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SUMMARY

Determining an adequate dose level for a drug and, more broadly, characterizing its dose response

relationship, are key objectives in the clinical development of any medicinal drug. If the dose is set

too high, safety and tolerability problems are likely to result, while selecting too low a dose makes it

difficult to establish adequate efficacy in the confirmatory phase, possibly leading to a failed program.

Hence, dose finding studies are of critical importance in drug development and need to be planned

carefully. In this paper we focus on practical considerations for establishing efficient study designs to

estimate target doses of interest. We consider optimal designs for both the estimation of the minimum

effective dose (MED) and the dose achieving 100p% of the maximum treatment effect (EDp). These

designs are compared with D-optimal designs for a given dose response model. Extensions to robust

designs accounting for model uncertainty are also discussed. A case study is used to motivate and

illustrate the methods from this paper. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: dose finding, robust designs, model uncertainty, minimum effective dose, dose response,

target dose estimation, sample size

1. Introduction

Determining an adequate dose level for a drug and, more broadly, characterizing its dose
response relationship, are key objectives in the clinical development process of any medicinal
drug. If the dose is set too high, safety and tolerability problems are likely to result, while

∗Correspondence to: Frank Bretz, Novartis Pharma AG, Statistical Methodology, WSJ-27.1.005, CH-4002

Basel, Switzerland. Phone: + 41 61 324 4064, Fax: + 41 61 324 3039, Email: frank.bretz@novartis.com

Received

Copyright c© 2000 John Wiley & Sons, Ltd. Revised



2 BRETZ ET AL.

selecting too low a dose makes it difficult to establish adequate efficacy in the confirmatory
phase. There are varying degrees of consequences associated with selecting a “wrong” dose
level for a new compound. For example, it may be that only after having marketed a specified
dose of a drug it becomes apparent that the level was set too high. This phenomenon has
been documented by the U.S. Food and Drug Administration (FDA), who reported that
approximately 10% of drugs approved between 1980-1989 have incurred dose changes - mostly
decreases - of greater than 33% [1]. Alternatively, the compound may fail regulatory approval
due to an unacceptably high risk/benefit ratio. In such a setting two losses will result: (i)
patients will never receive the incremental (or potentially ground-breaking) advancement in
medical treatment and (ii) the missed opportunity results in substantial financial losses for
the pharmaceutical company who has developed the drug. The selection of the dose level(s) to
be brought into the final confirmatory clinical studies, and hence for potential release on the
market, is thus a key decision step involving inherent serious ethical and financial consequences.
For a recent general discussion of issues and challenges arising in clinical dose finding studies
we refer to [2].

An indication of the importance of properly conducted dose response studies is the early
publication of the ICH E4 guideline [3], which is the primary source of regulatory guidance in
this area. The guideline states in its introductory section that the purpose of dose response
information is “to find the smallest dose with a discernible useful effect or a maximum dose
beyond which no further beneficial effects is seen, but practical study designs do not exist to
allow for precise determination of these doses”. Note that the ICH E4 guideline stresses the
importance of obtaining good dose response information by estimating relevant target doses.
The smallest dose with a discernible useful effect is often characterized as the minimum effective
dose (MED), that is, the smallest dose producing a clinically important response that can be
declared statistically significantly different from the placebo response [1]. Several methods exist
to estimate the MED using either modeling approaches [4, 5] or multiple test strategies [6, 7].
The maximum useful dose, beyond which no further beneficial effects is seen, can similarly
be estimated using multiple test strategies [8] or modeling approaches when estimating the
smallest dose achieving 100p% of the maximum treatment effect in the observed dose range
(EDp, 0 < p < 1) [9].

As suggested by the quote above from the ICH E4 guideline, study designs that allow
for precise estimation of relevant target doses are hard to derive and, if available, often not
applied in clinical practice. In this article we focus on the design of clinical dose finding studies
to produce the information needed to efficiently and reliably characterize the benefit of a drug
over a dose range of interest. In particular, we consider efficient designs for estimating target
doses of interest (i.e, either the MED or an EDp). Given a fixed number of patients available
for the conduct of a clinical dose finding study, we determine the necessary number of different
dose levels, the location of the dose levels within the dose range, and the proportions of patients
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PRACTICAL CONSIDERATIONS FOR OPTIMAL DOSE FINDING DESIGNS 3

to be allocated to each of the dose levels, such that the asymptotic variance of the target dose
estimate is minimized.

In practice, the results in this paper can be used in at least two distinct ways. First, relative
efficiencies can be calculated for practically feasible designs. Clinical teams can then balance
the additional financial and logistical costs potentially associated with the resulting optimal
designs (due to a larger total number of dose levels, the need for producing additional dose levels
not considered in the previous studies, etc.) against the benefit of an increased information
value resulting from the larger precision in the target dose estimation. The relative efficiencies
based on are directly translated into relative sample size requirements and are thus easy
to communicate to the clinical teams and decision boards. Second, asymptotic confidence
intervals for the target dose can be constructed, which give a quantifiable information on the
uncertainty about the target dose estimate estimate under a particular dose response model.
In fact, current practice dictates that the sample sizes for clinical dose finding studies are
calculated based on power calculations to detect dose response. The resulting sample sizes,
however, are often inappropriate for estimating a target dose with a reasonable precision. Pre-
specifying the width of the confidence interval for the target dose and calculating backwards
the necessary sample sizes to achieve the required precision thus puts current practices into
a different perspective. Even if the resulting sample sizes of such an approach might not be
realistic, the results in this paper can be used to quantify the uncertainty about the target
dose estimate, so that the decision makers can balance better the costs and risks based upon
the available information.

In the remainder of this paper we formalize the ideas presented in this section and emphasize
practical considerations. In Section 2 we describe a case study to put the subsequent discussion
into a practical context. In Section 3 we discuss optimal designs to estimate either the MED or
an EDp. These designs are then compared with D-optimal designs, which minimize the volume
of the confidence ellipsoid for the dose response model parameters. Finally, we robustify these
designs with respect to the underlying true, but unknown dose response model. Practical
considerations of these results are discussed when re-visiting the case study in Section 4.
Concluding remarks are given in Section 5.

2. A dose finding study for an anti-asthmatic drug

This example refers to a real clinical study in Phase II for the asthma indication. The primary
objective of the trial is to select a dose for the Phase III (confirmatory) program. Several active
dose levels plus a placebo arm are to be used in the trial, with patients being randomized to
one of the treatments (parallel group design). Patients receive one daily dose of their assigned
treatment for a total of 14 days. The primary efficacy endpoint of the study is the change
from baseline (i.e., the first visit) in the forced expiratory volume measured over one second,
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4 BRETZ ET AL.

FEV1, at the end of the study. A placebo effect of 60 mL is assumed with a maximum expected
treatment effect increase over placebo of 280 mL and a standard deviation of σ = 350 mL. The
clinically relevant benefit over the placebo effect is set to Δ = 200 mL. That is, an increase in
treatment effect of less than 200 mL over the placebo response is considered to be clinically
irrelevant.

At the time of designing the study, the clinical team was unsure about the true dose
response shape and could in particular not rule out a non-monotonic profile (for example,
an umbrella shape). After discussions with the clinical team, several dose response models
with associated shapes were identified as plausible to describe the data at study end. The full
model specifications of the candidate dose response models are given in Table I and displayed
graphically in Figure 1. We refer to [4, 10] for details on the use of candidate models in dose
response studies and the elicitation of best guesses for the model parameters.

Model Full model specification
Linear 60 + 0.56d

Beta 60 + (7/2250)d(600− d)
Emax1 60 + 294d/(25 + d)
Emax2 60 + 340d/(107.14 + d)
Logistic 49.62 + 290.51/ {1 + exp[(150 − d)/45.51]}

Table I. Candidate dose response models as a function of dose d.

From Figure 1 the uncertainty about the true, but unknown dose response model at the
design stage of the study becomes evident. Essentially the entire space of potential dose
response shapes is covered by the current selection of candidate models, including two different
parameter specifications for the Emax model and the inclusion of an umbrella shape (through
the Beta model) to cover a potential down-turn in effect at larger doses. The potential impact
of the model uncertainty becomes clear, when comparing the associated MED for each of the
five candidate model shapes. For illustration purposes, the clinical relevance threshold Δ is
included in Figure 1 (horizontal dashed line), together with the resulting MED. For example,
for the first Emax model the MED is 53.2 μg, whereas the MED is 357.1 μg if the linear model
is true. Specifying a single dose response model in the study protocol (with the aim to either
determine the experimental design or to specify the final analysis) is thus not possible given
the uncertainty about the true model and the potential impact on the study outcome.

Given the information and constraints described above, the clinical team was then faced
with the decision of how many dose levels k to include in the study, which dose levels d1, . . . , dk

to investigate, whether to use an unbalanced allocation of the patients to the dose levels di,
and how to determine the total sample size n. In the following section we discuss methods to
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Figure 1. Dose response models corresponding to the models in Table I. Open dots indicate the four

active dose levels – 62.5, 125, 250, and 500 μg – plus a placebo arm finally used in the clinical study.

address these questions and apply the results when re-visiting the case study in Section 4.

3. Efficient designs for target dose estimation

In this section we consider optimal designs for both the estimation of the MED and the EDp.
These designs are compared with D-optimal designs for a given dose response model. We
use the Emax to illustrate the various designs, although the results can be extended to other
common dose response models, such as those shown in Table I. Extensions to robust designs
accounting for model uncertainty are also discussed.

3.1. Notation

We consider the non-linear regression model

Yij = f(di, ϑ) + εij , (1)
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where Yij denotes the response of patient j at dose di, i = 1, . . . , k, j = 1, . . . , ni, f(.)
denotes the true, but unknown dose response model determined through the parameter vector
ϑ = (ϑ0, ϑ1, ϑ

0)T = (ϑ0, ϑ1, . . . , ϑ�)T ∈ R�+1, and εij denote the residual errors, which are
assumed to be independent normal distributed with common variance σ2. Example model
specifications for the function f(d, ϑ) are given in Table I.

As mentioned in the Introduction, we consider in this article two different target doses, the
MED and the EDp, which are introduced formally now. Let d (d) denote the lowest (highest)
dose within the dose range [d, d] under investigation, where often d = 0 is the placebo dose.
For a given clinically relevant effect Δ, the MED associated with a model f(d, ϑ) is defined as

MED = inf{d ∈ (d, d] : f(d, ϑ) ≥ f(d, ϑ) + Δ}.

Note that the MED does not need to exist, as no dose in (d, d] may produce an improvement of
Δ over f(d, ϑ). We restrict the MED to lie within the interval (d, d] in order to avoid problems
arising from extrapolating beyond the dose range under investigation. Following [10], we use

M̂ED = inf{d ∈ (d, d] : f(d, ϑ̂) ≥ f(d, ϑ̂) + Δ, Ld > f(d, ϑ̂)}

to estimate the MED, where Ld denotes the lower 1 − γ confidence bound for the expected
value f(d, ϑ̂) at dose d and ϑ̂ denotes the non-linear least squares estimate of ϑ.

Let h(d, ϑ) = f(d, ϑ) − f(d, ϑ) denote the effect difference at the doses d ∈ (d, d] and d.
Following [2], the EDp can then be defined as

EDp = inf
{

d ∈ (d, d] :
h(d, ϑ)

h(dmax, ϑ)
≥ p

}
,

where dmax = argmaxd∈(d,d]h(d, ϑ) denotes the dose corresponding to the maximum effect
difference in the interval (d, d]. Unlike the MED, the EDp always exists. If L′

d denotes the
lower 1 − γ confidence bound for the expected value h(d, ϑ) at dose d, we can estimate EDp

by

ÊDp = inf

{
d ∈ (d, d] :

h(d, ϑ̂)
h(d̂max, ϑ̂)

≥ p, L′
d > 0

}
,

where d̂max = argmaxd∈(d,d]h(d, ϑ̂).
Finally, let

ξ =

(
d1 . . . dk

w1 . . . wk

)
denote an experimental design with relative allocation wi of patients at doses di, i = 1, . . . , k.
Following [11], the weights wi ≥ 0, with

∑k
i=1 wi = 1, are not necessarily multiples of 1/n,

where n denotes the total sample size. In practice, for a given sample size n, a design
ξ is implemented by rounding the quantities win to integers, say ni, with

∑k
i=1 ni =
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PRACTICAL CONSIDERATIONS FOR OPTIMAL DOSE FINDING DESIGNS 7

n (approximate design theory). We denote by M(ξ, ϑ) =
∑k

i=1 wig(di, ϑ)gT (di, ϑ) the
information matrix of the design ξ in the regression model (1), where

gT (d, ϑ) =
∂f(d, ϑ)

∂ϑ
=
(
1, f0(d, ϑ0), ϑ1

∂f0(d, ϑ0)
∂ϑ2

, . . . , ϑ1
∂f0(d, ϑ0)

∂ϑ�

)
∈ R�+1

denotes the gradient of the response function f with respect to the parameter vector ϑ. The
matrix M(ξ, ϑ) can be interpreted as a measure of precision of the parameter estimate ϑ̂ based
on the design ξ. “Larger” values of M(ξ, ϑ) indicate better (i.e., more precise) estimates of ϑ̂.

3.2. Optimal designs for MED estimation

Using Elfving’s theorem [12], Dette et al. [13] investigated optimal designs to estimate the
MED for several practical relevant dose response models. They derived general results, but
omitted some of the explicit expressions for the individual models. In the following we derive
the necessary expressions for the situations considered in the present paper. To keep the
discussion concrete, we focus on the Emax model

f(d, ϑ) = ϑ0 + ϑ1
d

ϑ2 + d
(2)

to illustrate the concepts. In the Emax model (2), ϑ0 denotes the placebo effect at dose d = 0, ϑ1

denotes the asymptotic maximum treatment effect achieved at an infinite dose, and ϑ2 denotes
the ED50, i.e., the dose that gives 50% of the maximum treatment effect [4, 14]. The motivation
to focus on the Emax model is its ubiquitous use in clinical practice. In particular, the Emax

can be justified on the relationship of drug-receptor interactions and therefore deduced from
the chemical equilibrium equation [15].

We consider first the gradient

g(d, ϑ) =
(
1,

d

d + ϑ2
,

−ϑ1d

(d + ϑ2)2
)T

of f(d, ϑ) with respect to ϑ for the Emax model (2). Figure 2 plots the partial derivatives
as a function of the dose d for the two Emax models specified in Table I. The Emax1 model,
which has the smaller ϑ2 (= ED50) value and the steeper increase to the plateau level, has
considerably larger values for the first derivatives at smaller doses than the Emax2 model. This
will be reflected when calculating optimal designs, which account for the dose ranges with the
potential largest amount of information.

The variance of the MED-estimate M̂ED for a general dose response model f is given by
σ2ΨMED(ξ)/n, where ΨMED(ξ) = bT (ϑ0, . . . , ϑ�)M−(ξ, ϑ)b(ϑ0, . . . , ϑ�) and the vector b denotes
the gradient of the function f−1

(
Δ
ϑ1

+ f(d, ϑ)
)

with respect to ϑ [13]. For the Emax model (2)

b(ϑ0, ϑ1, ϑ2) = − r(ϑ2 + d)
(rd − ϑ2(r − 1))2

(
0,

ϑ2

ϑ1
(d + ϑ2), (r − 1)ϑ2 + d(1 + r)

)T

,
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Figure 2. Partial derivatives for the two Emax models specified in Table I. Left plot: d/(d + ϑ2); right

plot: −ϑ1d/(d + ϑ2)
2. Solid line: Emax 1 model; dotted line: Emax 2 model

where r = Δ/ϑ1. A design ξ∗MED is called MED-optimal if it minimizes ΨMED(ξ) among all
designs ξ for which the MED is estimable. Such optimal designs can be calculated explicitly
for common dose response models with �+ 1 = 2 or 3 model parameters; otherwise, numerical
optimization methods have to be used [13]. For the Emax model (2), for example, the optimal
design ξ∗MED is either a two point design or a three point design, depending on – loosely
speaking - the relative position of the MED: If the Emax model increases steeply at smaller
doses and the threshold Δ is small, two points are not sufficient to guarantee a precise MED
estimate. It is noteworthy that if a two-point design is optimal for the Emax model, the non-
trivial support point matches exactly the expected MED. Consequently, the optimal designs
for the two Emax models specified in Table I are given by

ξ∗MED(Emax 1) =

(
0 53.19

0.5 0.5

)
and ξ∗MED(Emax 2) =

(
0 153.06

0.5 0.5

)
.

Note that the second support point d2 is considerably smaller for the Emax 1 model than for
the Emax2 model, which is also consistent with Figure 2. In practice, a two-point design will
not be sufficient to estimate an Emax model, which has � = 3 parameters and thus requires at
least three support points. In such situations we recommend to use a slight modification of the
optimal design by allocating a small fraction of patients to an additional dose. In the previous
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PRACTICAL CONSIDERATIONS FOR OPTIMAL DOSE FINDING DESIGNS 9

example, one could use

ξ̃∗MED(Emax1) =

(
0 53.19 500

0.45 0.45 0.1

)
and ξ̃∗MED(Emax 2) =

(
0 153.06 500

0.45 0.45 0.1

)
instead of ξ∗MED(Emax1) and ξ∗MED(Emax 2), respectively.

Extending the results from [13], one can derive analytical expressions for the variance of
the MED-estimate under an optimal design ξ∗MED. For the Emax model one obtains

ΨMED

(
ξ∗MED

)
=

4ϑ2
2(d1 + ϑ2)4

ϑ2
1(ϑ2 − r(d1 + ϑ2))4

if the optimal design is a two-point design and

ΨMED

(
ξ∗MED

)
=

82r2(d1 + ϑ2)6(d3 + ϑ2)2((d1 − d3)ϑ2 + (d1 + d3)rϑ2 + (d1d3 + ϑ2
2)r)

2

ϑ2
2ϑ

2
1(d3 − d1)4(rd1 + (r − 1)ϑ2)2

if the optimal design is a three point design. Applying these formulas to our numerical example
from Table I, this gives ΨMED

(
ξ∗MED

)
= 2.77 for the Emax1 model and ΨMED

(
ξ∗MED

)
= 13.82

for the Emax2 model.
In fact, we can not only establish the expected variance of the MED estimate using the

expressions above, but also calculate an (asymptotic) confidence interval for the MED. Relying
on the large sample normal approximation, we have[

M̂ED − z1−α
2
σ̂

√
ΨMED(ξ)

n
; M̂ED + z1−α

2
σ̂

√
ΨMED(ξ)

n

]
, (3)

where z1−α/2 denotes the 1−α/2 quantile of the standard normal distribution. Optimal designs
ξ∗MED, which minimize ΨMED(ξ), consequently minimize the expected width of the confidence
interval for the MED. If we plug in the expected standard deviation of σ = 350 from Section
2, set α = 0.05 and assume a total of n = 100 patients, we obtain the expected confidence
intervals [−60.92; 167.32] for the Emax1 model and [−101.89; 408.09] for the Emax 2 model. As
expected from the previous discussions, the Emax1 model provides a more precise estimate
of the MED estimate than the the Emax 2 model, since it is considerably steeper around the
expected MED. Note, however, the large width of the expected confidence interval, which in
case of the Emax2 model covers almost the entire dose range under investigation if only 100
patients were used in total. In Section 4 we discuss how to calculate the necessary sample size
for a dose finding study to meet a pre-specified precision of the MED estimate based on the
expected width of the confidence interval in (3).

3.3. Optimal designs for EDp estimation

We now consider optimal designs to estimate the EDp for a given 0 < p < 1. Similar as for the
MED estimation problem, the variance of the EDp-estimate ÊDp for a general dose response
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10 BRETZ ET AL.

model f is given by σ2ΨEDp(ξ)/n, where ΨEDp(ξ) = cT (ϑ0, . . . , ϑp)M−(ξ, ϑ)c(ϑ0, . . . , ϑp),
M(ξ, ϑ) is as defined in Section 3.1, and the vector c denotes the gradient of the function
f−1(f(d, ϑ)+p(f(dmax, ϑ)−f(d, ϑ))) with respect to ϑ. A design ξ∗EDp

is called EDp-optimal if
it minimizes ΨEDp(ξ) among all designs ξ. Using Elfving’s theorem [12], such optimal designs
can be calculated analytically for common dose response models with � + 1 = 2 or 3 model
parameters; otherwise, numerical optimization methods have to be used. It can be shown that
the vector c(ϑ) does not depend neither on ϑ0 nor on ϑ1 and consequently is of the form
c(ϑ) = γ(0, 0, c1, . . . , c�−1)T for a same constant γ. For example, in the Emax model we have

c(ϑ) =
p(1 − p)(d − d)2

(ϑ2 + pd + (1 − p)d)2
(0, 0, 1)T .

This implies that for dose response models with �+1 = 3 parameters the EDp-optimal designs
do not depend on p.

As for the MED estimation problem, we use the Emax model (2) to illustrate the explicit
expressions. The optimal design ξ∗EDp

for the Emax model is given by

ξ∗EDp
=

(
d1 d(ϑ) d3

0.25 0.5 0.25

)
,

where the dose level d(ϑ) is defined by

d(ϑ) =
ϑ2d + ϑ2d + 2dd

2ϑ2 + d + d
. (4)

It is noteworthy that the EDp-optimal design (4) does not depend on the particular value p

and that the support points coincide with those of the MED-optimal design in the case where
this optimal design has three dose levels. Applying (4), the optimal designs for the two Emax

models specified in Table I are given by

ξ∗EDp
(Emax 1) =

(
0 22.727 500

0.25 0.5 0.25

)
and ξ∗EDp

(Emax 2) =

(
0 74.999 500

0.25 0.5 0.25

)
for any 0 < p < 1. Note that the second support point d2 is considerably smaller for the
Emax 1 model than for the Emax2 model, which is consistent with the previous findings for the
MED estimation problem. Although the EDp-optimal design does not depend on the specific
value of p, this quantity enters in the asymptotic variance of the EDp-estimate ÊDp under the
EDp-optimal design ξ∗EDp

, which is given by

ΨEDp

(
ξ∗EDp

)
=
(

8p(1 − p)(ϑ2 + d1)2(ϑ2 + d3)2

ϑ1ϑ2(ϑ2 + pd1 + (1 − p)d3)2

)2

.

Figure 3 plots ΨEDp

(
ξ∗EDp

)
as a function of p for the two Emax models specified in Table I.

The Emax 1 model, which has the smaller ϑ2 (= ED50) value and the steeper increase to the
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PRACTICAL CONSIDERATIONS FOR OPTIMAL DOSE FINDING DESIGNS 11

plateau level, leads to considerably smaller variances of ÊDp than the Emax2 model for most
p ∈ (0, 1). Recall from Section 3.2 the values ΨMED

(
ξ∗MED

)
= 2.77 for the Emax1 model and

ΨMED

(
ξ∗MED

)
= 13.82 for the Emax2 model. Thus, the MED is estimated with larger variance

under the MED-optimal design than the EDp under the EDp-optimal design for the Emax2

model for all p ∈ (0, 1). The same is also true the Emax1 model for p < 0.75. Note that the
maximum value of ΨEDp

(
ξ∗EDp

)
is numerically the same for both Emax models in Figure 3.

Finally we note that asymptotic confidence intervals for the EDp can be constructed similarly
to equation (3) for the MED.
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Figure 3. The function ΨEDp

(
ξ∗EDp

)
for the two Emax models specified in Table I. Solid line: Emax 1

model; dotted line: Emax 2 model. The asymptotic variance of ÊDp under the EDp-optimal design ξ∗EDp

is given by σ2ΨEDp

(
ξ∗EDp

)
/n

3.4. D-optimal designs for dose response estimation

In the previous sections we used c-optimal designs to minimize the variance of a target dose
estimate (either the MED or an EDp). Often it is argued that the optimal designs for one target
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12 BRETZ ET AL.

dose might be very inefficient for another target dose. Instead, D-optimal designs are proposed
in the context of dose response studies, which focus on minimizing simultaneously the variance
for all model parameter estimates [16, 17]. D-optimal designs operate on the determinant of
the information matrix M(ξ, ϑ) and minimize the volume of the confidence ellipsoid for the
dose response model parameters, thus focusing on the entire dose response relationship instead
of a single dose.

Closed form expressions can often be derived by standard arguments using the equivalence
theorem for the D-optimality criteria [18]. For example, it can be shown that for the Emax

model the D-optimal design has equal weights at three points, which coincide with the support
points of the EDp-optimal design [19]. Similar results hold also for the other models in Table I
with � ≤ 3 parameters. This indicates that for these models the D-optimal designs are rather
efficient to estimate the EDp and vice versa. It follows from [19] that the D-optimal design ξ∗D
for the Emax model (2) is given by

ξ∗D =

(
d1 d(ϑ) d3

0.3 0.3 0.3

)
,

where the dose level d(ϑ) is defined in (4). Consequently, the D-optimal designs for the two
Emax models specified in Table I are given by

ξ∗D(Emax 1) =

(
0 22.727 500

0.3 0.3 0.3

)
and ξ∗D(Emax 2) =

(
0 74.999 500

0.3 0.3 0.3

)
.

As mentioned above, the support points of the EDp- and D-optimal designs coincide, and
it would be of interest to investigate the relative efficiencies between these two and the MED-
optimal design. Relative efficiencies are proportional to the sample size needed for a given
design ξ to achieve the same precision for parameter estimation as a reference designs, e.g., an
optimal design ξ∗ in our case. If, for example, the relative efficiency of ξ versus ξ∗ is 0.5, then
the optimal design ξ∗ would need only half of the patients to achieve the same precision (e.g.,
for the MED or EDp estimation) as a given design ξ. Consequently, in case of MED or EDp

estimation, the optimal design ξ∗ would lead to 30% shorter confidence intervals than a given
design ξ. For our purposes, the relative efficiencies are defined by

effD(ξ) =
( | M(ξ, ϑ) |
| M(ξ∗D, ϑ) |

)1/3

,

effEDp
(ξ) =

Ψ∗
EDp

(ξEDp
)

ΨEDp
(ξ)

,

effMED(ξ) =
Ψ∗

MED(ξMED)
ΨMED(ξ)

.

In Table II we use the Emax 1 model to show the efficiencies of the different designs for the
different estimation problems; the efficiencies for the Emax2 model are similar and therefore
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omitted. Note that the MED-optimal design is supported at only two points and does not allow
the estimation of all model parameters. We therefore use the slightly modified ξ̃∗MED(Emax 1)
from Section 3.2, which allocates 10% of the patients to the highest dose. We observe reasonable
D- and EDp-efficiencies for the EDp- and D-optimal design, respectively. The MED-efficiencies
for these designs are 66% and 73%. On the other hand, the MED-optimal design has a rather
poor performance to estimate the EDp.

Design Relative efficiency
effD(ξ) effEDp(ξ) effMED(ξ)

ξ∗D 1 0.8889 0.7334
ξ∗EDp

0.9449 1 0.6587
ξ̃∗MED 0.7142 0.3551 0.9401

Table II. Relative efficiencies of D-, EDp- and MED-optimal designs for the Emax 1 model.

3.5. Robust designs

All the designs considered so far are locally optimal in the sense that they are constructed
for a particular dose response shape. That is, the optimality of a design ξ∗ holds for the dose
response model f and associated parameter vector ϑ, for which it is constructed. Dette et al.
[13] investigated the robustness of MED-optimal designs with respect to their assumptions.
Their results suggests that locally optimal designs are moderately robust with respect to a
misspecification of the model parameters, but highly sensitive with respect to a misspecification
of the regression function.

In practice, we recommend for any type of estimation problem the use of model robust
designs introduced below, which are less sensitive with respect to the choice of the regression
model. The following considerations are generic and hold for robustifying either MED-, EDp-,
or D-optimal designs considered in the previous sections. The key idea is to assume m regression
models f1(d, ϑ(1)), . . . , fm(d, ϑ(m)), calculate optimal designs for each of these models using
the methods above and finally aggregate the information to construct a robust design. In the
following we apply two generic approaches from the literature [20, 21, 22] to the estimation
problems considered here. The relative performance of both types of robust design will be
illustrated when re-visiting the case study in Section 4. Since the results are generic, we
drop in the following the subscripts indicating whether MED-, EDp-, or D-robust designs
are considered.

We first consider maximin designs, which maximize the minimum efficiency of a given design
relative to the optimal designs for the m regression models under investigation. That is, given
the m regression functions fj(d, ϑ(j)) with associated optimal designs ξ∗j , j = 1, . . . , m, a
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design is called maximin optimal if it maximizes min{eff1(ξ), . . . , effm(ξ)} among all designs ξ,
where effj(ξ) denotes the efficiency of a design ξ in the jth model (j = 1, . . . , m) with respect
to the optimal design for the model under consideration. The maximin design can therefore
be thought of as safeguarding against the worst case scenario, since the minimum relative
efficiency is maximized. An alternative approach is to assign probabilities α1, . . . , αm with∑m

j=1 αj = 1 to each of the m regression models and subsequently to maximize the weighted
sum

∑m
j=1 αj log effj(ξ), leading to so-called Bayesian optimal designs. The model probabilities

may reflect the clinical team believes about the importance or likelihood for a particular model.
If no prior information is available and all models are equally relevant, a reasonable choice is to
use equal weights α1 = . . . = αm = 1/m. Note that response-adaptive designs could be used,
where data of an ongoing clinical study is used to update the prior information about the
weights αj in order to calculate a Bayesian optimal design for subsequent cohorts of patients.
Such flexibility is not available for maximin designs.

4. Application to case study

We now revisit the case study from Section 2 to apply some of the results from the previous
section. For simplicity, we keep the discussion focused on estimating the MED, since the
considerations below apply equally to other problems, including the results for EDp- and D-
optimal designs from Section 3.

Recall from Section 2 that the main open questions at the design stage of the study under
investigation are the number k of dose levels, the choice of the dose levels d1, . . . , dk, whether
to use an unbalanced allocation of the patients to the dose levels di or not, and the total
sample size n. Given the inherent model uncertainty problem, we calculate both maximin and
Bayes designs based on the m = 5 dose response models specified in Table I. Since no model
is assumed to be more likely than others, equal prior weights αi = 1/5 are assigned to each of
the models. Note that in practice the choice of the dose levels to be investigated in a clinical
study is often restricted by manufacturing or other constraints. That is, not all doses from
the continuous interval [d, d] can be investigated in a clinical study. In the current study, such
logistical considerations let the clinical team to randomize the patients to the four active dose
levels 62.5, 125, 250, and 500 μg plus a placebo (denoted in the following as actual dose levels;
they are indicated by the open dots in Figure 1). Since restricting the space of admissible doses
has an impact on the choice of the final design and its efficiency, we consider below both the
unrestricted and the restricted case. To be more specific, we consider maximin and Bayesian
optimal designs for the following scenarios:

(A) Unrestricted search for a robust design over the continuous interval [d, d] = [0, 500]
(B) Restricted search for a robust design given the actual dose levels 0, 62.5, 125, 250, and
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500 μg
(C) Restricted search for a robust design given the dose levels from (A)

Note that for scenarios (B) and (C) the design search is restricted in determining the allocation
ratios wi for the given doses.

Table III provides the results from the calculations for the total of six different cases.
Consider first the maximin designs in the upper half of Table III. Allowing for an unrestricted
design search in [d, d] in scenario (A), the maximin design is a five-point design, which allocates
roughly 36%, 20%, 22%, 6% and 16% of the patients to the dose levels 0, 49, 177, 452 and 500
μg, respectively. The efficiency of the maximin design relative to the optimal designs for each
of the models under consideration is given in the right column of Table III. If we restrict the
design search to the actual dose levels, we obtain the results given under scenario (B). Note that
the relative efficiencies of the design under scenario (B) are uniformly better than those under
scenario (A). This might look counterintuitive at first sight, since under scenario (B) we are
restricting the design space considerably by specifying the five dose levels. One might assume
that such restriction would lead to inferior designs as compared to scenario (A). Note, however,
that the maximin designs depend on the individual optimal designs, which are different under
(A) and (B). More precisely, the efficiencies under scenario (A) are calculated with respect
to the optimal designs for the individual models on the unrestricted design space [d, d], while
under scenario (B) only designs with the actual dose levels are considered. Consequently, the
resulting designs under scenarios (A) and (B) might not be ordered with respect to their
efficiencies as could be expected otherwise. This is also true under scenario (C): If the five
given dose levels were the only feasible ones, we would obtain a maximin design, which has
larger efficiencies than those under scenarios (A) and (B) because these are calculated in the
class of designs with only four dose levels. Consider now the Bayesian designs in the lower half
of Table III. We observe that that the Bayesian designs yield larger efficiencies for the Beta,
Emax and Logistic model, while the smallest efficiency is obtained in the linear model. It is also
noteworthy that in the Bayesian case the designs derived under scenario (A) and (C) coincide.

We now focus on the the remaining question about the total number of patients to be
included in the dose finding study. Current practice suggests to base the sample size calculation
on some power calculation to detect a true treatment effect [23]. Broadly speaking, the
responses at the different dose levels di are fixed and the probability to achieve a significant
dose response signal at study end is calculated for a given suitable test procedure. Another
approach is to focus on the dose estimation problem, using a pre-specified minimum precision
for the target dose estimate to calculate the sample size, as discussed now.

One possibility to quantify the precision is to pre-specify the expected width of a confidence
interval for the target dose estimate of interest, such as given in (3) for the MED estimation
problem, and by backward calculation determine the number n of patients required to achieve
this expected value. Assume, for example, that the Emax1 model specified in Table I is the
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Scenario Design specification Relative efficiencies
d1, w1 d2, w2 d3, w3 d4, w4 d5, w5 Linear Beta Emax 1 Emax 2 Logistic

Maximin design
(A) 0 47.66 176.82 452.21 500 0.5727 0.5727 0.5727 0.6755 0.5727

0.356 0.197 0.224 0.056 0.167
(B) 0 62.5 125 250 500 0.6097 0.6097 0.6097 0.6097 0.6663

0.286 0.236 0.134 0.103 0.241
(C) 0 47.66 176.82 452.21 500 0.6315 0.6315 0.6315 0.6853 0.6315

0.318 0.259 0.178 0.009 0.236
Bayesian design with αi = 0.2

(A) 0 45.86 182.1 433.63 500 0.4494 0.6091 0.5921 0.6990 0.7247
0.384 0.192 0.270 0.035 0.119

(B) 0 62.5 125 250 500 0.4674 0.5706 0.7635 0.7763 0.7543
0.322 0.181 0.197 0.144 0.156

(C) 0 45.86 182.1 433.63 500 0.4494 0.8962 0.6092 0.8193 0.8092
0.384 0.192 0.270 0.035 0.119

Table III. Left column: Maximin (top) and Bayesian (bottom) designs for several scenarios (details

given in the text). Right column: Relative efficiencies compared to the optimal designs for each model

from Table I.

true underlying model and that we consider applying the optimal design ξ∗MED(Emax1) from
Section 3.2. If we require the width of the expected confidence interval for the MED estimate
to be less or equal than 100 μg (and thus cover 20% of the dose range under investigation),
then n = 520 patients are necessary, which are allocated according to the weights wi = ni/n

determined by ξ∗MED(Emax 1). While such an approach is helpful to communicate the idea of
justifying a sample size based on a pre-specified precision, in practice the resulting confidence
intervals are likely to be wider because of model uncertainty. Bootstrap methods can be used
to obtain confidence intervals, which account for this additional variability.

Another possibility to quantify the precision is to simulate a large number of clinical trials
based on the initial assumptions, estimate the target dose at each simulation run, and report
the resulting empirical distribution of the dose estimates. To illustrate such an approach,
Figure 3 displays the histograms of MED estimates for the dose response models specified in
Table I based on 230 observations allocated equally to the actual dose levels and applying the
MCP-Mod procedure [10]. Note that for these plots the estimated MED values were rounded
to the next dose investigated in the study. Clearly, there is considerable variability in the
estimated values, depending on the true dose response shape, how well the true MED is

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6

Prepared using simauth.cls



PRACTICAL CONSIDERATIONS FOR OPTIMAL DOSE FINDING DESIGNS 17

captured by the doses under investigation, the total sample size and its allocation, etc. We
believe that considerations like those described here help the clinical teams to better compare
different experimental designs and understand the implications of the individual options.
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Figure 4. Histograms of MED estimates for the dose response models specified in Table I. Horizontal

lines indicate the position of the true MED under a particular model.

5. Discussion

In this paper we summarized MED-, EDp- and D-optimal designs for common classes
of dose response models. The results can be extended to other estimation problems and
regression models. The asymptotic designs have generally good finite sample properties and are
moderately robust with respect to an initial misspecification of the model parameters. However,
the designs are considerably sensitive to a misspecification of the dose regression model. If a
clinical team decides to apply a local optimal design for a particular dose response model, it
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should be aware of the inherent risks, in case that the true underlying dose response model
is different to the assumed one. If the information on the dose response model is too vague,
robust designs based on maximin or Bayesian optimality criteria are a viable alternative. Other
approaches exist as well to minimize the impact of model uncertainty. Discrimination designs
have been investigated, which allow for a differentiation between several non-linear regression
models [24, 25]. Response-adaptive designs allow for interim looks during an ongoing study,
use the accumulated information to correct the initial assumptions and design the subsequent
stages of the trial accordingly [17, 26, 27]. Future research will be devoted to apply these
methods and compare the results with those obtained here.

However the decision on the final study design looks like, we believe that a careful
investigation of its properties at the planning stage is essential. In this paper we focused on
some of the related practical considerations. Computing relative efficiencies for different design
options and having a basic notion about the expected precision for the estimation problem
will help to understand the inherent implications. With such tools, clinical study designs can
be tailored to the specific study objectives and consequently guarantee a higher chance for a
successful outcome.
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