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Humans, as well as many living organisms, are gifted with the power
of Bseeing[ and Bunderstanding[ the environment around them
using their eyes. The ease with which humans process and
understand the visual world is very deceiving and often prompts us
to underestimate the effort and methods needed to build practical,
effective, and inexpensive computer vision systems. In essence,
humans have a 500-million-year head start due to evolution; it is
extremely difficult at this point to build a computer vision system
that has the abilities of a three-year-old child. However, by confining
ourselves to particular domains, we can often find shortcuts to
solve particular problems. This paper illustrates a number of such
solutions in various areas developed by our group at IBM. These
include object finding for video surveillance, person identification
via biometrics, inspection of manufactured items along railways,
and scene understanding for driver assistance, as well as object
recognition and motion interpretation for retail stores. We discuss
the real-world constraints for each system and describe how we
overcame the irksome variability inherent in each task. By further
analyzing such successful systems and comparing them to each other,
we can come to understand the common underlying problems and
thus start to extend our initially limited areas of competence into a
more general-purpose vision toolkit. This paper concludes with a
set of challenging unresolved problems that if solved could spur
great progress in practical computer vision.

Introduction
There has been spectacular growth in the computing

industry and the digital camera industry over the last decade,

which is starting to allow computer vision to become

a part of our daily lives. With the advent of the high-

definition television and the inexpensive complementary

metal-oxide semiconductor (CMOS) sensors, even recent

mobile phones have more than 5-megapixel acquisition

capability. In terms of cost per bit of information, cameras far

surpass nearly every other sensor; the trick is to make sense

of these bits. This achievement has been aided by several

other technologies, i.e., powerful computing, high-density

storage, and high-bandwidth communications, all at

affordable costs. In addition, machine learning has made

inroads in many applications; therefore, having a large

corpus of machine-readable data available on the web is a

significant benefit.

Computer vision can be used for several different kinds of

tasks. One long-standing application is in inspection and

metrology. For instance, on an assembly line, vision can be

used to ensure all bottles have their caps properly secured

or to verify that there are no cracks in the glass. Similarly,

quantitative visual measurements can check that steel beams

are being produced with the correct thickness or can be

used to develop 3-D terrain maps from stereo imagery

(e.g., photogrammetry).

Another primary use of computer vision is for object

recognition. This can be in the context of a very specific

(often manufactured) object or the more difficult case of

determining the generic class of some object (e.g., a flower).

The problem is often further broken into the Bwhat[ and

Bwhere[ questions. Vision systems try to either spot some
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object in a scene or identify an already delimited item.

It is typically very difficult to do a complete parsing of the

scene simultaneously into all objects and their identities.

Yet, another use of computer vision is estimating the pose

(position and orientation) of an object and evaluating its

spatial trajectory over time. This has applications in process

control, e.g., plucking a part out of a bin or properly

reorienting a unit for further assembly operations. Tracking

is a crucial part of many unmanned aerial vehicle

(drone aircraft) tasks but can also be used in commercial

applications such as monitoring whether customers stop and

look at the displays at the ends of grocery store aisles.

In addressing these applications, there are a few problems

that arise repeatedly. First, before something can be

characterized or measured, it must be separated from all the

background clutter. Second, many visual properties, such as

color and edges, are significantly affected by the ambient

illumination conditions. Controlling or compensating for this

is often necessary in order to obtain repeatable features.

Finally, objects in a 2-D image can look significantly

different depending on where the camera is. For instance,

a direct overhead view of a person (e.g., a bald head and

shoulders) can be quite confusing at first.

As will be seen in the sample projects that follow, these

challenges can be handled in a number of ways. One is

by devising special invariant descriptors. Another choice is to

attempt to normalize the image to some canonical illuminant

or viewpoint. Alternatively, the system can simply be

engineered with careful placement of the camera and control

of the background and by supplying its own light. In many

industrial cases, this is easier, less expensive, and more

reliable than trying to handle the problems computationally.

Much of our group’s particular approach to computer

vision is motivated by such commercial concerns. It is

generally important that the deployed system be as

inexpensive as possible, tending to rule out special-purpose

sensors. It is also important that the system provide answers

in real time, i.e., a constraint (in conjunction with cost) that

favors simpler algorithms as opposed to highly iterative

mathematical optimization approaches. Finally, customers

want the system to work at least as well as a human and

typically in all sorts of adverse imaging conditions. We do

not have the luxury of tailoring the problem or throwing out

some samples in order to remain in a comfortable part of the

problem space.

The performance of computer vision systems is itself

something that is problematic to measure. Computer vision is

generally a form of pattern recognition and, as such, never

presents Bsure[ answers. There is almost always a tradeoff

between, e.g., false alarms and missed detections. Most vision

systems have adjustable parameters that allow the user to

choose an operating point within the specific distribution of

inevitable errors. Yet, determining what constitutes acceptable

overall performance is somewhat subjective. There are many

possible metrics such as the equal error rate, the F measure,

and the area under the receiver operating characteristic curve.

However, in practice, we have found that there is a hard

limit on the false-alarm rate for many applications. Thus,

the most useful single number reflecting the deployed

accuracy of the system is its corresponding detection rate

at this upper limit.

In order to measure the performance of a vision system,

it is necessary to collect quite a lot of data. Typically, this

data must also be annotated (by hand) with the correct

decision or features. Even more data is needed for a learning

system to ensure separate training and test sets. Assembling

a sufficient quantity of data is surprisingly time-consuming

and expensive (not to mention tedious). One also has to be

careful that the statistics of the database match or at least

cover the actual statistics observed in the field. This means

that, if it rains 20% of the time, then there should be a

sufficient number of rainy images in the database. When

debugging the system, it is also useful to have a Bgap analysis[

tool that will automatically link back to this database to show

the developer under which conditions errors are occurring.

We have found building such tools essential.

The following sections of this paper describe several

projects in our group that illustrate different uses of computer

vision and show how we have addressed the recurrent

subproblems. In particular, we provide an overview of the

advances that computer vision has made in video

surveillance, biometrics, retail monitoring, rail safety, and

driver assistance, as demonstrated by the customer solutions

that our group has deployed over the past decade. The

material in this paper has been described more completely in

previous various conference and workshop papers; readers

interested in the details should consult the relevant citations.

Video surveillance
The remarkable growth of sensor data acquisition has led to a

situation where there is a shortage of personnel to monitor all

of the data that is generated. Such a scenario is typical in a

video surveillance situation, where a massive number of

cameras are deployed to monitor large geographical areas

such as cities. A typical municipal command and control

center will have camera monitors covering an entire wall

and a bevy of humans monitoring all the incoming video

feeds for suspicious activities. Such human monitoring not

only suffers from loss of attentiveness, since one cannot

simultaneously focus on all the activities in all the cameras

at once, but also from human fatigue and boredom while

looking at these camera feeds for extended periods of time.

The IBM Smart Vision Suite (SVS) has been deployed

in many cities around the world and has even helped the city

of Chicago to solve a high-profile case [1]. SVS not only

offers real-time alerting capabilities but also enables the

user to search for events of interest after the fact. The number

of pole-mounted street cameras in a large metro city is
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typically around 1,000–5,000. The number of events (vehicle

traffic only) per day per camera on average is 50,000.

Therefore, the number of events generated by a surveillance

system is 50–250 million per day and 1.5–7.5 billion per

month. The IBM SVS is one of the few surveillance systems

that support indexing of such a large amount of data.

It does this using a combination of web application server

clustering and database partitioning.

Figure 1(a) shows the high-level architecture of our

system. The analytics engine processes frames from the video

cameras. Specifically, it detects and tracks people and

vehicles, and then indexes and stores this data in a relational

database. It also provides Structured Query Language-based

event-retrieval mechanisms that let it respond to requests

such as Bshow me all the people who entered this facility

from time X to time Y[ or Bshow me all the red cars that

crossed this avenue last month.[ This second query illustrates

an important and unique feature of IBM SVS: the ability to

search for suspicious vehicles based on their fine-grained

semantic attributes. Previous solutions have generally relied

on license-plate recognition or vehicle classification, which

may not be effective for low-resolution cameras or when

the plate number is not known. Our current implementation

[2] allows the user to search automatically for vehicles

based on color, size, length, width, height, speed, direction

of travel, date/time, and location, but many more attributes

could be considered, including measurements from

nonvisual sensors.

Most commercial surveillance systems rely on background

modeling for detection of moving objects, particularly

vehicles. However, they fail to handle crowded scenes well,

since multiple objects close to one another are often merged

Figure 1

(a) High-level system architecture for vehicle search based on fine-grained attributes. (b) Traditional methods based on background modeling fail to

segment vehicles in common urban surveillance conditions. In crowded scenes, groups of vehicles are often clustered into the same blob obtained by

background subtraction. Shadow effects and reflections also cause issues. Note that the vehicle bounding boxes are not precise, posing problems for

subsequent modules such as vehicle color estimation. (c) Examples of vehicle detection results in challenging urban environments, involving crowded

scenes, environmental factors, and different camera viewpoints using our novel motion-let approach (�2011, ACM and IEEE).
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into a single motion blob. Environmental factors such as

shadow effects, rain, and snow also cause issues for

object segmentation [see Figure 1(b)]. To support the

vehicle-search feature, we instead have implemented a

novel multiview detection system that relies on a set of

Bmotion-let[ classifiers. This consists of a bank of trained

detectors using vehicle samples clustered in various parts of

the motion configuration space [3]. We learn each detector by

using massively parallel feature selection of local image

patch descriptors. In addition, we can detect multiple types

of vehicles, such as buses, trucks, sport utility vehicles,

and compact cars, by training the motion-let detectors in a

shape-free appearance space, where all training images are

resized to the same aspect ratio. At test time, the system

automatically adjusts the aspect ratio of the sliding window

as appropriate for the various vehicle types.

Figure 1(c) shows examples of vehicle detection in

challenging urban environments involving crowded scenes,

environmental factors, and different camera viewpoints.

Our detection system runs at 66 frames/s on a 2.4-GHz

processor with 3 GB of random access memory. This is

one example of robust real-world object recognition despite

uncontrolled and often adverse imaging conditions. It can

handle a broad range of camera view angles, ambient

lighting, and weather conditions, as well as wide variations in

vehicle structure. It essentially does segmentation (e.g., for

later color and size determination) by direct recognition.

We have described our algorithms for attribute-based

vehicle search in urban surveillance environments as part

of the IBM Smart Surveillance System. Many other

commercial systems for intelligent urban surveillance exist in

the market. Examples include the systems of companies such

as Siemens [4], ObjectVideo [5], and Honeywell [6],

to mention just a few. Video surveillance has also been an

active research topic in the academic community, e.g.,

at University of Central Florida [7], University of Southern

California [8], and Ohio State University [9]. One of the key

advantages of the IBM system over previous work is its

ability to handle challenging urban environments such as

crowded scenes and environmental factors. Direct

model-based recognition of vehicles (and people), i.e.,

as opposed to tracking all moving objects, is one step in

this direction.

Biometric recognition
Like surveillance, biometrics also deals with security.

The task of an automated biometrics system is to recognize

people based on their physiological or behavioral

characteristics [10]. The system recognizes an enrolled

subject at a later time either by identifying one person from

among many (also known as 1 : N matching) or by verifying

that a person’s biometric characteristic matches with a

claimed identity (also known as 1:1 matching). Biometrics

are often preferred over token-based (e.g., card key) or

knowledge-based (e.g., password) authentication methods

because they cannot be lost or stolen and are tightly linked to

a particular person (i.e., cannot be shared). Here, computer

vision can contribute to enhancing both the security and

the convenience of everyday activities such as airline

check-in.

A typical biometrics system consists of a front-end sensor,

a feature extractor to compute salient attributes from the

input signal, and a matcher for comparing two sets of such

features [11]. Of particular interest are biometric systems

based on the iris (colored part) of eyes since there is a

surprisingly high information content in the visual texture of

this region [12]. We have built a complete end-to-end system

that extracts and compares such iris patterns [13], which

illustrates many of the applications and challenges of

computer vision.

As shown in Figure 2, we start by taking a close-up image

of the eye, i.e., typically in the near infrared. The difficulty

is then to find and characterize the iris itself (outlined in

Figure 2

(top left) Iris recognition requires the system to analyze the colored

part of the eye. It does this by (top right) first locating the pupil,

(middle) unwrapping the circular surroundings, and then determining

the outer boundary. (bottom) Actual binary iris code is an encoding of

the texture in the extracted annular segment (�2008, IEEE).
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green). We start by localizing the pupil, which in such

images, is usually the darkest region. The upper right in

Figure 2 shows a simple intensity-thresholded version of

the input image that gives an approximate segmentation

of the pupil, albeit with some dropouts due to specular

highlights. To better localize the pupil, we fill in small gaps

and then fit an elliptical model to the binary blob.

After this, we apply a geometric transform to Bunwrap[ the

rest of the image from the pupil. The top strip image shows

this, where the blue line is the edge of the pupil ellipse.

We now look for areas with high values of oriented contrast

(next strip) to help delimit the outer boundary of the iris.

Using this, we carve out the section between the blue and

red lines to give a strip containing just the iris information.

Note that this corresponds to the green annular region in the

original image.

Finally, we convert the texture image to a binary vector

(bottom) using the sign of a 1-D log Gabor convolution.

The system uses this binary pattern to match against stored

representations in a similar format. Note that, often, the

complete iris is not visible in an image due to occlusion by

the eyelids and lashes. This is indicated by the black Bbite[

taken out of the unwrapped iris image. To find such regions,

we examine a thin region (red box) around the outer

boundary in the edge image. If the boundary is not sharp due

to occlusion, extra texture, specular reflections, or poor focus,

we excise this region using a straight line in the original

image (a parabola in the unwrapped version). We do not use

the corresponding bits in the matching process.

To match two eyes, we measure the Hamming distance

between their binary patterns [14]. Because the images of

eyes are sometimes rotated, we compare these patterns with

various lateral shifts to find the minimum value (i.e., the

maximum number of bits in correspondence). We normalize

this by the total number of valid bits in the iris codes to

give an overall matching score. If the score is above some

threshold, then we consider the two eyes to be from the same

person. Of course, as Figure 3 shows, by varying this

threshold, we can alter the tradeoff between the genuine

and false accept rates to any combination along the plotted

red line. The data in this chart is from a small database

of only 450 irises, yet the recognition performance is quite

good in general.

The performance becomes even better (blue and green

lines) if we exclude the iris images with the worst quality.

For the chart in Figure 3, we simply measure quality as the

percentage of possible iris bits that are valid (unoccluded).

While others have explicitly tried to identify eyelids,

eyelashes, highlights, and blurring (e.g., in [15, 16]), by

construction, our valid region map incorporates all these

effects implicitly. Unfortunately, while a quality threshold

of 0.7 gives superb results, this excludes more than 60% of

the people in the database, which is not viable in practice.

Setting the quality to 0.5 instead still gives a noticeable

improvement while only rejecting 10% of the enrollees.

This illustrates a general point about vision systems: Good

quality input is essential for high accuracy. Furthermore,

while many systems can perform well with clean data, the

true mark of a viable system is its ability to tolerate at least

moderate noise.

We are currently looking to extend the iris system to

mobile devices, such as phones, which are starting to have

high-resolution cameras. The challenge here is to obtain

good-quality images despite questionable hardware and

optics and in uncontrolled field conditions. It is important

that the eyes be in focus, with reasonable lighting (no sharp

shadows) and have little occlusion by the eyelids (or image

boundaries). Guiding the user to aim the camera properly

and have the device evaluate candidate images automatically

necessitates even more computer vision techniques despite

the limited computing budget available.

Detection of noncompliance at retail stores
Beyond biometrics, computer vision can also be used for

authenticating objects and even processes. For instance, retail

stores suffer from a problem euphemistically called Bshrink,[

which is essentially deliberate theft by customers or

cashiers. This costs retailers billions of dollars every year;

therefore, catching even a fraction of it using computer vision

is worthwhile. One source of shrink is Btag switching,[

whereby one item is processed at the checkout stand but the

barcode for a different (less expensive) item is scanned.

Sometimes, customers print up their own barcodes and affix

them to items, which is particularly effective at self-checkout

lanes. Other times, a cashier will intentionally scan the

barcode of a different item or even a completely separate

barcode taped to their wrist. To reduce this sort of activity,

we built a camera-based system that performs a check to

ensure that the item scanned actually looks plausibly like

what its barcode said it was.

Figure 3

Recognition performance depends on image quality (�2008, IEEE).
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We installed the system on a large IBM System 170

self-checkout lane where it takes pictures of each item as

the item progresses down the take-away belt, as shown in

Figure 4. After locating and segmenting the object in the

image, the system computes a number of color, shape, size,

and texture features. The representation used is similar to that

in our earlier Veggie Vision system [17] that identified loose

fruits and vegetables at a grocery store. We then compare

these visual features, along with the item’s weight, to the

item’s expected properties based on the barcode that was

read. If a significant discrepancy is noted, we raise an

exception flag and call a human attendant to the station

to investigate the matter.

In this way, we obtained more than twice the fraud

detection rate of the standard height-and-weight system while

having less than half the false alarm rate. Moreover, the

system was able to recognize 6,000 different items while

only requiring four training examples per class [18]. While

there is a commercially deployed system called LaneHawk**

[19] for recognizing items below the basket of a shopping

cart, this system operates in identification, not verification

mode, and with far fewer classes.

Another source of retail shrinkage is Bsweethearting.[ This

is a pervasive type of cashier fraud that is very difficult to

catch. It refers to a form of collusion between the cashier

and a customer whereby the cashier attempts to give her

Bsweetheart[ free merchandise by deliberately failing to scan

certain items. Note that real-time alerts are not necessarily

required. Often, it is a history of questionable events that will

lead to the firing of a cashier. To combat this, we built a

computer vision system called CASE that uses an overhead

camera to make sure that all items are actually scanned [20].

While surveillance cameras have long been present at

checkouts, the amount of human labor necessary to monitor

them has been excessive. An automated system is thus very

desirable but must handle the challenges of changing

viewpoints, occlusions, and cluttered backgrounds. In

addition, retail is a notoriously low-margin business;

therefore, it is critical that a fraud detection system be

designed with careful control of the false-alarm rate (to

reduce human labor) while still being scalable (to contain

system costs).

In operation, a typical checkout process can be thought of

as including three actions (primitives) in order: pick up, scan,

and drop, as illustrated in Figure 5(a). As a first step, we

developed a method to recognize a set of such repeated,

but non-overlapping, action sequences in a transaction.

Our algorithm first detects primitives using robust hand

movement analysis and then selectively combines these

events into visual scans (see [21] for a survey of similar

techniques) [see Figure 5(b)]. This is much easier than trying

to find and track the objects themselves, which vary widely

in appearance and are often occluded by the cashier’s

hand. A complete action sequence with an associated barcode

entry confirms a valid checkout; otherwise, it is a potential

candidate for a fraudulent incident or operational error.

Yet, instead of looking at each individual item scanned at

the register (as the commercial StopLift** [22] system does),

the current CASE implementation performs a holistic

analysis of the entire transaction for optimal results. This is

because there is a potential parallel overlap of the three

actions during checkout for a fast cashier (a potential

problem for competitors such as [23]). Yet, because checkout

activity still exhibits strong temporal dependencies, we cast

the action combination process as an optimization problem.

Here, we use a specialized Viterbi algorithm to learn and

infer the target events efficiently while simultaneously

handling the event overlaps [see Figure 5(c)]. In this way,

we exploit time-domain data as opposed to trying to

squeeze more performance directly out of computer

vision.

From a store point of view, reducing false alarms is a critical

task, particularly since true fraudulent activity is rare. To

mitigate the impact of potential false alarms, we further rank

each incident according to its suspiciousness. By reviewing

only a portion of the resulting ordered list, a human supervisor

can still find a significant portion of the true cases quickly.

To perform this automatic ranking, we adopt a two-class

support vector machine (SVM) classifier. The features used in

classification capture both local and contextual information

of an alert, such as the time of occurrence, the duration, and the

proximity of the alert. We then use the match score of the

SVM as the rank for each incident.

CASE was tested in several stores of two large retailers

over the course of several months. During this period, it has

demonstrated its effectiveness by successfully detecting

Figure 4

To match the appearance of an object against its barcode, the system

must first separate the object from the background. It does this by

(upper right) finding edges added to the scene and then (lower right)

combines this with regions of color change (�2011, IEEE).
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more than 100 items skipped by the cashiers, either

intentionally or unintentionally. It has also identified

numerous checkout-related efficiency issues and exceptions,

providing additional value to retailers.

We have also conducted a quantitative evaluation of

CASE using data recorded at a retail store. This data set

includes a video from six lanes during one business day,

accounting for a total of 32,969 registered items in more than

1,660 transactions. A manual evaluation found 13 items

not registered in the data set. In general, CASE achieves a

good detection rate of 62% with a low false-alarm rate of

2.5%. Here, we define the false-alarm rate as the total number

of CASE alerts divided by the total number of scanned

items. Similarly, the detection rate is the number of true

fake scans detected by CASE divided by the total number of

fake scans in the data set. After ranking and a cutoff are

applied, the false-alarm rate is further reduced to less than 1%

but at the expense of sacrificing some detections.

Rail safety
As with both urban and retail surveillance, one advantage

of computer algorithms is that they are immune to fatigue

and boredom. In some instances, they can also perform a job

far more quickly than humans can. For instance, in a rail

safety scenario, tracks need to be inspected regularly.

Originally, such checks were performed manually, with

rail inspectors walking the length of the track. This was

extremely slow, as only a few miles per day could be

covered. With the advent of computer vision, these

inspections can now be performed using cameras and

computers at a much higher rate, leading to increases in

the safety of railroads (both for passengers and freight).

Track inspection covers a wide spectrum of tasks. Some,

such as the measurement of the position, curvature, and

alignment of the rails, have already been automated using

special track geometry cars. Others, such as monitoring the

spiking patterns and rail anchor positions, and the detection

of raised, broken, or missing spikes, anchors, and joint bar

bolts, are still done manually. Thus, the railroads have a

great interest in using machine vision technology for more

efficient, effective, and objective inspections. In particular,

in conjunction with our customer, we have jointly identified

the following key tasks: 1) monitoring of any noncompliant

spiking and anchor patterns; 2) detection of spikes whose

heads are raised above the tie plate by more than one inch

or whose heads are broken off; 3) detection of displaced

anchors that have moved more than half an inch away from

the tie; and 4) detection of bolts, nuts, and washers missing

from rail joint bars. Solving these problems would help

keep track gauges from going out of tolerance and thus

prevent buckled sections that can lead to the derailment of

a train.

The challenges of our system are threefold: design and

build a reliable imaging system that meets our stringent video

capturing requirements, develop robust video analytics

to accurately detect and recognize various objects of interest,

and create an end-to-end system that reports exceptions

at various levels in real time.

Applying machine vision technology to assist track

condition monitoring is not a new research topic. In fact,

some systems have been proposed, prototyped, and even

deployed, for various specific tasks. Examples include the

VisiRail Joint Bar Inspection System [24] developed

by ENSCO, with high-resolution scan line cameras and

laser sensors; the AURORA system [25] developed by

Georgetown Rail for inspecting wood ties, rail seat abrasion,

tie plates, anchors, and spikes; and the system developed

by MERMEC Group for detecting track surface defects with

high-speed line-scan cameras [26]. However, these systems

focus on a different set of problems than that detailed here,

or their performance has not been reported.

We thus designed and developed a completely new

end-to-end system. Figure 6 shows the imaging setup on the

back of a high-rail truck. We use four diagonally aimed

Figure 5

(a) A visual scan consists of three checkout primitives: pick up, scan, and drop (from top to bottom). (b) Given the primitives detected, we are interested

in identifying a set of disjoint triplets (pick up, scan, and drop) that correspond to the true scans in a transaction. (c) We use a specialized Viterbi

algorithm to find a maximum set of triplets on (blue line) an optimal constrained path (�2009, IEEE).
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cameras in total, producing lateral views of the gauge and

field sides of both rails. When the truck travels on the rail,

the four captured video streams are compressed and saved to

a local disk. We either process these images onboard or

save them for later analysis. Using a 12-core IBM System

x3650 for real-time processing, we are able to run the

inspection vehicle at 10–20 mph (a total of about 30 tie plates

per second).

To identify rail components including tie plates, spikes,

spike holes, joint bars, and joint bar bolts, we use various

video analytics based on features such as color, texture, and

edges [27]. We chose these relatively simple localization

and segmentation methods because they were both fast and

robust, given the typical composition of the images. We also

use machine learning to validate further the presence or

absence of spikes and anchors using SVM and AdaBoost

learners, thus improving the overall error rates. Figure 7

shows one detection example where the tie plate is indicated

by a cyan rectangle and spikes are indicated by green

rectangles. Both anchors and spike holes (potentially missing

spikes) are bounded by red rectangles.

We evaluated the rail component detection on several

test videos that cover a short track segment containing,

in total, 797 tie plates, 2,287 spikes, 901 spike holes, and

1,483 anchors. For this data set, the tie plates have the

highest detection rate (100%), whereas the spike holes

have the lowest (94.2%). Overall, we achieved an average

detection rate of 98.2% over all tie plates, spikes, spike holes,

and anchors. However, there are inevitable false detections

as well, occurring at a rate of about 1.6%.

Although these individual error rates sound good, in

practice, they correspond to a combined raw error rate of

370 incidents per mile. Fortunately, we can eliminate most

of these errors by taking advantage of camera synchrony.

That is, if only one camera sees a tie plate, it is likely a

mistake. If, instead, three cameras see a tie plate, then the

fourth one should also. Using this heuristic, we reduce the

error incidence to a more manageable nine per mile, all

without changing the vision algorithms.

Once we detect the tie plates, there are other interesting

things we can do. Since there is a railroad tie roughly

every 12–34 inches, this generates a great number of examples

per mile. To exploit this, we also developed an automatic

anomaly-detection scheme that lets us find tie plates with

abnormal spiking patterns using a completely unsupervised

approach. That is, the system learns what the typical local

spiking pattern is (it changes depending on track class,

curvature, etc.), then flags any plates that are significantly

different. To do this, after the tie plate is detected, we identify

four characteristic regions of interest (ROIs) based on edge

information. These ROIs indicate the expected areas

containing spikes and spike holes. We extract ten semantic

features from each ROI for a total of 40 features and use these

to represent the tie plate region (see faint blue boxes in

Figure 7). Next, we measure this feature vector’s similarity

to a dynamically generated reference set of vectors. Finally,

if a tie plate is significantly dissimilar to the majority of plates

in the set, we declare it an anomaly and record its Global

Positioning System location for later follow-up inspection

or repair.

Driver assistance
Computer vision can be used to enhance safety not only for

trains but also for passenger vehicles. Here, we describe a

system that automatically controls the high beams of a car.

Such a system has two benefits. First, it helps prevent

inadvertent blinding of an oncoming vehicle if the driver has

too slow a reaction speed. Second, it allows the driver to

use his high beams more of the time, and hence better assess

road conditions, because he no longer feels compelled to

continue timidly using low beams.

Figure 6

Imaging setup mounted on a high-rail vehicle (�2011, ACM).

Figure 7

Detection example of various rail components (�2011, ACM).
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There are a number of commercial systems, such as

Mobileye** [28], Conti [29], and Gentex** [30], already

deployed in various brands of vehicles. However, details of

the current versions of these algorithms are not publicly

available nor are comparative performance results.

The academic community has also studied this problem

(e.g., [31, 32]), although generally, these systems have been

only minimally tested with regard to detection distance

and environmental conditions.

We designed our system to address a set of rigid

customer-specified constraints. The system had to work in all

weather conditions (despite a dirty windshield) and have

at least a human level of performance (despite no knowledge

of the driver’s intentions), and the production cost had to

be extremely low. Our industrial partner also wanted a

learning system so that they could customize the device’s

behavior for different countries and driving styles by simply

showing it examples. The cost constraint meant that thermal

imaging and stereo systems were ruled out; we had to use

a standard Video Graphics Array-resolution CMOS color

camera. We also had much less compute power than a laptop,

i.e., a digital signal processor running at several hundred

megahertz; therefore, we had to do very lightweight

processing in order to respond in real time. The system

also had to function in rain, snow, and fog and not just in

dry weather.

The key component in our system [33] is the spot finder.

This essentially thresholds the incoming image based on

brightness then runs a connected component algorithm to

find possible light sources. However, instead of using a

single threshold, we found it advantageous to have the

system use eight different values, as shown in Figure 8.

Starting with the highest (most restrictive) segmentation, we

allow spots to grow either until they reach some minimum

size or until they are merged by the next thresholding level.

The eight levels are important since no single level will

generate a clean segmentation for both distant headlights,

distant tail lights, and nearby tail lights. This technique

also helps immensely when there is a thin film of water on

the windshield, which smears out all the light sources in

the scene.

For speed, we leave the pixel domain as soon as possible

and do further work only on the characteristics of the

spots found. We use a rule-based system to examine standard

blob parameters including area, squared perimeter versus

area, bounding box center position, bounding box elongation,

and bounding box fill ratio. We also look at the hue,

saturation, and intensity for each spot as well as its

surrounding Bhalo[ region. The rules determine whether each

candidate spot is a headlight, a tail light, or a streetlight,

all of which are reasons to switch to low beams. We then

apply temporal smoothing to handle spurious detections

(and occasional dropouts) before generating the final

switching signal.

Using a rule-based system, as opposed to a collection of

statistical classifiers, makes the decisions of the system much

easier for a human to understand and to adjust by hand if

necessary. However, we had to invent a new learning

technique, i.e., Structured Differential Learning (SDL) [34],

to allow the several hundred thresholds and time constants

to be automatically adjusted. SDL operates something like

back-propagation over a set of fuzzy predicates and can

percolate the credit (or blame) for a decision back to the

single most likely parameter in the system. This also means

the system can directly learn based on only the desired

headlight output state; it just needs a collection of videos

and the correct decision for each frame. An earlier approach

[35] used an SVM to learn various classes of lights but

required an onerously large number of hand-labeled

examples for each type of object.

We trained the system on 16.2 hours of video (over

1.7 million frames) and then tested it in a car against several

commercially available systems. We tallied both false

negatives where the system failed to dim the headlights for

some car or was too slow to go to low beams and false

positives where the system dimmed the headlights for no

apparent reason or was too slow to return to high beams.

We normalize these mistakes relative to the correct

number of switches that should have been made. The

customer-specified vehicle detection ranges were very far:

400 m for tail lights and 1 km for headlights (they are only

1–2 pixels at this distance). The response times were a

stringent 1 second to go to low beams and 2 seconds to

return to high beams. Note also that we measured

performance as event counts, whereas the system was tuned

using frames. Nevertheless, as Figure 9 shows that the

final learning system was better than all the commercial

systems on the desired metrics while remaining real time

and cost appropriate.

Figure 8

No single intensity threshold can cleanly find all headlights and tail

lights, particularly when the windshield is wet (�2011, IEEE).
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Future trends and challenges
While computer vision has made much progress over the last

decade, there is still a long way to go before it rivals the

performance of a human child. While it is unclear exactly

what new techniques and representations might be needed,

there are several Bgrand challenge[ problems that could help

us fill in the missing pieces.

One frontier for computer vision is object recognition

Bin the wild,[ i.e., recognizing objects in images that are

not carefully composed and lit. While home photographs

found on the web generally do not exhibit the care that goes

into professional shots or network television footage, they

often center the object of interest, show it largely unoccluded,

and avoid sharp shadows on the subject. By contrast,

images obtained from a mobile robot or a security camera

are much less constrained, yet finding and recognizing

objects in such scenarios has obvious economic value

(such as biometrics on a mobile phone).

Another challenge is understanding actions in videos,

particularly of humans. This is not simply a matter of

detecting overt gestures such as waving or tracking body

configurations when dancing the Macarena. The interesting

case is when humans interact with objects or particular places

in the world. For instance, it would be useful to detect

when a customer reaches out and removes a can from a shelf

in a retail store. Similarly, the sequence of a furtive glance

of the head, a subtle extension of the hand, then the

disappearance of an article of clothing from a rack can be

an indication of potential shoplifting.

Then there is the observation that even if a human is

viewing a static 2-D print, his brain seems to force a 3-D

interpretation on the system. It is very difficult to defeat this

and view the world as patches of color and dominant lines,

i.e., the way some artists do. This suggests that there is

typically enough information to infer a ground plane, find the

bounding contours of objects, and determine both their

relative distances and what occludes what. This sort of

automatic rough parsing would be very useful for object

segmentation and recognition and would also help delineate

the environment in which an action was taking place.

We currently do not have the complete solution to any of

these problems, but we have made inroads in special cases.

The video surveillance work described finding people and

cars in unconstrained images. The retail compliance work

analyzed the motion of a cashier relative to the checkout task.

Additionally, to some extent, the automotive headlight

system did a coarse analysis of the overall environment to

pick out relevant entities. In all of these cases, working with

real-world images and having unflinching performance

metrics helped push us into solving the difficult underlying

problems. With the continuing drop in price for

high-performance computing, there is hope that we can solve

even more complicated problems and thus further extend

these islands of competence for computer vision.

For more information on projects in IBM’s Exploratory

Computer Vision Group, please visit: http://www.research.

ibm.com/ecvg.
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