
point operations (flops). If this measure is adopted then it is seen
that the (experimental) growth rate in flops is approximately n°.
In any case the algorithm growth rate appears reasonable whether
measured in terms of time or flops required.

The next set of tests performed was aimed at evaluating the
accuracy of the bounds. This time we compared the upper and
lower mixed u bounds, and also the mixed pz and complex y upper
bounds. The complex u bounds were obtained by simply replacing
all the real perturbations with complex ones, but without chang-
ing the matrix. Thus the complex upper bound is strictly larger
than the mixed upper bound. The results are shown for sysrand
matrices in Figure 2. It can be seen that the bounds are reason-
ably tight, even for the largest (n = 50) problems. Note also that
we have a fairly wide spread of values for the gap between com-
plex u and mixed p. The results for crand matrices were similar,
except that there was typically not much of a gap between mixed
4 and complex u (see [1]).

2193

2

-r

T

T

vesysaes

v

Pomeang
I!Syti!!

0

<A
rr 1

Figure 2: Typical ratios of mixed-u lower to upper bounds, and
mixed-u to complex-u upper bounds, for sysrand matrices of sizes
10 (solid), 20 (dashed), 30 (dotted), and 50 (dashdot).

Complex Mu Uppar and Lower Beovnds Mined Mn Uppor and Lower Bounts

4

8 ¢ 3 3 8 3
:
1

hab

§
iiu

Figure 3: Complex-u and mixed-u upper and lower bounds versus
frequency for a random system.

A number of tests were performed using the nogap matrices,
nd it was found that the upper bound computation was typi-
cally with 1-2% of the optimum for these matrices. The lower
bound performance was not as good, and in fact the lower bound
power iteration can fail to converge on this type of matrix, and
yield a poor bound. Of course we cannot expect that our lower
bound routine is guaranteed to find the correct answer, since it is
attempting to maximize a non convex problem.

As a further test the bounds for the mixed y problem were
evaluated across a frequency range for some random systems (gen-
erated with “sysrand”), and compared to the bounds for the ap-
propriate complex y problem. Again the bounds seemed reason-
ably tight, and a typical example plot is shown in Figure 3.

The algorithm was also tested on a variety of other block
structures and the properties appear similar to those described
above. An exception to this is the pure real case (m, = m¢ = 0),
which appears to have significantly poorer properties than any
other. There are important reasons for this that seem inherent to
the problem, not the computation scheme (see [1]).

Note that the above tests were aimed at evaluating the typical
performance of the algorithm on an essentially random selection
of problems, and it appears that the algorithm is performing well
for most problems. This does not mean however that one will
never encounter mixed g problems where the gap between the
upper and lower bounds is large, and it can be seen from Figure
2 that a few such cases were found.

In addition to the numerical tests described here the “rmu”
software has been applied to a number of practical problems, aris-
ing from real physical systems. These include analysis of natural
frequency variations for flexible structures [13}, and variation of
missile autopilot dynamics with angle of attack and Mach num-
ber [14]. The software worked well for these problems, providing

tight bounds for the associated mixed u problems, and is now be-
ing B-tested at sites including Honeywell, Phillips, NASA Dryden
and several universities. This will provide additional experience
gding the algorithm’s performance on real engineering prob-

7 Future Directions

Although the algorithm presented here will usnally provide
bounds that are accurate enough for engineering purposes, in a
significant number of cases of interest, it will not. One possibility
for such problems is to improve the algorithm for computing the
bounds in theorems 1 and 2. This has been briefly discussed here,
and we refer the reader to [8] for the use of adaptive power iter-
ation to improve the lower bound performance, and [11] for the
use of LMI techniques to improve the upper bound computation.

Note however that the bounds from theorems 1 and 2 may be
far apart (regardless of the computation method). For these cases
we must consider improving the bounds themselves. A promising
approach is to use the existing bounds as part of a Branch and
Bound scheme, which iteratively refines them. In this way we can
develop a scheme to compute guaranteed bounds for the mixed u
problem. Since the problem is NP hard we must expect that the
worst case computation time for such a scheme will be exponen-
tial. The real issue is whether or not we can prodace a “practical”
scheme, whose typical computation time is polynomial. We believe
that it is possible to develop such a scheme, using the algorithm
presented here, and this will be further pursued in [6].

References

[1} P. M. Young, M. P. Newlin, aad J. C. Doyle, *x analysis with real para-
metric uacertainty,” in Proceedings of the 30** Comference on Decision
and Cowirol, pp. 12511256, IEEE, 1991.

{2] J. Rohn and S. Poljak, “Radius of nomsingularity.” to appear in Mathe-
deontrd,SpabaldSym

{3] J. Demmel, *The P dist to the st singul
tnx.'toappqu[Al(Jounﬂonlh&uxAﬂymudApphmhms

4] M. K. H. Fan, A. L. Tits, and 3. C. Doyle, “Robastacss in the pres-
eaceofmxedpannetncmtyudlnnoddeddma' IEEE

ctions on Autometic Control, vol. AC-36, pp. 25-38, 1991.
{s] P M, Yonl;lldl C. th,'Cﬂplmdpmﬂndepln
ties,” in Proceedings of the 29'* Conf on Decision and
Coutrol,pp 1230-1235, IEEE, 1990.

[6] M. P. Newlin and P. M. Young, *Mixed a problems and Branch and

::dg;;dniq-u.' submitted to 31" Confereace om Decision and Con-
1992,

{7] 3. Doyle, “Analysis of feedback syst with stractured uacertainty,”
IEE Proceedings, Part D, val. 129, pp. 242-250, Nov. 1982.

{8] 3. E. Tierno and P. M. Young. ‘Almptovedplomba.ldnandnphve
power iteration.” submitted to 31* Coaf o Decision and Control
1992.

[8] E. E. Osborne, “On precoaditioning of matrices,” Jowrnal of the Associ-
ation for C Machinery, vol. 7, pp. 338-345, 1960.

{10} G. J. Balas, A. Pnch.n:l,J C. Doyle, K. Glover, ndR.Smull ‘Devdop-
ment of ad i ft for and
in Proceedings of the American Control Conference, pp. 996—1001, 1991.

[11] C. Beck and J. C. Doyle, “Mixed x upper bound computation using LMI
optimization.” saubmitted to 31* Confe on Decision and C l,
1992,

(12] M. K. H. Faa and A. L. Tits, “Characterization and efficient computa-
tion of the structured singular value,” JEEE Transactions on Aus '
Control, vol. AC-31, pp. 734-743, 1986.

{13] K. Lim and G. J. Balas, “Line-of-sight control of the CSI evolutionary
model: Mo and g comtrol.” o be presented at the American Control
Conference, 1992.

[14] G. J. Balas and A. K. Packard, “Devel t and lication of time-
mnngp—m&mstednqusiotmtrddupdmmleutopdou’
J;:; Hopkins Applied Physics Laboratories, Final Report, January,
1992,

2194

