
Practical Computation of the Mixed p Problem

Peter M. Young * Matthew P. Newlin * John C. Doyle *

Abstract
Upper and lower bounds for the mixed u problem have recently
been developed, and this paper examines the computational as-
pects of these bounds. In particular a practical algorithm is de-
veloped to compute the bounds. This has been implemented as
a Matlab function (m-file), and will be available shortly in a test
version in conjunction with the p-Tools toolbox. The algorithm
performance is very encouraging, both in terms of accuracy of
the resulting bounds, and growth rate in required computation
with problem size. In particular it appears that one can handle
medium size problems (less than 100 perturbations) with reason-
able computational reqmurements.

1 Introduction
In recent yeas a great deal of interest has arisen with regard to
robustness problems involving real (e.g. parametric) uncertainty.
These problems involve uncertain parameters that are not only
norm bounded, but also constrained to be real. This type of
problem can be addressed within the p framework by extending
the definition of p so as to allow both real and complex uncer-
tainties in the block structure. This mixed p problem can have
fundamentally different properties from the more familiar com-
plex p problem, and these properties have important implications
for computation (see [I] for a review of the mixed p problem).

In particular it is now known that the general (real or) mixed
p problem is NP hard [2), and furthermore it appears that the
problem of computing guaranteed bounds may be NP hard as well
[3]. These results stronly suggest that any algorithm to compute
(bounds for) the mixed p problem must suffer from worst case
exponential (nonpolynomial) growth rate in required computa-
tion, or from bounds which are not guarateed to be tight, so
that it appears futile to purse exact methods-for computing p in
the purely real or mixed can for even medium suze problems (less
than 100 real parameters). Note however that these results do not
mean that one cannot develop "practical" algorithms to compute
upper and lower bounds for medium size problems, where 'practi-
cal" means avoiding exponential growth in computation with the
number of parameters for any problems which arise in enineering
applications. Important issues then become the efficient compu-
tation of the bounds and the degree to which they approximate
p, together with techniques for refining the bounds for a better
approximation (at an additional computational cost).

tJpper and lower bounds for the mixed p problem have re-

cently been developed [4, 51, and this paper examines the com-
putational aspects of these bounds. In particular a practical al-
gorithm is developed to compute the bounds. The theoretical
bounds described in {4, 5] require some reformulation before they
can be implemented in an efficient manner, and this is described
in sections 3 and 4, together with details of the algorithm con-
struction. The bounds involve solving certain optimization prob-
lems, and it is shown that the specific structure of these problems
can be exploited so as to speed up the computation considerably.
Some results from our extensive numerical experience with the
algorithm, regarding both the quality of the bounds and the com-
putation time, are presented in section 6, and it is seen that one

'Electrical Engineering, 116-81, California Institute of Techuology,
Pasadena, CA 9112S. This work was supported by ONR, NSF, NASA, and
Rockwell International.

can handle medium size problem with reasonable computational
requirements. Finally in section 7 we briefly mention some ar-
eas for improvement on the present scheme, and in particular the
use of these bounds as part of a Branch and Bound scheme to
compute guaranteed bounds for the mixed p problem (see [61).

2 Notation and Definitions
The notation used here is fairly standard and is essentially taken
from [4] and [5]. For any square complex matrix M we de-
note the complex conjugate transpose by M*, and the Frobenius
norm by IMIF. The largest singular value and the stractured
singular value are denoted by v(M) and pc(M) respectively.
The spectral radius is denoted p(M) and pR(M) = mazI{Al
A is a real eigenvalse of M), with pg,M) = 0 if M has no
real eigenvalues. For a Hermitian matrix M, then (M) denotes
the largest (real) eigenvalue. For any complex vector z, then x*
denotes the complex conjugate transpose and 1z1 the Euclidean
norm. We denote the k x k identity matrix and zero matrix by It
and 0k respectively.

The definition of p is dependent upon the underlying block
structure of the uncertainties, which is defined as follows. Given
a matrix M E Cxn and three non-negative integers mn, m¢,
and mc with m := mT + mn, + mc 5 n, the block structure
Kt;,(m,m, mc) is an m-tuple of positive integers

where we require 1> ki = n in order that the dimensions are
compatible with M. This detemines the set of allowable pertur-
bations, namely define

X,c: = {A = bock dRa6(8CIC,A,9 C Cr* * otttisXkhr+iX.n+}

gi E R,6jr E C,9- Ck"+"+'Xk"+-+' (2)
Note that X,c> CSKE and that this block strcture is suffi-
ciently general to allow for repeated real salrs, repeated complex
scalars, and ful complex block. Note also that the full complex
blocks need not be square, but we restrict them as such for no-
tational convenience. The purely complex case corresponds to

=0-O.
Definition 1 ([71) The structured singular wlue, psz(M), of a
matrizM E C""" with rspect to a bock structure K(m&,, mc, mc)
is defined as

,pc(M) = (min {w(): det(I - AM) = 0}) (3)

with pc(M) = iif noA e Xxc solves det(I AM) = 0.
In order to develop the upper and lower bounds for p we need
to define some sets of block diagonal scaling matrices (which are
also dependent on the underlying block structure).

Qc = {A E X,c :6 E [-1 11, AS = l,A4*fA = Sr+fl+,}
(4)

"Dx = {block diag(D1,. . . D".+mC, d,Ik++, X*
d4,c,,): 0< Di D E C tk,OcdCE R1

x; = {block diag(G,X. . ., Gmre °Okmr.2 7 - *01Q )m
G = GEC -x -

(5)

(6)

2190

1992 ACC/TM14



=- {bior.k dzag(Dl. ... Dnr+lnc dllkm,+mcr+i *

dmCIk^.):de4D.) $ 0,Di E Ckixk,di $ (di EC}

Cr = {blockdiag(gj,.. gn,Onj :gi E R}

Theorem 2 ([4]) For any matrix M E Cn"n, and any compati-
(7) ble blck strwcture I suppose a. is the result of the minimization

problem
(8)

where n7 = E'r ki and n. = n - nr.

3 The Lower Bound for Mixed p
The theoretical basis for the mixed p lower bound lies in the
fact that the p problem may be reformulated as a real eigenvalue
maximization. The following theorem is taken from [5].
Theorem 1 ([5]) For any matrix M E Cnxn, and any compati-
ble block structure KC

maX pR(QM) =pr(M) (9)

This immediately gives us a theoretical lower bound since we have
that for any Q E Qr, pRQM) < pr(M). The idea then is to
find an efficient way to compute a local maximum of the function
PR(QM) over Q E Qr. It turns out that this can be done by
means of a power iteration. The iteration scheme usually con-
verges fairly rapidly, and each iteration of the scheme is very
cheap, requiring only such operations as matrix-vector multiplica-
tions and vector inner products. This gives rise to a lower bound
algorithm which is much faster than would be obtained by di-
rectly solving (9) via standard optimization techniques (although
this maximization is carried out implicitly by the power itera-
tion). The theoretical development of the power iteration is fully
described in [5] and we will not go into any of the detail here.

In fact this scheme is a very simple power iteration, and al-
though it usually converges to a satisfactory equilibrium point,
the convergence is not always guaranteed. However in all cases
one can still obtain a candidate mixed perturbation from the itera-
tion scheme. From this one can compute a lower bound (provided
that the mixed p problem contains some complex uncertainty) by
simply wrapping in the real perturbations, and then evaluating
the spectral radius of the associated complex p problem, scaled
by the candidate complex perturbations. This scheme is imple-
mented in the "rmu" code so that the algorithm always returns
a valid lower bound, regardless of convergence. In fact the per-
formance data presented in section 6 was collected regardless of
whether or not the power algorithm converged on the problem
(i.e. no data points were excluded).

Of course it is stil desirable that the power iteration con-
verges, since in that case it is more likely that the lower bound
obtained is a good one. It is well known that the convergence
properties of standard eigenvalue and singular value power algo-
rithms (which can be obtained as special cases of this algorithm)
can be improved by inverse iteration, and similar adaptations to
the mixed p power algorithm are being investigated. Preliminary
results have shown an improvement in the convergence properties,
and it is hoped that further refinements will enable the conver-
gence to a local maximum of (9) to be guaranteed [8]. Note that
we cannot expect to be able to guarantee to find the global max-
imurm of (9), since the problem is not convex.

4 The Upper Bound for Mixed p
The standard upper bound for complex p involves a singular value
minimization problem, or equivalently an eigenvalue minimization
problem on a Hermitian matrix, with respect to a certain "D
scaling matrix" [7]. The mixed p upper bound takes the form of
a more complicated version of the same problem, now involving
an additional "G scaling matrix". The following theorem is taken
from [4] (though stated here in a slightly different form).

a.= inf [min{a: (M*DM + j(GM - M*G) - aD) < 0}]
GEQc

(10)
then pr(M) 5 max(xO,a.*)
Note that the above minimization involves a LMI (Linear Matrix
Inequality), and hence it is convex. Note also that if we impose
the restriction G = 0, we recover the standard complex p upper
bound.

Since the upper bound is a convex problem there are a whole
array of numerical techniques one could use to tackle this min-
imization. Note however that for even medium size problems
(n < 100) then depending on the block structure X, the optimiza-
tion over the D and G scaling matrices could involve optimizing
several thousand parameters. Therefore, in order to tackle such
problems with reasonable computation times, a straightforward
application of brute force optimization techniques wiU not suffice.
Instead we will exploit the specific structure of this problem, so
as to develop an efficient algorithm, which can handle problems
of this size.

The algorithm implementation relies heavily on the fact that
the upper bound may be reformulated several different ways, as
stated in the following theorem.
Theorem 3 Suppose we have a matrix M E C"x" and a real
scalar # > 0, and for any D e C"n" denote MD -_- DMD-1.
Then the following statements are equivalent:
L There exist matrices D EDC,G E,r such that:

x (M*DIM + j(GCM - M*GW) - /21D) <0 (11)

Il. There exist matrices Drr E 'r,GC,. E Or (or Dri E
D,c,G E gr) such that:

x (MAJ,MD,I + i(GIUMD,r - M,,CGil)) </2 (12)

III. There exist matrices D1r, E i2,CJsGr E OC (or D191 E
DVC,Gzr E Oic) such that:

((MD -jG- r (I, + G2ZZ) 2 < 1 (13)

IV. There exist matrices D, E xDr,Giv E Oic (or Di,v E
Dx,Giv E Or) such that:

w ((In + GX)-*(4 _Gv' (I, +G)v)_) < 1 (14)

The equivalence between I, II, Il for DI,1D9,,,D9ir ECDV and
GI GII,I GC E OK was shown in [4]. Note also that we can easily
obtain the formulae to convert between the various forms (there
are several more equivalent forms, slight variations on the above,
which can also easily be obtained).

These different formulations, whilst mathematically equiva-
lent, have quite different numerical properties. For the purposes
of developing an upper bound algorithm, we will be concerned
mostly with the formulations in (11) and (14). It is clear from
(14) that as an alternative to carrying out the minimization in
(10) we could compute the 'minimum' 5 > 0 such that

Octc,OcaO7 ((I+ \$) / -_j)(Ij+ 02)d)<
(15)

Note that the theoretical equivalence of the two problems breaks
down at /5 = 0 (and so for these cases strictly speaking there is no

2191



'minimum' d) but this presents no problem for a practical compu-
tation scheme since we merely quit if the upper bound fals Wow
some prespecified tolerance (which can be arbitrarily small). Each
of these two different formulations of the upper bound problem
has its own advantages. The problem statement from (10) has the
advantages that it is linear in the matrices D andd G, and is con-
vex (and hence one will not have problems associated with local
minima). The problem statement from (15) has the advantages
that one is trying to minimize the norm of a given matrix (which
offers some numerical advantages), that i) enters the problem a-
actly as in the standard complex p upper bound, that C enters
the problem in a balanced symmetric fashion, and that C is now
a real diagonal matrix.

The upper bound algorithm implemented here uses a mixture
r the formulations in theorem 3. Initially we tackle the problem

.n the form of (15). Here we can use some methods from the com-
plex p bounds, together with various other techniques, to obtain
fairly good estimates of Ad and P. These are then converted
into an initial guess for the problem in the form of (10) and the
algorithm then proceeds to improve on these. More specifically
the algorithm structure is as folows:

1. First we balance the matrix. This involves computing D to
solve infb K IbMb-IIF using a generalization of Osborne's
method [J (s" in the stazdard complex p upper bound). The
matrix R e ML IMI is then balanced, and this procedure
generates our nutial guess for bE 5c.

2. The lower bound is now computed usin the algorithm from
section 3, applied to the lanced matrix M.

3. Now we have a lower bound, and i(AI) serves as a first guess
for the upper bound. This is then improved upon in the
followig way. For any fixed level of fi compute each block
of C; as C = -2}(ki - Ai"*) where hi, is the corresponding
sub-matrix ofM (i. e. jCi cancels the Skew-Hermitian part of
Mf,). Then bisect on f between the lower and current upper
bound to find the smallest P such that

(+ 62)-i (* -sj) (I+2) 4) 1

Fimally perform aneigenvalue decomposition on 0 as 0=
UAU* (with U Unitary, A diagonal and real), and convert to
O e Ox by redefining C a A and absorbing the U matrix
into D E tc> and M.

4. We now have initial guees for D E t,c and 6 E ¢c. The
next step is to compute a desct direction for C E Cc, to-
gether with an appropriate step length, and a new 0 is com-
puted by taking this desnt step. This entire procedure is
then repeated once more.

5. The matrix D) E 15, is updated. by computing a diagonal
matrix DL E LIx (so that it commutes with 0 e Ox) which
minimizes

inf bD(I+c}A (X3 JG) (I + G2)1b;
1d diagonal

again using a generalized Osborne's method. We then absorb
td into fD E x.

6. Step 4 is repeated.
7. We now have guesses for D E ic,0 E Oc and P for the

upper bound problem in (15). These are converted into
D E DX,G E Cc which form guesses for the upper bound
problem in (10). We now improve these guesses using a de-
scent algorithm, which iteratively computes a descent direc-
tion, and an appropriate step length, for both D E Dc and

G E Scx uimsltvzseo At each step we compute a new up.
per bound by slving the aociated eevalue problem, and
quit when the bound stopsde g (within tolerance).

The balancig in step 1 of the algorithm sre sveral pur-
poses. Firstly we obtain a D E 'O, which approximately solves
lIfb,cti, W(bMt-1), or in other words the standard upper bound
for the associated complex p problem. Since we have reformulated
the problem in (15) so that the b matrix enters exactly as in the
complex p upper bound, and the 0 matrix enters in a balanced
symmetric fashion, this I) matrix also serves as a good fint gues
for the mixed p upper bound. A good deal ofnumerical experince
with the generalized Osborne's method for computin complex p
upper bounds has shown that is very fast and usually works well,
and so by reformulating the problem in this fashion we can exploit
these properties in the mixed problem as wel. This balancing also
numericaly preconditions the problem, and can greatly improve
the performance of the subsequent steps.

Step 3 of the algonrthm generates ouriitial guess for . The
approach is somewhat intuitive, but although there are no firm
guarantees, it appears in general to work quite well. Thus our
D,C estimates, which require very little computation time, are
usually quite good before we enter the descent portion of the al-
gorithm, and hence we can restrict ourselves to a small number of
deset steps. This is crucial in obtaining a fast implementation,
since the descent steps are quite computationaly expensive.

Note that in step 7 we are required to compute a descent
direction for D E Dxc,G E Cc, together with an appropriate step
length. We compute matrix descent direction for D, Gin one shot
by computing a generalized gradient of the upper bound function
(details will appear elwhere). In this way we avoid separate
computation for the individual elements of the D,:G matrices.
This is important not only for speed of computation, but also
because in the case of repeated eigenvalues there may not be a
descent direction with respect to any ndinvidual elements of D, G,
when there is a descent direction if all the elements are allowed to
move simultaneouly. In the case that the maimum eigenvalue
is distinct, then this deset direction coincides with the usual
gradient direction. The step lenth computtion is somewhat
ad-hoc, but ensures that the maximum eigenvalue of the upper
bound function decreases, and that we satisfy the constraint D >
0. Similar comments with regard to the computation of descet
directions and step lengths apply to steps 4 and 6.

This implementation of the upper bound results in an algo-
rithm which is quite efficient, and can handle medium size prob-
lems (n < 100) with reasonable computational requirements. It
has been implemented as as Matlab function (m-file) tArmu", and
will be available shortly in a test version in conjunction with the p-
Tools toolbox [10]. The software returns upper and lower bounds
for pr(M), together with appropriate scaling matrices b E 2k,
Ce Cx for the upper bound problem in (15), and Q E Qc for the
lower bond problem (9). Reults regarding both the quality of
the bounds and their computational requirements (as a function
of problem size) are presented in section 6.

The mixed p upper bound (in the form of (10)) can be viewed
as a special case of a class of LMI problems. The solution of
LMI's is a subject of much resach interest right now [11], since
they appear in many control problems. This algorithm represents
a first attempt at solving one particular LMI. As more refined
algorithms for the solution of LMI's appear, then they can be
used to improve the p upper bound computation.

5 Generating Test Matrices
It was stated in section 1 that the mixed p problem is NP hard,
which implies that the worst case performance of our (or any

2192



other) algorithm will be poor, either in terms of the accuracy of
the bounds, or the growth rate in computation. In fact we can
construct examples for which the bounds in theorems 1 and 2 are
arbitrarily far apart. For engineering purposes then the real issue
becomes whether or not we can develop a 'practical" algorithm,
whose typical performance is acceptable. In order to examine
the typical performance in section 6, we will run the algorithm
repeatedly on a large number of test matrices, randomly generated
from within certain classes, and collect statistical data. In this
section we describe three specific types of random matrices that
will be used.

The most straightforward way to generate random complex
matrices in Matlab is with the p-Tools "crand" command. This
generates matrices whose elements are complex random variables,
and by setting "rand('normal')" in Matlab we can choose these
elements to be normally distributed with zero mean. We wil refer
to this type of random matrix as a "crand" matrix.

Unfortunately it is doubtful that crand matrices are very rep-
resentative of those of practical interest. Since the matrices that
the p software will be run on are typically obtained from control
problems, a fairly natural class of random complex matrices is
to randomly generate State Space 'A,B,C,D' matrices using the
p-Tools "sysrand" command, and then evaluate the transfer ma-
trix at some frequency (usually placed roughly in the middle of
the modes). We will refer to this type of random matrix as a
"sysrand" matrix.

For the purposes of testing algorithms it is desirable to be
able to generate problems for which we know the answer a-priori.
The following algorithm provides us with the means to generate
such problems:

1. Randomly generate matrices D E DX,G E Si and Q E Qx
with the added restriction that Q'Q = I,. In addition ran-
domly generate a Unitary matrix Y E CnIXS, and a real non-
negative diagonal matrix E = diag(al . ..a,,) with

ai = I for i = 1...r
ai<1 for i=r+l...n (16)

where r is some integer satisfying 1 < r < n. Finally generate
a random unit norm vector iq E C' with the restriction that:

%=0 for i=r+1...n (17)

2. Compute X E C,xn as any Unitary matrix which satisfies
the equation

X -= (Q-1 - jG)(I, + G2y-AY,9 (18)

It is easy to check that the matrix (Q 1 - jG)(In + G2)-2Y
is Unitary, so that this is always possible.

3. Compute M E Cnxn as

M = D-' (XsYr(In + G2+ jG) D (19)

Theorem 4 Suppose we have a matrix M C Cnxn and a block
structure X. Then denoting the upper bound from theorem 2 by
fs we have that the following two conditions are equivalent:

1. There exist matrices D E Dx and G E Cc achieving the
infimum in theorem 2, and fic(M) = pr;(M) 1.

2. M can be generated by the above algorithm.
The above algorithm was first developed for the purely complex
case in [12]. Note that we can control the number of eigenvalues
coalesced at the minimum of the upper bound function in theorem
2, and a simple extension to the algorithm allows us to also control
the number of eigenvalues coalesced at the maximum of the lower
bound function in theorem 1.

I

-s-a-
odsmB

I

Figure 1: Typical computation requirements versus matrix size
for mixed-p problem (solid) and complex-p problem (dashed).

Roughly speakdng this algorithm allows us to randomly gen-
erate (all) problems with p equal to its upper bound, equal to
one (together with optimal scaling matrices achieving the upper
and lower bounds). Note that for these problems there is no gap
between the bounds from theorems 1 and 2, although the optimal
lower bound requires the solution of a non convex maximization
problem. We will refer to a random matrix generated by the above
algorithm as a "nogap" matrix.

6 Algorithm Performance
There are many questions one could ask with regard to the algo-
rithm performance, both in terms of computation time and accu-
racy of the resulting bounds. We decided to focus on the algo-
rithm performance versus matrix size for a fixed set of uncertainty
descriptions. The first test performed was to examine the aver-
age computational requirements for the algorithm implemented in
Matlab. For this purpose we used crand matrices (although the
results are not too different for the different classes). The com-
putational requirements versus matrix size are shown in Figure
1 for block structures consisting of all scalar uncertainties, with
90% of them chosen as real and the rest complex. The same data
for the appropriate complex p problem is shown for comparison.
The results were obtained running Matlab on a Sparc 1 worksta-
tion, and it can be seen that we can reasonably expect to handle
problems of size 10 in about 10 seconds, up to problems of size 50
in about 2-3 minutes.

It can also be seen that the (experimental) growth rate in
computation time for the existing implementation is approxi-
mately n2. This is probably an artifice of the implementation in
Matlab, which is an interprative language. A more realistic mea-
sure of the computational growth rate is in terms of total floating
point operations (flops). If this measure is adopted then it is seen
that the (experimental) growth rate in flops is approximately n3.
In any case the algorithm growth rate appears reasonable whether
measured in terms of time or flops required.

The next set of tests performed was aimed at evaluating the
accuracy of the bounds. This time we compared the upper and
lower mixed p bounds, and also the mixed pA and complex p upper
bounds. The complex p bounds were obtained by simply replacing
all the real perturbations with complex ones, but without chang-
ing the matrix. Thus the complex upper bound is strictly larger
than the mixed upper bound. The results are shown for sysrand
matrices in Figure 2. It can be seen that the bounds are reason-
ably tight, even for the largest (n = 50) problems. Note also that
we have a fairly wide spread of values for the gap between com-
plex p and mixed p. The results for crand matrices were similar,
except that there was typically not much of a gap between mixed
p and complex p (see [1]).

2193



CosuoflSVm02nnCr

--

Figure 2t Typical ratios of mixed-p lower to upper bounds, and

mixed-p to complex-pA upper bounds, for sysrand matrices of

1t) (solid), 20 (dashed), 30 (dotted), and 50 (dashdot).

V-q -RF-

Figure 3: Complex-pu and mixed-p upper and lower bounds versus

frequency, for a random system.

A number of tests were performed uigthe nogap matrices,

andCI it was found that the upper bound computation was typi-

cally with 1-2% of thLe optimum for these matrices. The lower

bound performLance was not as good, and in fact the lower bound

power i'teration can fail to converge on thiis type of matrix, and

yield a poor bound. Of course we cannot expect that our lower

bound routine 'is guaranteed to find the correct answer, since it is

attempting to maxiumize a non convex problem.

As a further test the bounds for the mixed pu problem were

evaluated acrcoss a fr-equency range for some ranidom systems (gen-

erated with "sysrand"), and compared to the bounds for the ap-

propriate complex pAproblem. Again the bounds seemed reason-

ably tight, and a typica example plot is shown in Figure 3.

The algorithm was also tested on a variety of other block

structures and the properties appear similar to those described

above. An exception to this is the pure real case (mc = mnc = 0),

which appears to have sinfic-antly poorer properties than any

other. There are important reasons for this that seem inherent to

the problem, not the computation scheme (see [1]).

Note that the above tests were aimed at evaluating the typical

performance of the algorithm on an essentially random selection

of problems, and it appears that the algorithm is performing well

for most problems. This does not mean however that one will

never encounter mixed pa problems where the gap between the

upper and lower bounds is large, and it can be seen from Figure

2 that a few such cases were found.

In addition to the numerical tests described here the "rmu"

software has been applied to a number of practical problems, a.ris-

ing from real physical systems. These indlude analysis of natural

frequency variations for flexible structures [13], antd variation of

missile autopilot dynamics with angle of attack and Mach num-

b,er (14]. The software worked well for these problems, providing

tight bounds for the asoitdmixed pa problem, and is now be-
ing 6l-tested at sites includn Honeywell, Phillips, NASA Dryden
and several univerSities TIs& will provide additional experience
regarding the algoithm's perforance on real enierng prob-
lems.

7 Future Directions
Although the algrithim presented here will musuly provide
bounds that are accurate eonoug for eniern up ,in a
significant number of cases of interest, it Will not. One possibility
for such problems is to improve the agrtmfor computin the
bounds in theorems I and 2. This has been bridfy dsuedhere,
and we refer the reader to [8] for the use of adaptive power iter-
ation to improve the lowe bound performance, and [11] for the
use of LW techniques to improve the upper bonmd computation.

Note however that the bounds from theoems 1 anLd 2 may be
far apart (regardless of the computation method). For these case
we must consider improving the bounds thLemslves. Appoisin
approach is to use the existing bounds as -ar of a Branch and
Bound scheme, which iteratively refines them. In this way we can
develop a scheme to compute guaranteed bounds for the mixed pu
problem. Since the problem is NP hard we must expect tha the
worst case computati'on time for such a scheme will be exponen-
tial. The real issue is whether or not we can produce a "practical"
scheme, whose typicalcomputation time is polynomial. We believe
that it is possible to develop such a scheme, uigthe algorithm
presented here, and this will be further pursued in [8].

Rteferences
[1] p. M. Younkg, M. P. Newlin, and J. Ct Doyie, 'p ana1pis withk real pars.

metric uncertaintz'- in Pitn -.Sinp- of tA. UP Conferenc an Decision
end Control pp. 1251-1256, IEEE 199.

(2] J. Rols and S. PoIjak, 'RatEs of osaiaglarityY' to appear in Unthe-
ma!ic of Coatrcd Signas and Systenm

(3] J. Demmne, -Ile comspomeatwise distanm to the nearest singlul man.
trix' to appear in SIAM Journal co Matrix Aalysm and Appicaio

[4] M. K. H. Fan, A. L. The, ad J. C. Doyle, 'Ichuastuess is the prees-
eacs of mixed parametric ucrainWty and uamodele dywnaics, 1EREE
llunactio.m on AW.oomtic Centeml vol. AC-36, pp. 25-38,1i91.

[5] P. M. Young and J. C. Doyle 'Cowputation ofp with real ad. complex
uncetaitia' i Prcrig ofthe tV Conferenc on Decision nd

Conftrol pp 1230-1235, iEE, 1990.
[6] U. P. Newlin and P. U. Young, 'mixd p proS;ems &ad Brand sad

Bound tehius'submitted to 31s C ane~ Decison and Con-
troal 1992t

J71. Doyle, 'Analyais of Seealba systems with structured uncertaity,'
lEE Proceedings, Part D, vol. 129, pp. 242-250, Nov. 1982.

J8. E. -rmro and P. M. Young,-A'Anpimpved p lowe bound via adaptive
power iteration.' submitted tos31.i Coiafrene on Decision &ad Control,
199.

(9] E. E. Osborne, 'Osn cniimn of matricet,' Journal of the Associ-
ation for Coraputing Machinery, vol. 7, pp. 338-345, 1960.

(10] G. 3. Balas, A. Packard, J.C. Doyle, K. Glover,mad R.Smzith, 'Develop-
meat of advanced coutrol deign wftware br rfesearchIers and enigineers,'
is Pnrtslirgsg of the Argencsn Control Conferrence, pp. 996-_1001, 1991.

[11] C. Beck and J.0C. Doyle 'Mixed pg upper bound computationausing LMI
optimization.'1 submitted to 31W Conference on Decision and Control,
199.

(12] U. K.- H. Faa and A. L. Tits 'Charnterinatiu &ad efficient co0mputa-
tion of the structured singumlar valse,' IEEE Tbn.oactions on Automatic
Control, vol. AC-Si, pp. 734-743, 198$.

[13] K. Lim and G. 3. RaIns, 'Line-of-sight control of the CS! evolutionary
model: 74, and jp control.' to be presented at the American Control
Conference, 1992.

[14] G. 3. Balmanad A. K. Packard, 'Development aad aplctOnf time-
varying p-synthesis techniques for coetrol desiga of Mnimie antopilots.?
John Hopkins Applied Physics Laboratories, Final Report, January,xm.

2194

I I,

-aoufw M a-


