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Abstract. Techniques for generating large-order Yr ( 0, <p) are discussed. 

Observations of the free oscillations of the Sun and Earth are usually expanded in 
spherical harmonics Y/11 ( 0, <p ), as these are the normal modes of a perfect sphere. 
Current trends in helioseismology have included full-disk measurements of the Sun with 
spatial resolution as high as a few arc sec per pixel element. Such measurements allow 
in principle the determination of oscillation modes with spherical harmonic orders as 
high as I~ 1000. Although a thorough examination of all possible modes with I=::;; 1000 
(106 of them) is not feasible on a finite computer budget, one can imagine more limited 
studies - e.g. looking at all degrees m for I = 100, or all modes with I =::;; 40 - that are 
interesting and are best done by fitting data directly to spherical harmonics off airly large 
order. The question arises as to how to generate these. 

The standard method of generating spherical harmonics is to use one of many possible 
recursion relations to produce the necessary Associated Legendre Polynomials. How­
ever I have found that many of these recursion relations are not terribly stable, especially 
near the endpoints, and that problems can arise even for I as small as 20. I note here 
one simple recursion relation than can be used to generate all Y/11 ( (), <p) up to I = 200, 
and also a slightly more involved procedure that allows Y/11(0, <p) of much higher orders 
to be obtained. 

Using the notation of Jackson (1975) the spherical harmonic of order I and degree 
mis 

Yf (O, <p) = J21 + 1 (/ - m)! Pi(cos O)eim<p, 
4n (/+m)! 

with the Associated Legendre Polynomial 

Defining a normalized Legendre Polynomial by 

WT(x) = (1- x2)-m/2J2/+1 (/ - m)! Pi(x), 
4n (/+m)! 
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we have 

and 

wi(x) = ( - 1)/[2/ + 1 (2/)!]1/2 
I 21/! 4n 

= c - 1)/ [2' + 1 TI (1- _!_)]1/2, 
4n k= 1 2k 

(1) 

a constant near unity, and 

w~ - 1 (x) = fax WHx) . (2) 

The W/'(x) are more convenient to work with than the P/'(x) since the former have 
values of order unity for I, m, and x. 

The recursion relation for changing m only (No. 1 in Magnus et al., 1966), 

(1- x2)[(l + m + 2)(/- m -1)]112 wr+ 2 (x) + 2(m + l)xwr+ 1 (x) + 

+ [(/- m)(l + m + 1)]112 W/'(x) = 0, (3) 

is fairly stable when run in the direction of decreasing m, using Equations (1) and (2) 
for input, and its stability increases near the endpoints in x. Unfortunately it is not stable 
everywhere; near m =I errors are multiplied by ~JI for each pass through the 
recursion relation. An estimate of the error propagation in using this relation to calculate 
W/'(x) for the worst possible m and x gives a maximum error of 5 x 104 e for I= 100, 
5 x 10 10 e for I= 200, and > 1025 e for l = 500, where e is the initial error. For double 
precision real numbers e ~ 10- 14

, hence the above recursion relation should provide 
satisfactory results for all /, m < 200. 

Y/' ( (), cp) with larger I can also be generated using recursion relation No. 6 from 
Magnus et al., 

[
2/ + 1 ]1/2 

x(l - m + 1)112 W/'(x) - -- (I+ m + 1) WI:- 1 (x) -
21+3 

- (I+ m)112 W/'- 1 (x) = 0, (4) 

which is stable when WT+ 1 (x) is the endpoint. Using a rapidly converging trigonometric 
expansion for W?(x) (adapted from Equation (8.7.1) in Abramowitz and Stegun 
(1964)), and Equation (1) for WHx), one has sufficient input to use this relation to 
generate a table of W/' (x) for all / and m. Since now errors are multiplied by of order 
unity during each pass through recursion relation, one would have to go up to very high 
I and m before roundoff errors become a problem. 
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