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Abstract. We give a careful, fixed-size parameter analysis of a standard (Blum and
Micali in SIAM J. Comput. 13(4):850–864, 1984; Goldreich and Levin in Proceedings
of 21st ACM Symposium on Theory of Computing, pp. 25–32, 1989) way to form a
pseudo-random generator from a one-way function and then pseudo-random functions
from said generator (Goldreich et al. in J. Assoc. Comput. Mach. 33(4):792–807, 1986)
While the analysis is done in the model of exact security, we improve known bounds
also asymptotically when many bits are output each round and we find all auxiliary
parameters efficiently, giving a uniform result. These optimizations makes the analysis
effective even for security parameters/key-sizes supported by typical block ciphers and
hash functions. This enables us to construct very practical pseudo-random generators
with strong properties based on plausible assumptions.

Key words. Hard core function, One-way function, Pseudo random generator, Exact
security.

1. Introduction

One of the most fundamental cryptographic primitives is the Pseudo-Random Genera-
tor or more succinctly a PRG, a deterministic algorithm that expands a few truly random
bits to long “random looking” strings. Having such generators are basic for many appli-
cations in cryptography and computer science in general.

Despite the importance, many protocols used in practice often leave unspecified what
PRG to use. While there is usually no interoperability problems in doing so, this unfor-
tunately leaves room for “ad-hoc”, possibly insecure, solutions.

From a theoretical point of view, a sound theory of pseudo-randomness did not
emerge until the seminal works of Blum and Micali [5], and Yao [26] in the early 80’s.
The theoretical area was in a sense closed when, in [12], it was shown that necessary and
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sufficient conditions for the existence of a PRG is the existence of another fundamental
primitive: the one-way function; a function easy to compute, but hard to invert. We do
not know if such functions exist, but many strong candidates exist, such as a good block
cipher. Still, the construction in [12] is complex, requiring key-sizes of millions of bits,
and hence is not useful in practice.

On the subject of one-way functions and good block ciphers let us point to a some-
times overlooked fact. The first mapping that comes to mind in connection with a good
block cipher is the mapping from clear-text to cipher-text which also is a permutation.
This mapping, however, can be inverted by anybody that can compute it and hence it
does not give a one-way function. Instead the natural one-way function takes as input
the key and outputs the encryption of a fixed clear-text.

The reason for the ineffectiveness of the theoretical constructions is that one-wayness
is in itself not a strong property. A function may be hard to invert but still have very
undesirable properties. For instance, even if f is one-way, most of x may still be easily
deduced from f (x) and basing pseudo-randomness on one-wayness alone appears to
require elaborate constructions. However, if one assumes only a little more than one-
wayness, e.g. that the function f is also a permutation, the situation becomes much
more favorable and reasonably practical constructions can be found from the work of
Blum and Micali [5] mentioned above, and later work by Goldreich and Levin [10]. In
[5] it is shown that if f is a permutation and has at least a single bit of information, b(x),
that does not leak via f (x), then a PRG can be built. In [10], then, it is shown that every
one-way function, in particular ones being permutations, have such a hard bit b(x).
For specific, assumed one-way functions, slightly simpler constructions are known. For
instance, the papers [1,5] provide PRGs based on exponentiation mod p and the RSA
function. Common to all these results, however, is that the security is only proven to hold
asymptotically. Unfortunately, this has sometimes (e.g. [7,24]) been misunderstood (or
neglected), implying that some deployed PRGs may actually be practically breakable,
even though they are “based” on provably secure constructions.

In this paper we make a careful analysis of the general transformation from a one-way
function to a PRG, see Sect. 3. The analysis is done in the model of exact security, but
we add new elements of the general analysis when we output many bits for each iteration
of f , improving the dependence on this parameter also asymptotically. First, we non-
uniformly reduce inversion of f to distinguishing the generator from randomness, given
some auxiliary parameters. We then give efficient sampling procedures to determine
the values of these parameters, giving a uniform inversion algorithm. Values of the
parameters that give almost as strong results as the existential bounds can, for many
parameter values, be found in time less than the time needed for successive inversions.

A related primitive is that of pseudo-random functions; functions that can not be dis-
tinguished from random functions on the same domain/range. Goldreich, Goldwasser,
and Micali [9] showed how such an object could be built from a PRG. In Sect. 3.3, we
show how to use this construction to further enhance our generator.

Our explicit theorems allow us, in Sect. 5 to construct a generator that is efficient in
practice based on the assumption that e.g. AES (or preferably the 256-bit block version
of Rijndael), mapping keys to cipher-texts, fixing a plaintext, remains hard to invert
even when iterated.



Practical Construction and Analysis of Pseudo-Randomness Primitives 3

1.1. History of this Paper and Related Works

Manuscripts containing some of the results of this paper have existed in many forms.
In particular this paper could be considered to be final version of [13]. It is also very
related to the stream cipher proposal submitted to the NESSIE-initiative and appearing
in [14,15].

Hast [11] has analyzed what happens if PRGs are used in some types of cryptographic
constructions. He assumes that a certain cryptographic construction is secure when true
random bits are used and insecure when pseudo-random are bits used. For some sit-
uations this yields a very one-sided statistical tests for randomness and exploiting the
one-sidedness he is able to get a tighter connection between the one-wayness of the
function on which the PRG is used and the usefulness of the generators. His results
partly build on the results of this paper.

2. Preliminaries

2.1. Notation

The length of binary string x is denoted |x|, and by {0,1}n we denote the set of x

such that |x| = n. We write Un for the uniform distribution on {0,1}n. We use ‖S‖
to denote the cardinality of a set S. We use logx to refer to the logarithm in base 2
of a real number x. We sometimes treat real numbers as integers and we assume that
some rounding is used. Sometimes, when it is important that we round a certain way we
explicitly use �x� to denote the smallest integer larger than x.

We let

〈r, x〉2 = r1 · x1 + r2 · x2 + · · · + rn · xn mod 2

denote the inner product mod 2. We use bit strings of length t to represent inte-
gers i in the range 0 ≤ i ≤ 2t − 1, elements α ∈ F2t and subsets of [t], the integers
{0,1, . . . , t −1}. Sometimes when we want to emphasize that we want to discuss the bi-
nary representation, we use bin(i) and bin(α) to highlight this fact. We use ⊕ to denote
bitwise exclusive-or of vectors.

We assume that we are given a representation of F2t , i.e. an irreducible polynomial of
degree t over F2. Finding such a polynomial is computationally much easier than most
tasks considered in this paper.

Let G : {0,1}n → {0,1}L(n) and let A be an algorithm with binary output. We
say that A is a (L(n), T (n), δ(n))-distinguisher for G, if A runs in time T (n) and
|Prx∈Un

[A(G(x)) = 1]−Pry∈UL(n)
[A(y) = 1]| ≥ δ(n). We call δ(n) the advantage of A.

If no such A exists, G is called (L(n), T (n), δ(n))-secure. Recall that a function δ(n) is
negligible if for all c > 0, δ(n) = o(n−c).

A function f is one-way if, when y is computed as y = f (x) for a uniformly ran-
dom x, any probabilistic polynomial algorithm can find a x′, which may or may not
equal x, such that f (x′) = y only with negligible probability.

Our model of computation is slightly generous but realistic. We assume that simple
operations like arithmetical operations and exclusive-ors on small size integers can be
done in unit time. To be more precise we need words of size n where n is size of the input
on which we apply our one-way function, e.g. n = 128 or 256 for a typical block cipher.
We also, in many sampling procedures, ignore the cost of updating trivial counters.
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2.2. Probabilistic Facts

For our analysis, we need to consider some Bernoulli random variables, {Yi}, obtained
as outputs of probabilistic algorithms. Specifically, we study the “centered” distributions
Xi = Yi − E[Yi], i.e. E[Xi] = 0 and Pr[Xi = 1 − pi] = pi and Pr[Xi = −pi] = 1 − pi

for some 0 ≤ pi ≤ 1. Let X = ∑s
i=1 Xi and suppose p = 1

s

∑s
i=1 pi . Let us first assume

that the variables Xi are independent, then the following variant of Chernoff-bound is
stated in [2] as Theorem A.1.4.

Lemma 2.1. Pr[X ≥ a] ≤ e− 2a2
s .

In some situations we have very biased random variables and in these cases the fol-
lowing bounds, found as Theorems A.1.11 and A.1.13 of [2], respectively, are useful.

Lemma 2.2. Assume β > 1, then Pr[X ≥ (β − 1)ps] ≤ (eβ−1β−β)ps .

Lemma 2.3. Pr[X ≤ −a] ≤ e
− a2

2ps .

When we do not have full independence we also use Chebychev’s inequality which
in the current framework, using σ 2(Xi) ≤ 1

4 , has the following consequence.

Lemma 2.4. If the variables are pairwise independent we have Pr[X ≥ a] ≤ s

4a2 .

Typically we use the above lemmas to prove that sampling gives an answer that is not
too far away from the correct values. In those cases Yi is a 0–1 variable that is adjusted to
get expectation 0 and then a measures the distance of the sample from the expectation.
In some cases we only have an upper estimate of E[Yi] and we want to prove that
we do not get many more variables that take the value 1 than expected in the case
when all unknown expectations take their maximal value. In those cases it is intuitively
clear that analyzing the case when each Yi indeed has the maximal expectation gives an
upper bound for the general case. Formally this can be argued by introducing a coupled
Boolean variable Ỹi for which Ỹi ≥ Yi is always true and Ỹi has the maximal expectation
allowed for Yi .

2.3. Pseudo-Random Generators from One-Way Permutations

Suppose we have a one-way function, f , that in addition is a permutation. Further-
more, suppose that we have a family of efficiently computable 0/1-functions, B = {br},
br(x) ∈ {0,1}, such that given f (x) and a randomly chosen r , br(x) is computation-
ally indistinguishable from a random 0/1 coin toss. We then say that B is a (family of)
hard-core predicates for f . The following construction, due to Blum and Micali [5],
shows how to construct a PRG: choose x0, r (the seed), let xi+1 = f (xi), then output
g(x0, r) = br(x1), br (x2), . . . as the generator output.

Theorem 2.5 (Blum–Micali, 1984). Suppose f is a permutation and there is a polyno-
mial time algorithm D that distinguishes (with non-negligible advantage) g(x, r) from
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a completely random string. Then, there is a polynomial time algorithm P that given r ,
f (x) predicts br(x) with non-negligible advantage.

Due to the iterative construction, f must not lose one-wayness under iteration. This
can be guaranteed if f is a permutation, or, heuristically if f is randomly chosen, as
quantified in Theorem 2.8 below. Assumptions along these lines have been proposed by
Levin [17] and were the first conditions to be proved to be necessary and sufficient for
the existence of PRGs.

This leaves us with one question: which one-way functions (if any) have hard-cores,
and if so, what do these hard-cores look like?

2.4. A Hard-Core for any One-Way Function

In 1989, Goldreich and Levin [10], proved that any one-way function has a hard-core.
Perhaps surprisingly, the hard-core they found is also extremely simple to describe. If
r, x are binary strings of length n, let ri (and xi ) denote the ith bit of r (and x). Let
B � {br(x) | r ∈ {0,1}n} where br(x) � 〈r, x〉2 is the inner product mod 2.

Theorem 2.6 (Goldreich–Levin, 1989). Suppose there is a polynomial time algo-
rithm A, that given r, f (x) for randomly chosen r, x, distinguishes br(x) from a com-
pletely random bit, with non-negligible advantage. Then there exists a polynomial time
algorithm B , that inverts f (x) on a random x with non-negligible probability.

If f is a one-way function, existence of such A would thus be contradictory.
We again stress that this does not automatically imply that a PRG can be built from

any one-way function, as the construction by Blum and Micali only works for one-way
permutations.

As established already in [10], a way to improve efficiency would be to extract more
than one bit per iteration of f . In theory it is possible to output as many as m ∈ O(logn)

(where n = |x|) bits, by multiplying the binary vector x by a random m × n binary
matrix, R. Denote the set of all such matrices Mm, and the corresponding functions
{Bm

R (x) | R ∈ Mm}. That is, Bm
R (x) � Rx mod 2.

2.5. Iteration of One-Way Functions

We first define a general experiment for inversion of functions.

Definition 2.7. For a function f : {0,1}n → {0,1}n, let f (i)(x) denote f iterated i

times, f (i)(x) � f (f (i−1)(x)), f (0)(x) � x.
Let A be a probabilistic algorithm which takes an input from {0,1}n and has output in

the same range. We then say that A is a (T , δ, i)-inverter for f if when given y = f (i)(x)

for an x chosen uniformly at random, in time T with probability δ it produces z such
that it has verified that f (z) = y.

Note that the number z might be on the form f (i−1)(x′) but this is not required.
Allowing A to output z without having computed f (z) is not natural as f is assumed
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to be easy to compute and one more function evaluation verifies or rejects a candidate
for z.

It is interesting to investigate what happens for a random function.

Theorem 2.8. Let A be an algorithm that tries to invert a black box function f :
{0,1}n → {0,1}n, and makes T calls to the oracle for f . If A is given y = f (i)(x) for
a random x, then the probability (over the choice of f and x) that A finds a z such
that f (z) = y is bounded by 2T (i + 1)/(2n − T ) + i(i + 1)2−(n+1). On the other hand,
there is an algorithm that, using at most T oracle calls, outputs a correct z except with
probability (1 − (i + 1)2−n)T −i .

Proof. For the lower bound on the required number of oracle calls, consider the
process of computing f (i)(x) and let W be the values of f computed in this process,
W = {f (j)(x) | j = 0, . . . , i}. We will only consider the case when all points of W are
distinct. The probability that we see the same value twice under the evaluation of f (i)(x)

is bounded by i(i + 1)2−(n+1) and in the case we assume that the inverter is successful.
We relax the inverter’s task and consider it successful if it ever queries for a w = y

with w ∈ W , or, if it queries on any w with f (w) ∈ W . As y ∈ W this gives an over-
estimate of the success probability.

Suppose that up to the k’th query the inverter has not already succeeded. In such a
case the set W is completely independent of A and hence the probability that the next
question is for an input w = y, w ∈ W is bounded by ‖W‖/(2n − k) and conditioned
on the input not being in W , the probability of the obtained value f (w) being in W is
‖W‖2−n. We conclude that the probability that the inverter is successful within its T

queries is bounded by 2T ‖W‖/(2n − T ).
For the upper bound consider the following algorithm.
Start by setting x0 = y and then xj = f (xj−1) for j = 1,2, . . . . We continue this

process until either xj = y, and we are done, or xj is a value we have seen previously.
In the latter case we change xj to an arbitrary value we have not seen previously and
continue.

Let us analyze this algorithm. If y occurs twice in W (W as above), then the answer
is guaranteed to be found within i steps and hence we can assume that this is not the
case and that the i + 1 values in W are distinct. Until we have obtained a xj ∈ W each
value xj for j ≥ 1 is a uniformly random value and as soon as we obtain an xj ∈ W we
find y within at most i additional evaluations of f . This implies that the probability of
not finding a preimage is bounded by (1 − (i + 1)2−n)T −i . �

Note that, disregarding minor details, both the upper and lower bounds are of the
form �(T i2−n) for the probability of finding a preimage. Thus our characterization is
rather tight.

Consider for instance the block cipher Rijndael [6] as a one-way function. As dis-
cussed in the introduction the one-way function is the mapping from the key to the
encryption of a fixed plaintext. It is not unreasonable to expect this function to be al-
most as hard to invert as a random function, so that the best achievable time over success
ratio to invert it after being iterated i times is, by the above theorem, about 2n/i. The
security is defined as follows.
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Definition 2.9. A σ -secure one-way function is an efficiently computable function f

that maps {0,1}n → {0,1}n, such that the average time over success ratio for inverting
the ith iterate is at most σ2n/i. That is, f cannot be (T , δ, i)-inverted for any values
of T , δ and i such that T/δ < σ2n/i.

A block cipher, f (p, k), |p| = |k| = n, is called σ -secure if the function fp(k), for
fixed, known plaintext p, is a σ -secure one-way function of the key k.

Note that if f is a permutation, only the case i = 1 is of interest and we have a
standard notion of security.

2.6. Generating Pairwise Independent Matrices

Our proof is an extension of the proof by Rackoff (see [8]) for the original result of
Goldreich and Levin. For the extension we need a way to generate pairwise independent
matrices.

Lemma 2.10. Fix any x ∈ {0,1}n. For m ≤ t , from m + t randomly chosen
a0, . . . , am−1 and b0, . . . , bt−1 ∈ {0,1}n, it is possible in time 2m2t + t2 + m + 4t

to generate a set of 2t uniformly distributed, pairwise independent matrices R1, . . . ,

R2t ∈ Mm. Furthermore, there is a collection of m × (m + t) matrices {Mj }2t

j=1 and a

vector z ∈ {0,1}m+t such Bm
Rj (x) = Mjz for all j .

Proof. Remember the convention that t-bit strings can be considered both as inte-
gers, elements of F2t and subsets of [t]. Let {αj }2t

j=1 be an enumeration of distinct
elements of F2t . Choose randomly and independently m strings, a0, . . . , am−1 and t

strings b0, . . . , bt−1, each of length n. The j th matrix, Rj is now defined by letting its
ith row R

j
i be

R
j
i � ai ⊕

( ⊕

l∈bin(αj ·t i )
bl

)

,

where the multiplication, αj · t i , is carried out in F2t , and ⊕ is bitwise addition mod 2.
Clearly the matrices are uniformly distributed, since the ai are chosen at random.

To show pairwise independence it suffices to show that an exclusive-or of any subset
of elements from any two matrices is unbiased. Since the columns are independent, it
is enough to show that the exclusive-or of any non-empty set of rows from two dis-
tinct matrices Rj1 and Rj2 is unbiased. Consider any such set of rows, S1 ⊂ Rj1 , and
S2 ⊂ Rj2 . If S1 = S2 then the addition of the vectors ai ensures that the exclusive-or
of the rows in unbiased and hence we need only consider the case S1 = S2 = S. In this
case the exclusive-or can be written as

⊕

i∈S

⊕

l∈bin((αj1+αj2 )·t i )
bl,

but this is the same as
⊕

l∈bin((αj1+αj2 )·(∑i∈S t i ))

bl,
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which is unbiased if, and only if, bin((αj1 +αj2) ·(
∑

i∈S t i)) = 0. However,
∑

i∈S t i = 0,
and as αj1 = αj2 , we have two nonzero elements and hence their product is nonzero.

Notice that if we know 〈ai, x〉2 and 〈bl, x〉2 for all ai, bl (a total of m + t bits), then
by the linearity of the above construction, we also know the matrix-vector products Rjx

for all j .
To calculate all the matrices we first compute the reduction of t i for all i = t +

1, . . . ,2t in F2t . Using an iterative procedure this can be done with 3t operations on
t bit words and since we only care about t ≤ n these can be done in unit time. We
generate the vectors a and b in time m + t operations and compute

⊕
l∈bin(t i ) bl for

each i = 0, . . . ,2t using t2 operations. By using a gray-code construction each row
of a matrix can now be generated with two operations and thus the total number of
operations is 2m2t + t2 + m + 4t . �

3. The Construction and Its Security

3.1. The Basic PRG

We start by defining our generator.

Definition 3.1. Let n, and m,L,λ be integers such that L = λm and let f : {0,1}n →
{0,1}n. The generator BMGLf

n,m,L(x,R) stretches n+nm bits to L bits as follows. The
input is interpreted as x0 = x and R ∈ Mm. Let xi = f (xi−1), i = 1,2, . . . , λ and let the
output be {Bm

R (xi)}λi=1.

See also the figure below. We could output also the matrix R but we do not. In fact
it might be better to think of it as a parameter of the generator and this point of view is
useful for us in Sect. 3.3.

A proof of security for a concrete f and fixed n,m, requires an exact analysis, and
that analysis is the bulk of this paper. As the parameters f,n,m and L remain fixed
throughout the paper we sometimes feel free to suppress them.

3.1.1. Security of the Generator

We start by stating our main theorem.
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Theorem 3.2. Suppose that G = BMGLf
n,m,L is based on an n-bit function f , com-

putable by E operations, and that G produces L bits in time S. Suppose that this
generator can be (L,T , δ)-distinguished. Then, setting δ′ = δm

L
, there exists integers

i ≤ L/m � λ, 0 ≤ j ≤ 2 log δ′−1, such that for t = max(m,2 + �log ((2n + 1)δ′−2)

− j�), f can be (T ′,2−(7/2+j), i)-inverted, where T ′ equals

(1 + o(1))2m+t (2m + t + 1 + T + S + E)(n + 1).

Values of i and j such that f can be (8T ′, ((j + 1)(j + 2)2(j+10)/2)−1, i)-inverted can,

with probability at least 1/4, be found in time O(j42−j/2δ′−2(T + S)).

The obtained dependence on the parameter j is somewhat arbitrary. We have concen-
trated on getting a good time/success tradeoff in the non-uniform case and not too high
preprocessing time in the uniform case. Small values of j give similar results in both
cases. As will be seen in the proof, the bounds in the uniform case for j = 0 are slightly
better than stated.

A similar result could be obtained from the original works by Blum–Micali and
Goldreich–Levin, but we are interested in a tight result and hence we have to be more
careful than in [10] where, basically, any polynomial time reduction from inverting f to
distinguishing the generator would be enough. Optimizations of the original proof also
appeared in [18], but are not stated explicitly. We start with the following lemma.

Lemma 3.3. Let L = λm. Suppose that BMGLf
n,m,L runs in time S(L). If this genera-

tor is not (L,T (L), δ)-secure, then there is an algorithm P (i), 1 ≤ i ≤ L/m that, using
T (L) + S(L) operations, given f (i)(x),R, for random x ∈ Un, R ∈ Mm, distinguishes
Bm

R (f (i−1)(x)) from Um with advantage δ′ = δm
L

.
P (i) depends on an integer i, and using c1(1 + o(1))δ′−2(T (L) + S(L)) operations,

where c1 is the constant given by (11), a value of i achieving advantage δi ≥ δ′/2 can
be found with probability at least 1/2.

We conjecture that the time needed to find i is optimal up to the value of the con-
stant c1. Even if a good value i was given at no cost, the straightforward way, by sam-
pling, to verify that it actually is as good as claimed would take time �(δ′−2(T (L) +
S(L))). It is not difficult to see that the below proof can be modified to find an i with
δi arbitrarily close to δ′ and such that the probability of success can be arbitrarily close
to 1. This improvement comes at the expense of an increase in the constant c1. The
constants we have used should be considered only as an example rather than as a choice
of any special significance.

The proof of Lemma 3.3 is a standard hybrid argument and the bulk of the work is to
establish the uniform part i.e., how to efficiently find the parameter i. The reader may
choose to skip the rather long proof on first reading and return here later.

Proof of Lemma 3.3. Define distributions Hi , i = 0,1, . . . , λ, on {0,1}L such that Hi

first produces an L-bit output of BMGL but then replaces the first im bits by random
bits. Clearly H 0 equals the distribution of outputs of BMGL and Hλ is the uniform
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distribution on {0,1}L. Let D be the algorithm that distinguishes the output from BMGL
from random bits and let εi be the probability that D outputs 1 on the distribution Hi .
We let δi = εi − εi−1 be the advantage of D in distinguishing Hi from Hi−1. From the
triangle inequality follows the existence of an i, with δi ≥ δ′. With this i known, one
easily constructs the algorithm P (i).

For the uniform part of the lemma we need to find such an i efficiently and the
problem is that even though Ei[δi] = δ′, there is a large number of possibilities for
the individual δi . Basically, these possibilities all lie between the two extreme cases:
(1) There are a few large δi , while most are close to 0. (2) All δi are about the same,
but none is very large. Suppose we try random i’s. In the first case, we may need to
try many i, but it can be done with a rather low sampling accuracy. In the second case,
we expect to find a fairly good i rather quickly, but we need a higher precision in the
sampling. The idea is therefore to divide the sampling into a number stages, each with
different sampling accuracy. Stage j chooses some random i-values and samples D on
Hi and Hi−1. As soon as a sufficiently good i is detected, the procedure terminates. As
the number of samples needed to determine the advantage to accuracy ε is about ε−2

we can try many values of i when trying to find a very large δi . Formally we proceed as
follows.

Define b0 = 32, b1 = �211/2(1 − e−1)−1� and

bj = �211/2(1 − e−1)−1(2(j−1)/2 − 2(j−2)/2)�

for j > 1. Furthermore let T0 = 350 and Tj = 22−j (6 + j)/2 for j ≥ 1.
In stage j , for j = −2 log δ′,−2 log δ′ − 1, . . . ,0, choose bj different random values

of i and sample Hi and Hi−1 each tj = �Tj δ
′−2� times and run D on each of the sam-

ples. Let c
j
i be the difference in the number of times one is output in the two distribution.

Halt and output i if either

1. j ≥ 1 and c
j
i ≥ 2(1+j)/2tj δ

′ − √
tj .

2. j = 0 and c0
i ≥ 5t0δ

′/8.

If no i is ever chosen halt with failure.
We need to analyze the procedure. We have

λ−1∑

i=0

δi = λδ′

and thus either

∑

i|δi≥2δ′
δi ≥ λδ′/8 (1)

or

∑

i|δi<2δ′
δi ≥ 7λδ′/8. (2)
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We prove that in the former case we are likely we find a good output in a stage with
j ≥ 1 and in the latter case we are likely to succeed for j = 0. We start with the first
case and let us assume that j ≥ 1.

Suppose that at stage j an i is picked such that δi ≥ 2(1+j)/2δ′. Then, by Lemma 2.1,
i is output with probability at least (1 − 1

e
). Let aj be the fraction of i such that δi ≥

2(1+j)/2δ′. We claim that

a1 +
−2 log δ′
∑

j=2

aj (2
(j−1)/2 − 2(j−2)/2) ≥ 2−9/2. (3)

To see this, for i such that δi ≥ 2δ′, let δ̃i be the largest value of form 2(1+j)/2δ′ which
is smaller than or equal to δi , and for all other i, let δ̃i = 0. Then, by (1), we have

∑

i

δ̃i ≥ λδ′2−7/2. (4)

Now notice that

1

λ

∑

i

δ̃i = 2a1δ
′ +

−2 log δ′
∑

j=2

aj (2
(1+j)/2 − 2j/2)δ′

= 2δ′
⎛

⎝a1 +
−2 log δ′
∑

j=2

aj (2
(j−1)/2 − 2(j−2)/2)

⎞

⎠ (5)

and clearly, (4) and (5) implies (3).
By the above reasoning the probability that the algorithm terminates in an individual

iteration during stage j is at least aj (1 − e−1). The probability that the algorithm will
fail to output an i in a stage with j ≥ 1 is thus bounded by

−2 log δ′
∏

j=1

(1 − aj (1 − e−1))bj ≤ e
−(1−e−1)

∑
j aj bj ≤ e−2

where the last inequality follows from (3) and the definition of bj . This takes care of
the case when (1) holds. Let us now establish that when (2) holds we are likely to find a
good i in stage j = 0.

We must have at least λ/16 different i such that δi ≥ 3δ′/4 since otherwise

∑

i|δi<2δ′
δi < 2δ′λ/16 + λ3δ′/4 = 7λδ′/8. (6)

This implies that in our 32 attempts the probability that we do not try an i with δi ≥
3δ′/4 is bounded by

(15/16)32 ≤ e−2.
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Given that we sample using such an i the probability that we will not output it is, by
Lemma 2.1 with a = δ′t0/8 and s = 2t0 bounded by

e− t0δ′2
64 ≤ e−T0/64. (7)

We must also bound the probability that algorithm terminates with an i such that
δi ≤ δ′/2 before finding a good value of i. Let us analyze the probability that such a
bad i would be output during an individual run of stage j provided that it is chosen as a
candidate. Let us first consider j ≥ 1.

To halt we need an observed difference of at least

2(1+j)/2tj δ
′ − √

tj

while the expected difference is at most tj δ
′/2 and thus we are at least

(

2(1+j)/2 − 1

2

)

tj δ
′ − √

tj ≥ 2j/2tj δ
′ − √

tj (8)

away from the mean. By Lemma 2.1 this implies that the probability of halting in a
particular run of stage j is bounded by

exp

(

−2(2j/2tj δ
′ − √

tj )
2

2tj

)

= e−(2j/2√tj δ′−1)2
.

By the definition of tj we have

2j/2√tj δ
′ − 1 ≥ 2

√
(6 + j)/2 − 1

and thus the probability to end with an output with δi ≤ δ′/2 in any stage j ≥ 1 is
bounded by

−2 log δ′
∑

j=1

e−(2
√

(6+j)/2−1)2
bj ≤

−2 log δ′
∑

j=1

e−(2
√

(6+j)/2−1)2
2(10+j)/2(1 − e−1)−1 ≤ e−2 (9)

where the first inequality follows from the definition of bj and the second inequality is
due to a computer calculation.

For j = 0 and any picked i the probability of outputting the given i if δi ≤ δ′/2 is
also bounded by (7) as this time to get this result the outcome of the sampling has to be
t0δ

′/8 on the other side of the mean. Now observe that

e−T0/64 = e−350/64 ≤ e−2/32.

Let us sum up. If (1) holds then the probability of finding a good i in a stage with
j ≥ 1 is (1 − e−2). The probability of halting with an output i for which δi ≤ δ′/2
is bounded by e−2. We conclude that we halt with an i with probability at least
1 − 2e−2 ≥ 1

2 in this case.
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If (2) holds then, by (9) the probability of ending with a i with δi ≤ δ′/2 in a stage
j > 0 is bounded by e−2. In stage 0 let us say that sampling is successful for a given i

if δi ≤ δ′/2 and we do not halt or δi ≥ 3δ′/4 and we do halt. If δi is in the intermediate
range, sampling is always considered successful. By the above analysis sampling is
successful with probability at least (1 − e−T0/32)32 ≥ (1 − e−2). The probability of
never choosing an i with δi ≥ 3δ′/4 is bounded by e−2. We conclude that we halt with
an i with δi ≥ δ′/2 with probability at least

(1 − e−2)3 ≥ 1

2
.

Finally, apart from trivial arithmetic operations the running time of the procedure is
given by the number of samples produced which is bounded by

∞∑

j=0

2bj tj , (10)

and this, up to low order terms, equals

δ′−2
∞∑

j=0

2bjTj � c1δ
′−2. (11)

As bj ∈ O(2j/2) and Tj ∈ O(j2−j ) the sum converges and can numerically be checked
to bounded by 24460. The dominating term is the first term 2b0T0 = 22400. This com-
pletes the proof. �

The value of the constant c1 can be improved significantly. The bulk of the work is
done for small values of j and here we can save time by more quickly abandoning a
choice of i that does not look promising.

We now give the theorem of Goldreich and Levin [10] trying to be careful with our es-
timates and construction. Apart from the value of the constants we have an improvement
over previous results in the dependence on the parameters m and ε. Previous construc-
tions, reducing the general case of m > 1 to that of m = 1 would reduce the distinguish-
ing advantage from ε to ε/2m and thus, by standard analysis, would require a sampling
complexity on the order 22mε−2. By avoiding this reduction and using a more direct
analysis, we are able to reduce this dependence to roughly 2m · max(2m, ε−2), gaining
either a factor2m, or ε−2.

Theorem 3.4. Fix x. Suppose there is an algorithm, P , using T operations, when
given random R distinguishes Bm

R (x) from random strings of length m with advantage
at least ε where ε is given. Then, for t � max (m, �log (ε−2(2n + 1))�), we can in time

(1 + o(1))2m+t (2m + t + 1 + T )(n + 1)

produce a list of 2t+m(n + 1) values such that the probability that x appears in this list
is at least 1/2.
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As we understand, a statement similar (up to a constant) to Theorem 3.4, for the
special case of m = 1, can be derived from [18]. We prove now that we can compute
useful information about x.

Lemma 3.5. Let P,T , x and ε be as in Theorem 3.4. Then for any set of N vectors
{vi}Ni=1 ∈ {0,1}n and any t ≥ m we can in time (1+o(1))2m+t (2m+ t +T +1)(N +1)

produce a set of lists {b(k)
i }Ni=1, k = 1,2, . . . ,2t+m(N +1) such that with probability 1/2

we have for at least one k, 〈x, vi〉2 = b
(k)
i , except for at most N

ε22t−1 of the N possible
values of i.

Before we establish Lemma 3.5 let us use it to prove Theorem 3.4.

Proof of Theorem 3.4. Set t = max (m, �log (ε−2(2n + 1))�). We apply Lemma 3.5
with N = n, and let {vi}ni=1 be the unit vectors so that 〈vi, x〉2 gives the ith bit of x. With
probability 1/2 one list gives all inner-products correctly and hence determine x. �

We continue to establish Lemma 3.5.

Proof of Lemma 3.5. Start by randomly generating the 2t pairs of matrices {Rj ,Mj }
as described in Lemma 2.10. Now repeat the process below for each i = 1, . . . ,N .

Select 2t (pairwise) independent random strings sj ∈ {0,1}m, and let S
j
i be the m×n

matrix defined by S
j
i � sj ⊗vi , the outer product, i.e., (Sj

i )t,l = (sj )t ·(vi)l . By linearity

(Rj + S
j
i )x = Rjx + sj 〈vi, x〉2, (12)

which is Bm
Rj (x) if 〈vi, x〉2 = 0, and a random string otherwise.

We want to compute the following statistic:

ci
l = 2−t

2t−1∑

j=0

P(Rj + S
j
i ,Mjzl) (13)

for all 2t+m values of zl . Naively this seems to require 22t+m operations for each i but
as described in Sect. 3.2 below it is possible to compute these values for fixed i with
(2m + t + T )2m+t operations.

Focus on the choice for l that gives Mjzj = BM
Rj (x). If 〈vi, x〉2 = 0, then ci

l is
the outcome of a uniform random, pairwise independent sample values of the form
{P(R,Bm

R (x))}. On the other hand, if 〈vi, x〉2 = 1, we claim that it is a sample of
{P(R,u)} over random u. Furthermore the values of R and u are pairwise indepen-
dent.

To see that u is uniformly distributed note that for R = (Rj + S
j
i ), the distinguisher

P is called on {P(R,Bm
R (x) + sj ). Fixing the value R, all possible values of Rj are

equally likely and hence each possible S
j
i is equally likely giving a uniform distribution

of sj . Pairwise independence follows from pairwise independence of Rj and Sj .
Suppose pR is the probability that P(R,Bm

R (x)) = 1 for random R and x and let pU

be the same probability that P(R,u) = 1 for random R and u. Note by assumption we
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have pR = pU + ε. Let p � (pR + pU)/2. In reality we do not know the value of p but
for the moment let us assume we do.

We guess that 〈vi, x〉2 = 0 if ci
l ≥ p and 〈vi, x〉2 = 1 otherwise. The choice is correct

unless the average of 2t pairwise independent Boolean variables is at least ε/2 away
from its mean. By Lemma 2.4 this happens with probability at most 2−t ε−2.

This implies that for the correct values of l and p, the expected number of errors
is 2−t ε−2N , and by Markov’s inequality, with probability at least at 1/2 it is below
21−t ε−2N . There are 2t+m possible values of l and once l is fixed the only information
on p needed is for which i ∈ [1..N ] we have ci

l ≥ p, i.e. how the ci
l values are partitioned

around p. There are only N + 1 possibilities for this, and we can thus try them all.
The time needed to construct the matrices is negligible, computing the values ci

l can
be done it time 2t+m(2m + t + T )N , and at most time 2t+m(N + 1) is needed to output
the final lists. �

We could have reduced the number of lists by assuming that we know at least an
approximate value of p. This does not, however, affect the overall complexity in any
significant way and introduces additional non-uniformity in the non-uniform model and
additional possibilities for sampling errors in the uniform model and hence we have
chosen not to use this possibility.

We can now use Theorem 3.4 to establish Theorem 3.2. Also this proof is quite long
in the uniform case, so the reader may choose to skip this part of the proof on first
reading.

Proof of Theorem 3.2. First we apply Lemma 3.3 to see that there is an i for which
we have an algorithm P (i) that when given f (i)(x) runs in time S(L) + T (L) and
distinguishes Bm

R (f (i−1)(x)) from random bits with advantage at least δ′′, where δ′′ is
δ′/2 or δ′ depending on whether we want to find i efficiently, or only show existence
(i.e. uniform/non-uniform algorithm). Since δ′′ is an average over all x we need to do
some work before we can apply Theorem 3.4.

For each x we have an advantage δx . For j ≥ 0, let aj be the fraction of x with
δx ≥ 2(j−2)/2δ′′. As the expectation of δx is δ′′ the same reasoning that lead to (3) gives

a0/2 +
∞∑

j=1

aj (2
(j−2)/2 − 2(j−3)/2) ≥ 2−3/2. (14)

Let us first describe a non-uniform algorithm. Let j0 be the value of j that maximizes
aj 2j and apply Theorem 3.4 with ε = 2(j0−2)/2δ′′ = 2(j0−2)/2δ′. Let us analyze this
algorithm.

The running time is immediate from Theorem 3.4 and the probability of success is at
least aj0/2 which we claim is at least 2−(7/2+j0). To see this note that if this is not the
case then, by the choice of j0,

aj ≤ 2−(5/2+j)
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holds for all j and hence

∞∑

j=0

aj 2(j−2)/2 ≤
∞∑

j=0

2−(j+7)/2 ≤ 2−7/2 1

1 − 2−1/2
< 2−3/2

contradicting (14). This concludes the proof in the non-uniform case and let us address
the question how to efficiently find a good value of j . We proceed by a similar procedure
as used in the proof of Lemma 3.3.

Let d be a constant to be determined and define

bj = �(j + 1)(j + 2)22(8+j)/2�
for j ≥ 2, Tj = d(j + 1)2−j , and set tj = �Tj δ

′′−2�.
In stage j , j = −2 log δ′′,−2 log δ′′ − 1, . . . ,2 choose bj different independent ran-

dom values of x and run P (i) tj times in each of the cases when the auxiliary bits are
given by Bm

R (f (i−1)(x)) or as uniformly random bits. Let cj be the number of chosen
x for which the difference in the number of times one is output on the two distributions
is at least 2(j−2)/2δ′′tj − √

tj . If cj ≥ 4(j + 2) apply Theorem 3.4 with ε = 2(j−3)/2δ′′
and halt. If no j is ever chosen apply Theorem 3.4 with ε = δ′′/2.

Let us analyze this procedure. First we claim that there is a j ≥ 2 with

aj ≥ ((j + 1)(j + 2)2(1+j)/2)−1 (15)

or that a0 ≥ 1
4 . Indeed suppose this is not the case then

a0/2 +
∞∑

j=1

aj (2
(j−2)/2 − 2(j−3)/2)

< a02−1/2 +
∞∑

j=2

((j + 1)(j + 2)2(1+j)/2)−12(j−2)/2

< 2−5/2 + 2−3/2
∞∑

j=2

1

(j + 1)(j + 2)
= 2−3/2

contradicting (14). We want to prove that whenever we encounter a j ≥ 2 that satisfies
(15) the probability of halting is significant.

For each picked x during stage j the probability that δx ≥ 2(j−2)/2δ′′ and the sam-
pling gives a difference of at least 2(j−2)/2δ′′tj − √

tj is at least aj (1 − e−1). Thus the
expected value of cj is at least

bjaj (1 − e−1) ≥ 27/2(1 − e−1)(j + 2) ≥ 7(j + 2).

By Lemma 2.3 the probability that we do not halt with this value of j is bounded by

exp

(

− (3(j + 2))2

14(j + 2)

)

= exp

(

−9(j + 2)

14

)

≤ e−2.
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We need also analyze the probability that we halt with a bad j before we find the
good j as described above. We prove that it is unlikely to end in a stage j for which

aj−1 ≤ ((j + 1)(j + 2)2(8+j)/2)−1. (16)

Consider any x chosen in stage j . The probability that δx ≥ 2(j−3)/2 is aj−1. If
δx ≤ 2(j−3)/2 the probability that the difference in the sampling observed is above
2(j−2)/2δ′′tj − √

tj is bounded, by Lemma 2.1, by

exp

(

−2((2(j−2)/2 − 2(j−3)/2)δ′′tj − √
tj )

2

2tj

)

≤ e−((2(j−2)/2−2(j−3)/2)δ′′√tj −1)2
.

Now, as

tj ≥ Tj δ
′′−2 = d(j + 1)2−j δ′′−2,

it follows that for sufficiently large value of d that the probability that an x with δx ≤
2(j−3)/2δ′′ gives the required difference is at most

((j + 1)(j + 2)2(j+8))−1

and given (16) it follows that the expected value of cj is at most 2(j +1). By Lemma 2.2
with β = 2 it follows that the probability that j is output is bounded by

( e

4

)−2(j+2)

.

Thus the probability of outputting any j such that (16) is true is bounded by

∞∑

j=2

( e

4

)−2(j+2) ≤ e−2.

Summing up, with probability at least (1 − e−2)2 we either halt with a j ≥ 2 such
that (16) is false or by calling the algorithm of Theorem 3.4 with ε = δ′′/2 and having
a0 ≥ 1

4 .
In the first case as the algorithm of Theorem 3.4 is called with ε = 2(j−3)/2δ′′ =

2(j−5)/2δ′ the running time is 8 times that of the non-uniform case. The pre-processing
time to find j is proportional to

∑

k≥j

bkTk

and as the success probability is at least aj−1/2 the conclusion of Theorem 3.2 with this
value of j holds.

In the case when the algorithm of Theorem 3.4 is called with ε = δ′′/2 = δ′/4 the
statement of Theorem 3.2 with j = 0 is true with some margin, as success probability
is at least 1/8 and running time is at most 4T ′. �
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Instead of applying Lemma 3.5 with the unit vectors we can, as suggested in [8], use
it with {vi} describing the words of an error correcting code, e.g. a suitable Goppa-code
[19]. (Similar ideas appears in [17].) If we have code words of length N , containing n

information bits, and we are able to efficiently correct e errors we get:

Theorem 3.6. Fix x. Suppose there is an algorithm, P , that using T operations
given R distinguishes Bm

R (x) from random strings of length m with advantage ε where
ε is given. Suppose further we have a linear error correcting code, with n informa-
tion bits, N message bits that is able to correct e errors in time TC . Then setting
t = max (m, �log (ε−2(2N + 1)/e)�) we can in time

(1 + o(1))2m+t (2m + t + 1 + T + TC)(N + 1)

produce a list of 2t+m(N + 1) numbers such that the probability that x appears in this
list is at least 1/2.

Proof. We apply Lemma 3.5 with the given value of t and {vi}Ni=1 given by the row
vectors of the generator matrix of the error correcting code. Running the decoding al-
gorithm on each obtained “codeword” gives a list as claimed. �

Similar to Theorem 3.2, this translates to the quality of the inverter. We only state the
resulting algorithm in existential form using O-notation.

Theorem 3.7. Suppose we have a linear error correcting code with n informa-
tion bits, O(n) message bits that is able to correct �(n) errors in time TC and
that G = BMGLf

n,m,L is based on an n-bit function f , computable by E opera-
tions, and that G produces L bits in time S. If G can be (L,T , δ)-distinguished
then, with δ′ = δm

L
, there is an i ≤ L/m � λ and 0 ≤ j ≤ 2 log δ′−1 such that for

t = max(m,O(1) + 2 log δ′−1 − j) such that f can be (T ′,�(2−j ), i)-inverted where
T ′ equals

O(2t+m(t + m + S + T + E + TC)n).

In particular this implies that the asymptotic time-success ratio decreases by a factor n

for the parameters discussed after Theorem 3.2.

3.2. Computing the Numbers in (13)

We want to prove the following lemma.

Lemma 3.8. For each i it is possible to compute the 2m+t numbers

ci
l = 2−t

2t−1∑

j=0

P(Rj + S
j
i ,Mjzl) (17)

in time 2m+t (2m + t + T ).
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Proof. We make use of the fast Fourier transform and let us briefly recall some facts.
Let {χu(z) = (−1)〈u,z〉2} be the characters. Then any function g : {0,1}s → {−1,1} can
be expressed as

g(z) =
2s−1∑

u=0

(−1)〈z,u〉2 ĝu,

where ĝu � Ev[χu(v)g(v)] = 2−s
∑

v(−1)〈u,v〉2g(v). This is the discrete Fourier series
expansion of g and, by a standard algorithm, these numbers can be computed with s2s

operations.
First run P on all the 2m+t possible inputs of form (Rj + S

j
i , r) and record the

answers: {P(Rj + S
j
i , r)}. Now

2−t
2t−1∑

j=0

P(Rj + S
j
i ,Mjzl) = 2−t

2t−1∑

j=0

2m−1∑

r=0

P(Rj + S
j
i , r)�(r,Mjzl), (18)

where �(r, r ′) = 1 if r = r ′ and �(r, r ′) = 0 otherwise. We have that

�(r, r ′) = 2−m
∑

α⊆[0..m−1]
(−1)〈r⊕r ′,α〉2 .

This implies that the sum (18) equals

ci
l = 2−(m+t)

∑

j,r,α

P (Rj + S
j
i , r)(−1)〈r⊕Mj zl ,α〉2

= 2−(m+t)
∑

j,α

(−1)〈Mj zl ,α〉2
∑

r

P (Rj + S
j
i , r)(−1)〈r,α〉2 .

Let Q(j,α) be the inner sum and fix a value of j . The inner sums exactly give the
Fourier transform of the numbers P(Rr + S

j
i , r) and hence the 2m different numbers

Q(j,α) can be calculated in time m2m for this fixed j and hence all the numbers
Q(j,α) can be computed in time m2t+m. Finally we have

ci
l = 2−(m+t)

∑

j,α

(−1)〈Mj zl,α〉2Q(j,α) = 2−(m+t)
∑

j,α

(−1)〈zl ,M
j,T α〉2Q(j,α),

where Mj,T is the transpose of Mj . But this is just a rearrangement (induced by Mj,T )
of the standard Fourier-transform of size 2t+m and can be computed with (t + m)2t+m

operations. The lemma follows. �

3.3. Applying the GGM Construction

As shown, the BMGL generator can produce any number of output bits. We here inves-
tigate an alternative way, inspired by a construction of pseudo-random functions due



20 J. Håstad and M. Näslund

to Goldreich, Goldwasser and Micali [9]. It has the advantage that we iterate f fewer
times and hence the assumption needed for security is weaker.

The construction can be based on any PRG, G : {0,1}n → {0,1}2n, but we use G =
G(x,R) = BMGLf

n,m,2n(x,R) for some f . This generator is applied to many seeds and
here it is important that we treat R as a public parameter rather than as part of the seed.
Thus all executions of G use the same random R and we denote this generator by Gf,R

and we let G
f,R

0 (x) (Gf,R

1 (x)) be the first (last) n bits of Gf,R(x).
First, let us assume that we know in advance how may output bits that are desired.

We apply [9] to obtain 2dn output bits (where d is given) from n(m + 1)-bits.

Definition 3.9. Fix n,d ∈ N. For x ∈ {0,1}n, s ∈ {0,1}d put

gx(s) � G
f,R
sd (G

f,R
sd−1(· · ·Gf,R

s2 (G
f,R
s1 (x)) · · ·)),

and define GGMf,R
d,n : {0,1}n → {0,1}2dn by

GGMf,R
d,n (x) � gx(00 . . .0), gx(00 . . .1), . . . , gx(11 . . .1)

(the concatenation of gx applied to all d-bit inputs).

The construction can be pictured as a full binary tree T = (V ,E) of depth d . As-
sociate v ∈ V with its breath-first order number; the root is 1 and the children of v

are 2v,2v + 1. Given x, the root is first labeled by L(1) = x. For a non-leaf v labeled
L(v) = y ∈ {0,1}n, label its children by L(2v) = G0(y), L(2v + 1) = G1(y), respec-
tively. The output of GGMf,R

d,n is the concatenation of all the leaf-labels of the tree.

Notice an advantage of the above method in the case that G = BMGLf

n,m,2n. To pro-

duce L = 2dn bits, each application of G iterates f 2n/m times instead of 2dn/m,
which, in light of Theorem 2.8, retains more of the one-wayness of f .

Lemma 3.10. Suppose m|2n and L = 2dn = λm and that GGMf
d,n runs in time S(L).

If this generator is not (L,T (L), δ)-secure, then there is an algorithm P (i,j), 1 ≤ j ≤
2d − 1,1 ≤ i ≤ 2n/m that, using T (L) + S(L) operations, that given f (i)(x), R, for
random x ∈ Un, R ∈ Mm, distinguishes Bm

R (f (i−1)(x)) from Um with advantage
δ′ = δm

2L
.

P (i,j) depends on the integers i and j , and using c1(1 + o(1))δ′−2(T (L) + S(L))

operations, where c1 is the constant given by (11), values of i and j achieving advantage
δi ≥ δ′/2 can be found with probability at least 1/2.

Note that the value of δ′ is half the size compared to that of Lemma 3.3 but on the
other hand we have a much smaller value on the number of iterations, i.

The proof is basically the same as in [9], and we only give a sketch for the purpose of
self-containment. We use the integer j to pinpoint a location in the construction where
we change the output of G and i controls how many of bits of the interesting output of
G that we change to random bits.
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Proof sketch. Consider the binary tree, T , describing a computation of GGMf,R
d,n as

above. The tree has depth d , 2d − 1 internal vertices and 2d leaves. We construct hybrid
distributions H 0, . . . ,H 2d−1 on the vertex-labels of such trees. Again, associate each
v ∈ V by its breadth-first order number. Then, Hj is defined by a simulation algorithm,
GGMj (x), which on input x, assigns labels as follows. Assign the root, v = 1, the
label x. For v ∈ V , v = 1,2, . . . , j , label v’s children by letting L(2v),L(2v + 1) be
independent, random n-bit strings. Then, for v = j +1, . . . ,2d −1: L(2v) = G0(L(v)),
L(2v + 1) = G1(L(v)). Finally return labels of the leaves in T .

Observe that H 2d−1 gives the uniform distribution over the labels (in particular the
leaves) and H 0 labels the vertices exactly as GGMf,R

n,d does on a random seed x. Since

D1 distinguishes GGMf,R
d,n (x) from random 2d n-bit strings with advantage δ, for some

j ≤ 2d , it must be the case that D1 distinguishes Hj ,Hj+1 with advantage at least
2−dδ. This distinguishes the output of G from random bits and using the proof of
Lemma 3.3 we find good values of i and j . �

3.3.1. Unknown Output Length

If the length of the “stream” is unknown beforehand, we let the basic generator G ex-
pand n bits to 3n bits. Apply the tree-construction as above, labeling left/right children
by the first, respectively second n-bit substring of G’s output. The remaining n bits are
used to produce an output at each vertex as we traverse the tree breadth-first. The analy-
sis is analogous and is omitted. To save memory, the traversal can be implemented in
iterative depth-first fashion.

3.4. Concrete Examples

What does all this say? Suppose that we base the construction on Rijndael(x) �
Rijndaelx(p) (for a fixed plaintext p) and that we want to generate L = 230 bits, ap-
plying our construction with m = 32. One choice of parameters gives the following
corollary. We state the corollary in the non-uniform case and in such an important ap-
plication, (almost) optimal parameters would be found once and for all.

Corollary 1. Consider G = BMGLRijndael
256,32,230 (using key/block length 256) and where

Rijndael is computable by E operations, and assume that G runs in time S. If G can
be (230, T ,2−32)-distinguished, then there is i < 225, and 0 ≤ j ≤ 114 such that setting
t = max (32,123 − j), Rijndael can be (T ′,2−(7/2+j), i)-inverted for T ′ = 241+t (65 +
t + T + S + E).

Similarly, using GGMRijndael
22,256 (to generate the same length outputs), the result holds

with t replaced by t + 2 and some i < 16.

This is simply substituting the parameters and noting that the o(1) in Theorem 3.2
comes from disregarding the time to construct the matrices described in Lemma 2.10
and for the current choice of parameters using (1+o(1))(n+1) ≤ 29 is an overestimate.
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Assuming we have a simple statistical test such as Diehard tests [20], or those by
Knuth [16], it is reasonable to assume1 that 65 + t + T + E ≤ S. From the first part
of the corollary, then, the essential part of computing the generator comes from the
225 computations of Rijndael and we end up with a time for the inverter equivalent to
at most 267+t Rijndael computations. Then, since t = 123 − j this is 2190−j Rijndael
computations and we have time-success ratio at most 2194 computations of Rijndael and
since i ≤ 225, Rijndael would not be 2−37-secure.

Alternatively, bootstrapping the BMGL construction by the GGM method, we con-
clude from the second part of the corollary that such a test would mean that Rijndael
cannot be even 2−56-secure. Thus, though somewhat more cumbersome to implement,
the GGM method is more security preserving.

4. Re-keying

The classical definition of a PRG produces a single, “unbounded” key stream. However,
in many application, it is desirable to generate several “independent” random streams
from the same seed, re-keying each by some other information. For instance, in an
application as a key-derivation function, it might be desirable to derive both encryption
and authentication keys from one and the same master seed. Another example is when
the PRG is used as a stream cipher: data is often packed into chunks, and these chunks
may be lost or reordered during transmission. Hence it is desirable to very efficiently
seek back and forth in the decryption key stream. Not all stream ciphers allow this. The
alleged RC4 [24] does not, whereas SEAL [23] does.

For this application we assume that our generator is based on a block cipher,
fp(x) = E(x,p). To generate t segments of random bits, s1, . . . , st , we assume a ran-
dom n-bit key and a matrix R ∈ Mm have been chosen. Let pj be an n-bit string that
uniquely, within the life-time of an n-bit seed x, identifies one of these segments. For
instance, pj may contain information such as the “name” of a key, a packet/message se-
quence number, identity of the sender/receiver, etc. To generate sj , iterate the function
f (x) � fpj

(x) as described above, until enough keys stream bits have been generated
(corresponding to the length of the current segment). Thus, pj has the place of an ini-
tialization vector, IV , and is used on a per-segment basis. Formally we have

Definition 4.1. Let n, and m,Lj ,λj , 0 ≤ j < t be integers such that Lj = λjm,
L �

∑t−1
j=0 Lj and let f : {0,1}n × {0,1}n → {0,1}n. Finally let {pj } be distinct

n-bit strings. The generator BMGLn,m,t,{Lj },{pj }(f ) stretches n(1 + m) bits to L bits
(made up of t segments of length L0, . . . ,Lt−1), as follows. The input is interpreted as
x0 ∈ {0,1}n, and R ∈ Mm. Let xi,j = f (pj , xi−1,j ), j = 0, . . . , t − 1 and i = 1, . . . , λj

where x0,j = x0 for all j , and let the output be {Bm
R (xi,j )}i,j for j = 0,1, . . . , t − 1 and

i = 1,2, . . . , λj .

Observe that for security, only x0 must be random and secret and the {pj } and {Lj }
values may be determined “on the fly” rather than as fixed parameters. It remains to
analyze the impact of this generalization on the provable security properties.

1 Common “practical” tests are almost always much faster than the generator tested.
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The attack scenario is now a bit different. We need to model the fact that an adversary
now obtains several short stream segments generated by iterating f with fixed x and
varying plaintext pj . Intuitively though, a good block cipher should not lose security
just because an attacker sees several plain-text/cipher-text pairs. We therefore define the
following notion of security.

Definition 4.2. Let f = f (p,x) be a function {0,1}n × {0,1}n → {0,1}n, and define
fp(x) � f (p,x). Let t be an integer and A be a probabilistic algorithm which takes an
input from {0,1}n×(1+t) and has output in {0,1}n. We then say that A is a (S, δ, t, i)-
inverter for f if when given y = f

(i)
p (x) and {yj = fpj

(x) | j = 0,1, . . . , t − 1} for
an x chosen uniformly at random, in time S with probability δ it produces z such that
fp(z) = y.

The difference now is that the algorithm, besides the iterated y = f
(i)
p (x) it tries

to invert, also gets some “help” in the form of other, non-iterated functions, {fpj
(x)}.

In the case that fp and the fpj
s are randomly chosen, black-box functions we would

naturally assume that the information about the other functions, {fpj
(x)} would be of

no use in inverting f
(i)
p (x). Likewise, for a secure a block cipher, getting f (pj , x) for

different plaintexts pj does not seem to help in inverting f (p,x), at least not if brute
force search is the only method of attack available.

Modeling the f (pj , ·) as independent random functions for different pj the following
theorem is relevant.

Theorem 4.3. Let A be an algorithm that tries to invert a black box function fp :
{0,1}n → {0,1}n. If A is given y = f

(i)
p (x) and some other, independently chosen func-

tions evaluated at x; {fpj
(x)|j = 0,1, . . . , t − 1}, for a random x, then the proba-

bility (over the choice of f s and x) that A finds a z such that fp(z) = y using at
most T oracle-evaluations of fp and S oracle-evaluations of {fpj

}, is bounded by

(S + 2T (i + 1))/(2n − (T + S)) + i(i + 1)2−(n+1).

This is a very slight extension of Theorem 2.8. Evaluations of fp are treated exactly
as in the proof of Theorem 2.8. Evaluations of the other functions is harmless unless
they happen to take place at x but the probability of this happening is at most (2n −
(T + S))−1 as x is not different from any other point on which none of the functions
have been evaluated.

This leads to the following definition:

Definition 4.4. A σ -secure one-way function family is an efficiently computable set
of functions, Fn = {fp(x) | p ∈ {0,1}n} such that each fp maps {0,1}n → {0,1}n, and
so that the functions in Fn cannot be (S, δ, t, i)-inverted for any S/δ < σ2n/i.

We naturally assume that a primitive like Rijndael/AES with varying plaintexts con-
stitutes a σ -secure one-way function family for some reasonably large σ . Varying as-
sumptions on σ will as previously lead directly to different quantitative security levels
of the derived generator.

We now need to establish the following generalization of Lemma 3.3:
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Lemma 4.5. Let t, {Lj }, {λj }, {pj } be as in Definition 4.1 and set λ �
∑

j λj .
Suppose that BMGLn,m,t,{Lj },{pj }(f ) runs in time S(L). If this generator is not

(L,T (L), δ)-secure, then there is an algorithm P (i,j), j ∈ [0..t −1], i ∈ [1..λj ] that, us-

ing T (L) + S(L) operations, given f
(i)
pj

(x),R, and {fpt (x) | t > j} for random x ∈ Un

and R ∈ Mm, distinguishes Bm
R (f

(i−1)
pj

(x)) from Um with advantage δ′ ≥ δm
L

.
The algorithm P (i,j) depends on integers i, j , and using O(δ′−2(T (L) + S(L))) op-

erations, values of i, j achieving advantage δi,j ≥ δ′/2 can be found with probability at
least 1/2.

It is not difficult to see that from the above lemma, whose proof is completely analo-
gous to that of Lemma 3.3, follows the security of the generalized generator.

5. Practical Considerations

5.1. Number of Bits Output per Application of the Core

We would for efficiency reasons like to output as many bits as possible per application of
Rijndael. On the other hand, we cannot output too many, if we are to relate the security
of Rijndael to the proof of security for the generator. The effect of varying m is clearly
visible in the above theorems. With a 256-bit key-size, m in the range 30–50 seems
acceptable. Tests made at m = 80 gives almost no speed-up as the output generation
itself then becomes too expensive.

One problem with a large value of m is that size of the seed grows with m. With
n = 256, you need 256(m+ 1) bits of seeding material: 256 for the initial x0 (the secret
key), and 256m to specify the matrix R. This is 1312 bytes when m = 40. This is quite
large, and below we discuss how to decrease this number.

5.2. Decreasing Seed Size

The impact on security of varying m is clearly visible in the above theorems. Though
increasing speed, a practical problem with a large m is the seed size; nm bits for R. First
note though, that the security does not depend on the fact that R is secret; only that it is
random.

It is possible to decrease the number of bits to only n by instead of binary matrix
multiplication, performing a multiplication by a random element in the finite field F2n ,
and selecting any fixed set of m bits of this, see [21]. A drawback of this construction
is that instead of the direct reduction from a distinguisher for Bm

R (x) to a predictor for
〈vi, x〉2 (Lemma 3.5), the restricted sample-space of elements makes us need to use
the so called Computational XOR-Lemma [25]. Unfortunately, this reduces the initial δ-
advantage of the distinguisher to a 2−mδ-advantage for the predictor for 〈vi, x〉2. Thus,
you might need to reduce m somewhat. First, we lose a factor 2m for the above reason.
Secondly, a smaller m implies a proportional factor increase in the number of iterations
of f , which in the worst case implies a cubic additional loss in this factor. For instance,
reducing m from 40 (in the random matrix case) to about 18 (in the F2n setting) gives
roughly the same security, but a seed size decrease by a factor of 20.
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While this might seem to give some slow-down, in practice it would typically not be
too noticeable, as also each output is now generated more quickly.

An alternative, suffering the same security drawback, is to pick R as a random
Toeplitz matrix, specified by n + m − 1 bits [10].

6. Other Attacks

So far in the paper, we have established certain “security guarantees” for our generator:
if the one-way function f is secure, then a lower bound on the security of the derived
generator can be found, but it could of course be that the generator is even more secure,
only our proof techniques fail to produce a better bound. In fairness, one should also ask
if there are also upper bounds on the security, i.e. attacks faster than brute force search
for the seed. It is quite easy to see that this is indeed the case. Let m,n as previously be
the parameters defining the generator.

We first note that the m × n output generating matrix R either has full rank, or it
does not, the latter happening with probability ≈ 2−(n−m). In the first case, it is obvious
that the output leaks m bits of information on each xi . In the second case, there is
a trivial distinguishing attack that compares exclusive-ors of bits generated by linearly
dependent rows of R. In either case, we have an attack with a roughly 2n−m time/success
ratio.

Secondly, BMGL is of course not immune against generic attacks, e.g. time-memory
trade-offs. For instance, if implementing f by an n-bit block cipher with the plaintext
p kept fixed, e.g. p = 00 . . .0, a pre-computation attack such as [4] could, from roughly
2t bits of output and using 2t memory, retrieve the internal state (at some point) using
2n−t workload, making the PRG forwards predictable from there on.

Finally, we note that versions of this construction has been subject to extensive prac-
tical statistical testing [22].

7. Summary and Conclusions

We have given a careful security analysis of a very natural PRG. Apart from optimizing
known constructions and analysis we have introduced a new analysis method when
several bits are output for each iteration of the one-way function.

Another common method to derive PRGs from a block cipher is to run it in counter
mode. Though simpler, the security proof of such constructions, see [3], relies on the
assumption that the core, f , is a pseudo-random function. (The same applies to the OFB
mode of operation.) The strictly weaker type of security assumption we have proposed
(a function being one-way on its iterates), although it has been proposed before by
Levin, is for the first time made in a quantitative sense and we believe that this concept
will be useful for future study of one-way functions.
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