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Abstract—Control Flow Integrity (CFI) provides a strong
protection against modern control-flow hijacking attacks. How-
ever, performance and compatibility issues limit its adoption.
We propose a new practical and realistic protection method

called CCFIR (Compact Control Flow Integrity and Random-
ization), which addresses the main barriers to CFI adoption.
CCFIR collects all legal targets of indirect control-transfer in-
structions, puts them into a dedicated “Springboard section” in
a random order, and then limits indirect transfers to flow only
to them. Using the Springboard section for targets, CCFIR can
validate a target more simply and faster than traditional CFI,
and provide support for on-site target-randomization as well
as better compatibility. Based on these approaches, CCFIR can
stop control-flow hijacking attacks including ROP and return-
into-libc. Results show that ROP gadgets are all eliminated. We
observe that with the wide deployment of ASLR, Windows/x86
PE executables contain enough information in relocation tables
which CCFIR can use to find all legal instructions and jump
targets reliably, without source code or symbol information.
We evaluate our prototype implementation on common web

browsers and the SPEC CPU2000 suite: CCFIR protects large
applications such as GCC and Firefox completely automati-
cally, and has low performance overhead of about 3.6%/8.6%
(average/max) using SPECint2000. Experiments on real-world
exploits also show that CCFIR-hardened versions of IE6,
Firefox 3.6 and other applications are protected effectively.

I. INTRODUCTION

Many protection mechanisms including DEP (Data Ex-

ecution Prevention [1]), ASLR (Address Space Layout

Randomization [2][3]), GS/SSP (Stack Smashing Protec-

tor [4][5]), and SafeSEH (Safe Structured Exception Han-

dling [6]) have gained wide adoption, and they are making it

more difficult for attackers to exploit vulnerabilities. These

mechanisms can mitigate various standard attacks, but these

reactive defenses can often be bypassed by advanced ex-

ploitation techniques [7][8]. Attacker countermeasures that

originally sounded impossible become easier and easier,

and sometimes automatable, over time. A better long term

approach is to focus on what we want to protect, and then

design protection measures accordingly.

A natural protection against control-flow hijacking attacks

is to enforce CFI (Control Flow Integrity [9]): a guarantee
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that all control-flow transfers in a program will be the ones

intended in the original program (i.e., those represented in

the compiler’s control-flow graph). CFI can stop all control-

flow hijacking attacks, including sophisticated ROP exploits

(Return Oriented Programming [10][11][12]). CFI provides

a guarantee that is strong, and can be easily reasoned about

formally; this also makes it useful as a building block for

other protections [13][14]. The world would be a much more

secure place if every binary was protected with CFI.

Unfortunately, despite its long history (the original paper

proposing it was in 2005 [9]), CFI has not seen wide indus-

trial adoption. CFI suffers from a perception of complexity

and inefficiency: reported overheads (average/max) have

been as high as 7.7%/26.8% [13] and 15%/46% [9]. Many

CFI systems require debug information that is not available

in COTS applications, and cannot be deployed incrementally

because hardened modules cannot inter-operate with un-

hardened modules.

We propose a new practical and realistic protection

method called CCFIR (Compact Control Flow Integrity and

Randomization, pronounced “see-see-fur”), which fills most

of the gap between existing lightweight protection mecha-

nisms on one hand, and CFI on the other. It introduces low

performance overhead, and is compatible with unmodified

legacy binaries. These properties address the main barriers

to adopting CFI widely.

CCFIR enforces a policy on indirect control transfers that

prevents jumps to any but a white-list of locations; it also

distinguishes between calls and returns, and prevents unau-

thorized returns into sensitive functions. These restrictions

capture the most important aspects of CFI protection, with-

out requiring difficult and imprecise alias analysis. For effi-

ciency and compatibility, CCFIR performs this enforcement

by directing indirect control transfers through a dedicated

“Springboard section” that encodes target restrictions via

code alignment. The execution time overhead of this check-

ing is low, 3.6%/8.6% (average/max) over SPECint2000.

As a further layer of protection, the Springboard section

facilitates randomly permuting the allowed jump targets at

program startup, further increasing the difficulty of control-

flow injection.

We build CCFIR as a purely binary transformation. It does
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not depend on source code or debug information. Instead,

it analyzes binary executables based on relocation tables

which are available with the wide deployment of ASLR. It

can be validated independently and deployed progressively.

We have applied it to parts of IE6 and Firefox 3.6 and 5

other applications to stop 10 known vulnerabilities. CCFIR

protects binaries as large as the 11MB xul.dll in Firefox

completely automatically.

In summary, our CCFIR protection approach has the

following key advantages:

• Robust protection: provides strong defense against

control-flow hijacking attacks including return-to-libc and

ROP. ROP gadgets are eliminated.

• On-site randomization: an additional lightweight layer of
protection beyond CFI to frustrate control-flow attacks.

• High performance: low overhead compared to previous

CFI implementations, only 3.6%/8.6% (average/max).

• Binary only: no source code or debug symbols required.
• Progressive deployment: protected and unprotected code
can inter-operate, without raising false alarms.

• Verifiable: can be verified independently.
The remainder of this paper is organized as follows: We

talk about related work in Section II, and then give an

overview of our approach in Section III. We describe the

design and implementation of our system in Section IV. Sec-

tion V gives our evaluation of performance and protection.

Section VI discusses security topics including remaining

possible attacks. Finally Section VII concludes.

II. RELATED WORK

Binary Disassembling and Rewriting. Schwarz et

al. [15] cover the disassembly problem in detail, including

two standard algorithms and a new combination. Their

approach also uses relocation tables, but less extensively.

A common challenge for disassembly is mixing of code

and data within the code section. Many other approach-

es [16][17][18] have depended heavily on heuristics which

with unjustified assumptions that miss some fraction of code.

With the deployment of DEP, compilers are more restricted

in the ways they can mix code and data. We believe we

are the first to point out that the binaries generated with

modern compilers’ security-sensitive modes (DEP, ASLR)

can be thoroughly analyzed using their relocation tables.

Some of the systematic binary rewriting modes we use were

previously proposed in systems such as Vulcan [19].

Control Flow Hijacking Attacks and Mitigation. Mem-
ory safety enforcement can protect against control-flow hi-

jacking attacks; it also defeats non-control-data attacks [20].

A representative technique is automatic bounds check-

ing [21][22]; however these techniques require recompilation

from source, and their performance overheads are too high

for practical deployment. Recently proposed techniques,

such as SoftBound [23] with CETS [24], also introduce

an overhead of 116%. Approaches that enforce data-flow

integrity [25] can also stop many kinds of exploits, but cause

a 2.5x slowdown. PointGuard [26] use pointer encryption to

protect function pointers from tampering. However it causes

compatibility issues and has weaknesses [27].

Modern operating systems widely adopt lightweight and

efficient protection mechanisms, like DEP [1], ASLR [2],

and SafeSEH [6]. However, advanced exploit techniques

like return-to-libc and ROP-based exploits [10][11] can

defeat these protections. An indication of the power of

these techniques is that they can provide attackers a Turing

complete language for malicious functionality [10][28].

Some new mitigation techniques have focused on pro-

tecting against ROP [29], but this has also spawned newer

variants of attacks [12]. More comprehensive ROP protec-

tions, such as ROPdefenser [30] and ILR [18] introduce high

overhead. IPR [31] uses randomization in basic blocks with

minimal overhead, but provides only partial protection.

Control Flow Integrity. Abadi et al. introduced the term
CFI [9] and proposed a technique to enforce it. Rather

than trying to protect the integrity of function pointers and

return addresses, this technique marks the valid targets of

these indirect control transfers (i.e. function entry points and

landing points for returns) with unique identifiers (IDs), and

then inserts ID-checks before each indirect call or return

instruction. They propose identifying the set of valid targets

(i.e. the points-to set) through a precise control flow graph

(CFG) construction and enforcing control flow only to this

set for each indirect transfer instruction.

However, a precise CFG construction needs a sophisti-

cated pointer analysis, which is especially difficult without

source code or debug symbols. Compatibility is a problem:

hardened modules and un-hardened modules cannot inter-

operate, preventing incremental deployment which is often

needed in real systems. A further challenge is diversity of

IDs. The more IDs the code uses, the more restricted jumps

are, but any overlapping points-to-sets must be unified to

use the same ID. Sharing of jump targets such as library

functions can lead to many sites having only one ID.

In the absence of detailed analysis, Abadi et al. suggest

that using a single identifier for all sites (a 1-ID approach) or

one for calls and another for returns (a 2-ID approach) could

still provide substantial protection. Their implementation

used a conservative CFG in which any indirect call could

target any function whose address is taken. This allows

modular transformation of libraries, while still supporting

multiple return IDs for directly-called functions. However

calls and returns into untransformed code are still prohibited,

so this approach does not support incremental deployment.

CCFIR implements a 3-ID approach, which extends the 2-

ID approach by further separating returns to sensitive and

non-sensitive functions. This stops the jumps that would be

most useful to attackers, but the three-way separation can

be compactly represented in the Springboard section layout

without requiring separate ID values and checks.
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MoCFI [32] applies CFI to ARM binaries, but due to the

imperfection of pointer analysis on binaries, they let statical-

ly unresolved calls/jumps transfer to any valid function entry.

CFIMon [33] utilizes the Performance Monitoring Unit in

modern processors for performance, but it is not reliable

in practice because of false negatives and false positives.

CPM [34] uses source code analysis to find all possible

targets of an indirect call and masks (e.g. bitwise AND) the

runtime target with these possible addresses to determine its

validity. Since the target information is encoded at the call

site statically, shared libraries are not supported. Control-

flow locking [35] implements a similar policy and has

similar restrictions. HyperSafe [36] provides integrity for

supervisor-mode code such as a hypervisor, including a CFI-

like technique that replaces jump targets with integer indexes

into function-specific tables. This approach can provide finer

granularity protection for returns compared to basic CFI,

but it can not support modular compilation or dynamic

linking. Whole-system overhead was modest for benchmarks

dominated by I/O or user-space execution, but HyperSafe’s

approach would likely be significantly more expensive than

CCFIR if applied to CPU-bound user-space applications.

SFI (Software(-based) Fault Isolation [37][38][39]) uses

instruction rewriting but provides isolation (sandboxing)

rather than hardening, typically allowing jumps anywhere

within a sandboxed code region. CFI is also useful as a

foundation for enforcing SFI [13], or other higher level

policies, such as XFI [14] or write-integrity [40].

III. THE CCFIR APPROACH

The goal of CCFIR is to enforce control-flow integrity in

user mode applications by ensuring that the targets of all

indirect control transfer instructions are legal. We identify

the valid targets in binary modules and rewrite them so

that the valid targets can be distinguished from invalid ones

efficiently. Then we insert checks before each indirect con-

trol transfer instruction to make this distinction. To enforce

control-flow integrity fully, all modules have to be rewritten,

but this ideal is not always possible. To support incremental

deployment, our scheme allows unprotected libraries as well.

A. Assumptions

In this paper, we assume the following properties hold:

• ASLR and a W⊕X protection such as DEP are in use.

This usually holds in modern systems. In order to support

ASLR, modern compilers generate relocation tables in

target binaries, which are used by our binary analysis.

With DEP, compilers separate code and data sections

and thus ease disassembling. DEP also prohibits attackers

from tampering with code (including direct transfer in-

structions’ targets) or executing code in the data section.

• The target executable does not self-modify its code or
dynamically generate code. Traditional executables com-

piled from high level languages always satisfy this. For

executables that do not conform to this assumption, our

CCFIR scheme is not suitable because static rewriting

cannot enforce runtime control flow integrity.

• Limited information disclosure vulnerabilities are avail-
able to attackers. If intended functionality or a separate

information-disclosure bug allows attackers to read entire

memory regions such as the Springboard, or to selectively

reveal Springboard stub addresses of their choice, the

protection provided by randomization can be negated.

B. Protection Targets of CCFIR

There are several types of control flow transfers in user

mode Windows x86 binaries:

• Exceptions. When exceptions occur, the operating system
takes control and then transfers to user-defined exception

handlers. These handlers are only invoked by the OS and

will not be targets of indirect transfers. In addition, these

exception handlers are well protected by SafeSEH.

• Direct jmp/call and conditional jump (jo, jz etc.) instruc-
tions. Most jmp/call instructions fall into this category.
Their targets are fixed in the code, so DEP or W⊕X
protection prevents attackers from tampering with them.

• Indirect jmp/call instructions, as used for function pointers
and virtual method dispatch. Their targets usually are read

from memory and may be controlled by attackers.

• All ret instructions. Their targets are computed and pushed
onto the stack at run-time by corresponding call instruc-

tions. Attackers may overwrite the return address on the

stack to launch attacks like ROP and return-to-libc.

The first two kinds of transfers are already well protected,

so CCFIR protects the last two. As shorthand we refer to

an intended target of an indirect call or jump instruction as

a function pointer, and the target of a return instruction as
a return address.

C. Identify Indirect Transfer Targets

To protect targets of indirect transfers (i.e., return address-

es and function pointers) in binary executables, the binary

should be disassembled first. And then, we need to find

where all transfer targets are created and used, in order to

deploy further protection.

In general, it is challenging to disassemble an x86 PE

(Portable Executable format [41]) file correctly, because x86

is a CISC platform with variable-length instructions and a

dense encoding. However, we can take advantage of the fact

that ASLR and DEP are widely adopted on Windows. These

facts result in the following important deductions:

R1. ASLR-protected executables must have relocation ta-
bles, because absolute addresses in code must be relo-

cated when loading.

R2. Compilers can freely choose the starting address for a
function or a segment.

R3. Programmers get the addresses of functions or in-

structions only through ways provided by high level
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Protected code section
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are aligned)
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Direct control transfer
Indirect control transfer

call eax
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Figure 1: Illustration of CCFIR: a code section is split up into 2

sections, and all indirect control transfers (dashed lines) are only

permitted to flow to an aligned address in the Springboard section.

  0x6800 0000-0x6fff ffff (27bit is 1)

DLL 1
free code

  0x6000 0000-0x67ff ffff (27bit is 0)

  0x3800 0000-0x3fff ffff (27bit is 1)

  0x3000 0000-0x37ff ffff (27bit is 0)
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free code

DLL 1
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DLL 2
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free code

EXE
springboard
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Figure 2: Memory layout for executables hardened

by CCFIR: only Springboard sections are placed

in a memory area for which the 27th bit is 0.

languages.1 Programs in high-level languages comply

with this rule, and even most inline assembly code does.

R4. If the targets of indirect call/jmp instructions are hard-
coded in binaries, they must be absolute addresses and

can be indexed through relocation tables (as rule R1).

R5. Compilers separate code and data sections (in order to
conform to DEP). In code sections, the only data which

can appear are special control structures, such as jump

tables for switch statements and exception tables.

These rules hold for binaries generated by modern com-

pilers today. Due to the rule R4, we can find most possible

indirect code entries. Then with the help of the export

table and the EntryPoint of the target PE file, it can be
disassembled recursively to identify all possible instructions.

Combined with other policies described in Section IV-B,

we take an approach that can disassemble a PE file com-

plying with rules R1∼R5 correctly and automatically. For
binaries not respecting R5, we can still identify most code

and data correctly and tag unidentified parts explicitly for

manual review. These remaining parts are usually small even

for large binaries, and can be easily reviewed.

As binaries can be disassembled correctly, we can identify

where transfer targets are created (i.e., all occurrences of

function pointers and return addresses) and where transfer

targets are used (i.e., all control-transfer instructions).

D. The Springboard and New Memory Layout

While CFI enforcement techniques have been used to

make software fault isolation (SFI) more efficient [13],

we conversely use ideas of layout-based checking from

SFI [38][39] to make CFI enforcement more efficient.

1getpc() is a seldom-used method for addressing code and data in normal
binaries, although it’s more popular in malicious code. In our experiments
we find only one case of getpc in Windows binaries, setjmp() discussed in
Section IV-C2.

For each module, we introduce a new code section called

the Springboard. As shown in Figure 1, for each valid

indirect control-transfer target (e.g. nodes 5 and 3 in this
figure), the Springboard contains an associated unique stub

(nodes 5′ and 3′ respectively) containing a direct jump to the
given target. The nodes 2′ and 2′′ are used to make sure the
node 3′ is aligned. Using techniques known from SFI, we

make sure that any indirect control-flow transfer instruction
can only jump to a code stub inside the Springboard. As
a result, diverting the execution to an attacker-supplied

arbitrary target becomes impossible.

The Springboard section is distinguishable from other

memory areas through the memory layout. As shown in Fig-

ure 2, it is enforced that any executable code section whose

address’s 27th bit is 0 can only be a Springboard section. In

other words we divide the program’s virtual memory space

into 128MB-large (227) slices, so that Springboard sections
are always in even slices, and other code sections are in odd

slices. Data sections are not constrained.

Real-world applications’ code sections are typically small-

er than 10MB, and they can be placed freely anywhere into

an odd 128MB memory slice, as long as the whole section

is inside the slice. Multiple Springboards or multiple code

sections can be contained in the same 128MB slice but

never mixed. Thus one bit testing instruction is capable of

checking if an address belongs to a Springboard section.

Make Valid Targets Distinguishable. In order to dis-
tinguish valid targets of indirect transfer instructions from

invalid targets (e.g. those supplied by attackers), valid targets

are all redirected to code stubs in the Springboard. Further,

to defeat advanced attacks like ROP and return-to-libc, code

stubs within the Springboard are further distinguishable.

First, function pointer stubs and return address stubs are

different. Second, return address stubs for return-landing
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Executable Bits Meaning
27 26 3 2-0

no * * * *** Non-executable section
yes 1 * * *** Normal code section
yes 0 * * !000 Springboard’s invalid entry
yes 0 * 1 000 Springboard’s function pointer stub
yes 0 1 0 000 Springboard’s sensitive return stub
yes 0 0 0 000 Springboard’s normal return stub

Table I: Bit Mask of stubs in Springboard.

points within sensitive library functions (e.g. system()
in libc) are different from return address stubs for normal

functions. In other words, there are three kinds of code stubs

in the Springboard (i.e., a 3-ID CFI implementation).

As shown in Table I, stubs inside the Springboards are

aligned and placed at distinguishable addresses based on

their types. Function pointer stubs are 8-byte aligned but not

16-byte aligned. All return address stubs are 16-byte aligned.

Further the 26th bits of sensitive return address stubs are 1,

while they are 0 for normal return stubs.

With this distinction, the type of indirect transfer targets

can be quickly determined at runtime, and a stricter security

policy can be enforced on indirect control transfers.

E. Enforcing Control Flow Integrity

Due to the careful design of the Springboard and stubs

alignment, one or two bit-testing instructions inserted before

an indirect control transfer are capable of validating its target

and so enforcing control flow integrity.

Indirect call and jump instructions can only jump to
function pointer stubs in the Springboard: In particular, they
are enforced to jump to targets within Springboard that are 8-

byte aligned but not 16-byte aligned. Moreover, there are no

function pointer stubs for sensitive functions in the Spring-

board because these functions are never used as targets of

indirect transfers, as discussed in Section IV-E. With this

enforcement, attackers cannot invoke invalid functions or

sensitive functions through indirect call/jmp instructions.
Return instructions in normal functions can only jump

to normal return address stubs in the Springboard, but not
sensitive return address stubs: In particular, these return

instructions are enforced to jump to 16-byte aligned stubs

whose 26th bits are 0. With this enforcement, the capacity of

return-to-libc attacks is greatly constrained because exploits

cannot jump into sensitive functions. Especially, the Turing-

completeness of return-to-libc attacks [28] is broken.

Return instructions in sensitive functions can jump to
any return address stubs in the Springboard: In particular,
these return instructions are enforced to jump to 16-byte

aligned stubs regardless of their 26th bits.

It is worth noting that user programs may invoke sensitive

functions, and thus returns within sensitive functions may

jump to user functions. On the other hand, we have never

observed a need for sensitive functions to call user functions,

CCFIR Validator

CCFIR Static

Disassemble
Original PE 

File
redirect 

& validate
& randomize

Hardened PE fileDisasm
info

Verify Verification 
Result

Disasm
infoDisassemble

BitCover BitRewrite

BitVerifyBitCover

Figure 3: Architecture of CCFIR

so CCFIR prohibits returns within user functions from

jumping to sensitive functions. While simple, we believe this

3-ID scheme achieves a good balance between compatibility

and safety.

In addition, all return instructions’ targets are 16-byte

aligned stubs in Springboard. And thus, attacks like ROP

that jump into the middle of instructions or basic blocks are

prohibited. It also greatly raises the bar for exploits which

weave together small snippets of code (e.g. gadgets).

CCFIR provides an extra protection to randomize the

order of the stubs inside the Springboard at load-time to

defeat guessing the addresses of function pointer and return

address stubs. Section IV-E will discuss this in detail.

IV. SYSTEM DESIGN & IMPLEMENTATION

CCFIR consists of three major modules: BitCover, Bi-

tRewrite & BitVerify. Its architecture is shown in Figure 3.

The first module BitCover disassembles a given PE file,

and identifies all indirect call/jmp/ret instructions and all
potential indirect control-transfer targets (Section IV-B).

BitRewrite statically rewrites the target PE file. In particu-

lar, it inserts Springboard sections for each module, encodes

valid transfer targets with pointers to Springboard stubs

(Section IV-C1), and instruments runtime checks before

indirect transfers to validate the targets (Section IV-C2).

BitRewrite also pays much attention to compatibility issues

(Section IV-D) to support incremental deployment.

In addition, BitRewrite introduces a further layer of pro-

tection, randomization, to increase the difficulty of attacks

(Section IV-E).

A separate module BitVerify checks whether a given bina-

ry conforms to our defined security policies (Section IV-F).

It is the last module before a binary is executed.

A. Background: Relocation Table

The relocation table is a feature of binary code required

to support dynamic linking and ASLR, and BitCover also

uses it to support disassembly. We use the following terms

to describe the structure of a PE-format relocation table:

• Relocation item: a 2-byte entry in the relocation table.
The lower 12 bits of an item are used together with a page

base to compute the address of a relocation slot;
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.reloc

0x31A4

0x1000

0x3308

0x6000

0x3700
0x3E88

.text

mov eax,
0x401120

foo():

0x4011A4

ImageBase: 
0x400000

Figure 4: Relocation table
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PE file

Indentify control 
tables

Tag 
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code entry 
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Known control 
tables

Other unknown 
data

Phase 2

Valid code 
entries

Valid control 
tables

Suspect code 
entries

Input Output

Figure 5: Workflow of BitCover

• Relocation slot: a memory area that is to contain a

relocation entry. For instance on a 32-bit archi-
tecture a typical slot will be 4 bytes long.

• Relocation entry: the value to be stored in the

relocation slot at relocation (load) time. This is

usually the address of a function or global variable.

For example, in Figure 4, a relocation item 0x31A4 exists

in the relocation table (i.e. the .reloc section). The highest
4 bits (i.e. 0x3) indicate this is a normal relocation item.

The address of the relocation slot represented by this item

is 0x4011A4, which is the sum of the image base of the

PE (e.g. 0x400000), the relocatable page’s Relative Virtual

Address (e.g. 0x1000) and the relocation slot’s offset within

this page (e.g. 0x1A4, lower 12 bits of the relocation item).

The actual content stored in this relocation slot, i.e. the

relocation entry, is 0x401120. This is the address of a

function foo, which needs to be updated at load time.

B. BitCover

The goal of BitCover is to identify all indirect control

transfer instructions and all valid transfer targets. As shown

in Figure 5, the workflow of Bitcover consists of two phases.

1) Phase 1: Explore the Code and Data: The EntryPoint
and entries in the export table of a PE file are possible

code entries. In addition, relocation entries are possible code

entries too according to rule R4 in Section III-C. For each

possible code entry, BitCover starts disassembling from it

recursively. Every executable instruction will be reachable

by recursive disassembly from some code entry.

However, not all export entries or relocation entries are

real code entries; for instance a relocation entry might

represent data rather than code. BitCover uses the following

heuristics to determine when disassembly reaches a byte

sequence that cannot be a valid instruction. If BitCover

encounters an invalid sequence during recursive exploration,

it marks the code entry from where it starts disassembling

as invalid.

H1. No invalid instruction are permitted.
H2. No instruction overlaps with another.
H3. A valid instruction must lead to other valid instructions.
H4. When disassembling starting from a code entry, all pos-

sible paths should stop at return instructions, indirect

jump instructions which jump to unknown targets, or

instructions which invoke must-terminate functions.
H5. All addresses’ sizes must be valid.
H6. If an instruction contains a relocation slot, the content

of this slot (i.e., a relocation entry) must be a valid

immediate value or offset.

H7. Instructions cannot start from relocation slots.

H8. All absolute addresses in code must be relocated, except
special hard-coded system values.

H9. I/O instructions and interrupt instructions are permitted

only in specific situations.

H10. Only specific segment registers can be used in code.
Here, a must-terminate function is one that will never

return to its caller, such as exit or abort in C/C++.

During exploration, BitCover also marks any function that

calls a must-terminate function unconditionally as a must-

terminate function itself. BitCover stops disassembling after

a path reaches a call to a must-terminate function, since

the bytes after that call would not be executed: they may

belong to another function or not be code at all. A function

that might call a must-terminate function under some but

not all circumstances we call a may-terminate function.
BitCover also analyzes which function may terminate, and

if it encounters an invalid byte sequence after a call to a

may-terminate function, it treats that call like a call to a

must-terminate function.

In phase 1, we also identify control tables like switch jump

tables [42]. We use both instruction and data characteristics

to distinguish switch jump tables from instructions. A switch

jump table must be an array of relocation slots containing

pointers which point to valid code entries. Following H7,

BitCover can accurately recognize any switch jump table

as data, i.e. not parts of instructions. In fact, heuristic H7

can filter out most control tables, including vtables for C++

objects, but not jump index tables [42] for switch statements,

because entries in these tables are not relocation slots.

After this phase, all candidate code entries and some

known control tables have been identified. There are still

some invalid candidate code entries and some unknown data

left. A second phase analysis is needed to remove all those

invalid candidate code entries, and identify control tables

like switch jump index tables from the unknown data.
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2) Phase 2: Refine the Disassembling Result: In this

phase, BitCover removes unreachable entries, tags other

suspect entries, and identifies remaining control tables.
If a relocation entry does not exist in the export table

and is not the target of any direct jump or call (i.e., is

not explicitly a function pointer), and all relocation slots

containing this relocation entry are parts of some instructions

(and thus the relocation entry must be an offset or immediate

value according to H6), and this relocation entry will not be

assigned to a register (e.g., directly moved to registers), then

this relocation entry is called as an unreachable entry.
For example, if a relocation entry E is only used in in-

struction mov eax, E[ebx*4], then E is an unreachable
entry. For unreachable entries, there is no chance to transfer
their values to any registers or memory; the program cannot

use it as a valid indirect target. So, we can claim that:

R6. All unreachable entries must not be valid code entries.
Based on rule R6, we can filter out switch jump index

tables [42] and other remaining tables in code sections. In

addition, after filtering out unreachable entries, the remain-

ing code entries in phase 1 are all candidate entries. If a

candidate entry does not point to an entry in a known control

table, it must be a valid code entry, according to rule R5

in Section III-C. So, BitCover can disassemble the whole

program automatically.
For binaries not obeying R5, BitCover will find unknown

data in their code sections. In this case, BitCover tags the

location as a “suspected” target, and leave it for manual

review. In our experiments, there are limited suspected

entries even in big binaries such as mshtml.dll, and an
expert can tag code entries in them quickly.

C. BitRewrite
The BitRewrite module carries out the central task, instru-

menting the binary to enforce control-flow integrity. This is

done in two steps:

• All valid indirect control transfer targets, e.g. function

pointers and return addresses, are modified by redirecting

them to unique stubs located inside the Springboard sec-

tion. This makes the validity of the addresses verifiable.

• Before each indirect control transfer instruction, e.g. cal-
l/jmp/ret, a special dynamic check is inserted, which

ensures that the transfer target is a valid stub in the

Springboard section.

1) Redirecting Indirect Control Transfer Targets: Bi-
tRewrite redirects both indirect call/jmp and ret instructions’
targets, i.e. function pointers and return addresses. As dis-

cussed in Section III-E, in order to enforce a better security

policy, function pointers and return addresses are redirected

to different kinds of stubs in the Springboard. In addition,

the ways function pointers and return addresses are created

and used are different. So, they are handled differently.
Redirecting function pointers. Function pointers in a

compiler-generated binary may be hard-coded in virtual

function tables, global variables and instructions. All these

occurrences of function pointers can be found, based on the

relocation table, as described in Section III.

As shown in Figure 6, as foo is loaded into a register
and may be a potential target of an indirect call, a unique

8-byte aligned stub foo sb in the Springboard is associated
with it. This stub contains a direct jump which will jump to

the entry point of foo. BitRewrite then replaces foo in the
instruction mov ecx, foo with foo sb.
Optimizations. As discussed in Section III-B, func-

tion pointers hard-coded in direct call/jmp instructions (e.g.,
call foo) and structured exception handlers used by the OS
are protected by DEP and SafeSEH and cannot be tampered

with by attackers. In addition, these pointers cannot be

used by indirect transfer instructions. Thus we can improve

performance by no redirecting these pointers, and suffer no

loss of security or correctness.

Moreover, function pointers inside jump tables need not

be redirected. These pointers cannot be tampered with

because of DEP, and can only be targets of jump instructions

for switch statements, such as jmp jtable[eax*4]. When
we confirm that compilers implement jump table lookups

correctly, i.e., jumping out of this table is impossible, these

pointers can be safely skipped.

Redirecting return addresses. The most frequent indirect
control transfer targets are return addresses, which also

makes them the most popular targets of attacks. Return

addresses are generally pushed onto the stack by corre-

sponding call instructions. To redirect valid return addresses,
BitRewrite relocates all call instructions.

Figure 7 shows the relocation of a direct call. Like

function pointers, a unique 16-byte aligned stub in the

Springboard (here back sb) is associated with each call site.
A direct jump instruction in this stub will jump back to the

original return-landing point (i.e. back). To make this stub
the new return address, the original call is replaced by a

jump to a new call instruction placed right before this stub.

This way, when the function is called, the return address

pushed onto the stack will be the verifiable address of the

stub back sb, which will seamlessly lead back the execution
after the original call site.

Figure 6 shows that indirect calls are modified similarly

to a direct call. The only difference is because the length of

a direct call instruction is 5 bytes, while the length of an
indirect one is 2. Hence their modified targets are back rsb-5
and back rsb-2 respectively. Moreover, as discussed in Sec-
tion III-D, for return-landing points in sensitive functions,

the 26th bits of associated return address stubs must be 1,

while they are 0 for normal return address stubs.

Having all indirect control transfer targets redirected to

their aligned stubs in the Springboard section makes legal

targets distinguishable from illegal ones.

2) Validating Indirect Control Transfers: As discussed
earlier, we focus on validating indirect call/jump and return
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 call ecx

 ret

back:

 ret

foo:

 jmp back_sb-2
back:

foo_sb:
 jmp foo

 jmp back

 call ecx
back_sb:

 mov ecx,foo

 mov ecx,foo_sb

foo:

 ...

 ...  jnz error
 test [esp],M_R

 jnz error
 test ecx,M_F

 ...

 ...

 ...

 ...
 test ecx,8
 jz error

Original

Hardened

Direct control transfer

Indirect control transfer

Figure 6: Rewriting of an indirect call and return

 call foo

 ret

back:

 jmp back_sb-5

 ret

back:

 call foo

 jmp back

foo:

back_sb:

 ...

foo:

 ...

 jnz error
 test [esp],M_R

 ...

 ...

Original

Hardened

Direct control transfer

Indirect control transfer

Figure 7: Rewriting of a direct call and return

instructions’ targets before the control transfers. The policy

our scheme enforces is the following:

• Indirect call/jump instructions’ targets must be function
pointer stubs (i.e 8-byte aligned but not 16-byte aligned)

in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid

normal return stub (i.e., 16-byte aligned with the 26th

bit 0).

As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.

For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes

aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if

the target address is bitwise ANDed with 8, the result should

be non-zero. In addition, if the TARGET is bitwise ANDed

with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND

operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed

to a predefined error handler (i.e. error in Figure 6). In

our implementation, the error handler will log the buggy

EIP value and the invalid transfer target, and then terminate

the process. (To record the EIP, there is a separate copy of

error for each indirect call/jump and return.)
Figure 6 also shows how the validation is inserted before

return instructions. Before returning, the target of the return

is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive

functions, and 0xc00000f for all other return instructions.

An Exceptional Case. The function longjmp()
ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless

of what its control expression is, the control flow in the

binary generated by modern compilers (e.g., GCC and VC)

is forced to one entry in its jump table. For example, GCC

first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,

then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers

through jmp jtable[eax*4]. In this way, the control flow is

always forced to the jump table entries and thus cannot be

hijacked by attackers. Thus BitRewrite skips validating these

indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers

whose targets are valid Springboard stubs. But the stubs are

not restricted to be within the current module’s Springboard

section. Stubs within other modules’ Springboard sections

are also permitted, since their addresses are compatible; they

are validated the same way. And thus if every module in a

program (i.e. the main program and all DLLs) is rewritten,

according to the scheme described in the previous section,

the separate modules will be compatible with each other in

any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible

in practice (e.g. system DLLs on Windows 7 cannot be

altered). While control transfers from an unprotected module

to a protected one cause no problem, if there is an indirect

control transfer from the protected module to an unprotected
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mov ecx,
 [foo_slot]

 jmp [foo_slot]

.iat:

foo_sb:

 ...

foo_slot:
 foo

mov ecx,
[foo_slot_wrap]

.iat:
 ...

foo_slot:
 foo

 foo_sb
foo_slot_wrap:

Original

Hardened

 gpa_sb
gpa_slot_wrap:

 jmp gpa_wrap
gpa_sb:

points to

gpa_wrap:

#fill new stub

call [gpa_slot]

#ret stub ptr

 ...

 ...

gpa_slot:
 GetProcAddress

Figure 8: Redirection of imported functions and GPA

one, the check will fail. In order to support the need for

incremental deployment, BitRewrite makes special efforts

for compatibility.

Compatibility issues come up when a protected module

returns to an unprotected module, or calls/jumps to an

external function in an unprotected module through

• an imported function pointer,
• a function pointer resolved at runtime by special API, e.g.,
GetProcAddress(), or

• a non-exported function pointer.
1) Imported function pointers: Most calls to external

functions are done through imported function pointers. Im-

ported function pointers are all stored in the import address

table (IAT) and then are accessed through IAT entries. For

example, in Figure 8, the imported function foo’s address is
stored in the .iat section (i.e., the foo slot). All references
to foo are accessed through its IAT entry foo slot, e.g., mov
ecx, [foo_slot]. Imported function pointers will be
resolved at load time by the dynamic linker and the IAT

entries will be updated.2 As a result, statically modifying

these IAT entries does not work.

To work around this issue, for each IAT entry, BitRewrite

generates a read-only and non-executable wrapper to replace

it. As shown in Figure 8, for the imported function foo, a
wrapper foo slot wrap is generated to replace foo slot. The
wrapper stores a function pointer which will jump to the

original imported function.

Optimizations. Because the IAT is read-only, im-

ported function pointers directly used in call/jmp instruc-
tions, such as call/jmp [foo slot], can also skip redirection
to improve performance.

2) Run-time resolved function pointers: Sometimes dy-
namic libraries are not loaded and linked at load time, but at

run-time using LoadLibrary. Function pointers in such cases

2Although the IAT will be updated by the dynamic linker, it is usually
read-only and non-executable at runtime.

can be obtained by the GetProcAddress call (comparable to
dlopen and dlsym in Unix). Since in this case the address

of a given function is computed at runtime, if the library

is unprotected, the redirection of this function can only be

made at runtime as well.

We leave stubs in the Springboard section which can

be filled at run-time. For this, write permission has to be

given for the page containing the stub, but only for the time

of the update. The run-time stub generation is carried out

by a special function which wraps GetProcAddress. As an
exception from the above described redirection technique

for imported functions, GetProcAddress is redirected to our
wrapper function, as depicted in Figure 8. This is possible

because the function GetProcAddress has to be imported.
The stub code for GetProcAddress, i.e. gpa sb, does not

jump back to the original GetProcAddress function directly,
but to the wrapper. The wrapper will call the original

GetProcAddress function, create a new stub for the returned

function pointer in one of the blank slots in the Springboard,

and return the pointer to the newly created stub instead of the

original function pointer. Only the page containing this stub

in the Springboard is writable for the time of this update.

This way all function pointers retrieved by GetProcAddress
are redirected to the Springboard section and 8-byte aligned.

3) Non-exported-function pointers: The overwhelming
majority of external functions are called either through

imports or resolved at runtime via GetProcAddress, i.e., they
are exported by an external module.

However, occasionally an external function that is not

exported by any external module can also be called, such

as through the vtable of an object that exported by an

unprotected library. Since this function pointer is never

redirected to a Springboard stub anywhere, it will fail the

check in the protected module.

4) Return to unprotected module: It is also possible that
a protected function has to return to an unprotected module,

e.g. when a function is exported by the protected module and

invoked by the unprotected module. When the invocation

finishes, the protected function tries to return to unprotected

module, and then triggers a false alarm.

We handle these rare cases of 3) and 4) by running

BitCover on all libraries which can possibly be loaded by

a hardened module, but cannot be protected (e.g. Win-

dows system DLLs). The same algorithm described in

Section IV-B is used to collect all valid indirect transfer

targets. Instead of using this information for instrumenting

the binary, a hash table is built from the valid code pointers.

When the error handler is triggered at run-time, in case of a

failed check, this hash table is looked up as a final chance

to validate the target.

If the target being looked up is not in the hash table,

the lookup procedure will terminate the process. Otherwise,

the error handler will jump back to the original control

flow. To jump back, the error handler for each instrumented
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validation is different. Each error handler saves registers

before calling the common hash table lookup procedure, and

then restores registers after the lookup and jumps back.

This hash table lookup scheme provides the same level

of protection as the previous alignment-based checking. We

also emphasize that since the vast majority of unprotected

targets are already covered by the first two categories (im-

port tables and GetProcAddress), the hash table is seldom
used and thus the introduced overhead is negligible. As

our experiments show, the hash tables for applications in

SPEC2000 [43] and SPEC2006 [44] are never looked up.

When all the involved modules can be rewritten and

protected by CCFIR, none of these compatibility features

or their overhead are required. However when that is not

possible, CCFIR can still be applied to a single module,

which can work with other un-hardened modules. This

feature allows the incremental deployment of the protection

scheme, which we identified as an important requirement of

practicality.

E. Security Enforcement and Randomization

BitRewrite enforces that indirect call/jump instructions

can only jump to function stubs in the Springboard. Re-

turn instructions are constrained to jump to return address

stubs in the Springboard, and normal return instructions

are prohibited from jumping to sensitive return stubs. Thus

it is impossible for an attacker to inject a jump into the

middle of an instruction, or to an instruction in the middle

of a basic block. This greatly reduces the scope for attack

techniques based on stringing together small code snippets

such as ROP gadgets. However a buffer overflow could still,

for instance, allow an attacker to replace a function pointer

with a different legal function pointer, if the attacker guessed

its value or caused it to be leaked [45][46][47].

The first countermeasure is to harden sensitive functions.

These include:

• system and the execl, execv family of functions

in msvcrt.dll and WinExec, CreateProcess in ker-
nel32.dll. They can be used to execute a file or create a

process.

• The LoadLibrary and GetProcAddress functions

in kernel32.dll which can retrieve function addresses.

• memcpy and other memory operation functions.
• The VirtualProtect and VirtualAlloc family of
functions which can disable memory page protections.

• The fopen and CreateFile families of functions.
• The longjmp function. It is the key to performing

branching in Turing-complete return-to-libc attacks [28].

• Other similar functions in application-specific libraries.

We suggest that these sensitive functions should only be

used via direct calls, and CCFIR raises an alert if they

are called indirectly. Thus we can assume that a binary

hardened by CCFIR has no function pointer stubs in the

Springboard for sensitive functions, and indirect jumps can-

not target them. Similarly, CCFIR’s prohibition of normal

return instructions from returning into the middle of sensitive

functions prevents attackers from accessing parts of their

functionality.

The second countermeasure is to introduce randomization.

Unlike other recent work [18][31], CCFIR randomizes each

stub in the Springboard at load-time. In particular, an extra

section is introduced in the PE file to record all redirected

stubs’ addresses, similar to the relocation table. This section

will only be used by the loader, and will not be mapped

into the process’s address space. So, attackers cannot steal

redirected stubs from this extra section.

With this extra section, the loader can reorder those

redirected stubs in the Springboard. The stubs are randomly

moved to new addresses within the Springboard. And all

references to the stubs are updated accordingly. This load-

time reordering usually is very fast, as shown in Section V.

In our prototype, this load-time reordering is done by

custom bootstrap code planted in the executable. In the

future, this could be done using the loader.

The randomization introduced here is an orthogonal layer

of protection from the previous CFI-style checking. Even

if the randomization is totally disclosed, the original 3-ID

CFI still exists. Moreover, the location of each stub in the

Springboard is virtually independent. Attackers need a very

targeted disclosure (e.g., the stub for system) to launch an
attack, in contrast to ASLR where attackers can learn the

base address of a whole module and reveal all targets.

F. BitVerify

Separate verification provides an independent check of

whether the target obeys specified security policies. The

CCFIR verifier, BitVerify, checks whether a given binary

conforms to the following rules:

• Any executable section whose 27th bit is zero is a Spring-
board section.

• Code stubs in the Springboard section are all aligned.
• Dynamic checks have been inserted before all indirect

call/jmp/ret instructions that should not be skipped.
• Function pointers that should not be skipped have all been
rewritten and redirected to the Springboard section.

• All call instructions have been rewritten to make sure the
pushed return address points to the Springboard section.

These rules together guarantee that all indirect call/jmp
and ret instructions in the executable can only flow to

valid code entries. Based on the results from BitCover,

BitVerify can get all valid code entries and indirect control

flow transfer instructions. Also, the Springboard section and

stubs in it are all identified. So this validation process is

straightforward and fast.

As required, BitVerify can also check extra require-

ments. For example, we can prohibit sensitive API

VirtualProtect() from being legal targets, as dis-

cussed in Section VI-A.
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Figure 9: Performance of BitCover and BitRewrite.
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Figure 10: Performance overhead brought by CCFIR.

V. EVALUATION

We implement a prototype of CCFIR for x86 PE executa-

bles on the Windows platform. In this C++ implementation

prototype, BitCover uses an open source disassembler library

Udis86 [48] to parse x86 instructions. In addition the 8K

LOC of Udis86, BitCover and BitVerify take about 5k LOC,

while BitRewrite takes another 5k LOC and an additional

custom PE file parser takes 2k LOC.

We test CCFIR with the SPEC CPU2000 (consisting of

SPECint2000 and SPECfp2000) benchmark binaries [43],

SPECint2006 [44] and several COTS binaries including Fire-

fox 3.6 (denoted as FF3) and Internet Explorer 6 (denoted
as IE6)3 , to evaluate its overhead and protection.

A. Performance

SPECint2000 consists of 12 applications written in

C/C++, while SPECfp2000 consists of 4 applications written

in C/C++ and 10 in Fortran. We compile all these 16 C/C++

applications with Microsoft Visual Studio 2010 (abbreviated

MSVC2010). For the 10 applications written in Fortran

we use the GNU Fortran compiler (distributed with the

MinGW port of GCC). Because CCFIR can also protect

the return address, the buffer security check (/GS flag)

provided by MSVC2010 and the stack smashing protection
(-fno-stack-protector) by GCC are turned off. For

each application, all modules are statically linked together

in order to get the approximate performance overhead of

applying CCFIR to the whole system. The experiments are

performed on a Windows 7 32-bit system, with an Intel

Core2 Duo CPU at 3.00GHz.

Then CCFIR is used to automatically disassemble and

rewrite all 26 benchmark binaries. We compare the function

pointer information determined by BitCover with the symbol

information from the source code, and confirm that BitCover

has no false positives or false negatives when parsing the

executables. The final binaries rewritten by BitRewrite are

3For newer browsers, newer OS is needed. But it is difficult to replace
modules in newer OS. In addition, there are few public available exploits
for newer browsers. So, we chose two old browsers as a benchmark here.

then run 9 times. The SPEC harness scripts check that the

hardened applications exhibit the same behavior and output

as their original counterparts.

For the browser FF3 and IE6, two core modules

xul.dll and mshtml.dll are hardened separately,

whereas other modules are left intact, to evaluate incremental

deployment. The module xul.dll in FF3 is very large

(more than 11MB) and has more than 67,000 functions.

CCFIR hardens it automatically without any problems. The

module mshtml.dll in IE6 is also fairly large, 3MB with
more than 15,000 functions. While BitCover identified a few

hundreds of suspects, an expert can tag code entries quick-

ly. These experiments are conducted in a virtual machine

running Windows XP SP3 with 512M memory and 1 core

CPU.

Because CCFIR currently does not support dynamically

generated code, the JIT (just-in-time compiler) browser

option is turned off in the hardened browsers. (To provide

a similar protection, the JIT compiler should generate code

obeying the same restrictions as CCFIR. In addition, the JIT

should protect the generated code from tampering, which is

out of the scope of CCFIR.) We check that the hardened

browsers work fine and can visit popular websites.

1) Performance of Static Analysis: Figure 9 shows the
performance of BitCover and BitRewrite when analyzing the

SPEC CPU2000 benchmark. Only three of the benchmark

binaries, gcc, perlbmk and mesa, take more than 7

seconds. The other 23 applications take 1.8 seconds on

average. The analysis time is positively correlated with the

file size (especially the code segment size), the count of

function pointers and indirect call/jmp/ret instructions. For
example, gcc is 1,200KB large and takes 63 seconds, while
mgrid with 70KB takes only 0.14 seconds.

We also evaluate BitVerify’s performance. Experimental

results show that it can also verify binaries quickly. It takes

about 20 seconds to verify the 1.2MB gcc, about 37 seconds
for the 11MB xul.dll in FF3, and less than 10 seconds
for other programs in the benchmark suite.

It is worth noting that this static analysis overhead is
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Table II: Statistical data of CCFIR when applying to applications

App.

modifications performance #gadgets file size (KB)
redirected fp/ret addr validated inst optimiz. original new overhead

#fp #imp #GPA #call #indirect #ret #skipped run run original new valid original new
call/jmp fp/import time time

SPECint2000 Avrg: 3.6385%

gzip 77 20 3 976 106 430 171 84.30 86.50 2.6097% 2484 0 0 101 140
vpr 85 20 3 1578 110 768 190 66.00 66.00 0.0001% 4437 0 0 231 301
gcc 1000 26 3 12185 263 5628 612 38.33 39.90 4.0870% 42884 0 0 1181 1642
mcf 73 20 3 896 105 392 173 31.90 31.97 0.2089% 1791 0 0 80 116
crafty 88 23 3 2135 114 930 228 43.03 43.50 1.0845% 7483 0 0 290 368
parser 78 20 3 1600 114 751 173 93.23 98.60 5.7562% 4400 0 0 159 226
eon 1546 28 3 4391 381 2325 316 57.50 60.50 5.2174% 10366 0 0 440 618
perlbmk 924 39 3 7017 203 3229 419 64.47 70.01 8.6002% 30949 0 0 605 829
gap 758 22 3 9991 1352 2672 181 43.30 46.43 7.2363% 20455 0 0 439 639
vortex 164 23 3 3429 124 1715 213 74.33 78.97 6.2334% 13408 0 0 488 648
bzip2 69 20 3 826 103 367 171 68.87 71.00 3.0978% 1824 0 0 91 131
twolf 81 20 3 1385 109 674 183 107.00 107.00 0.0000% 3987 0 0 262 332

SPECfp2000 Avrg: 0.5855%

wupwise 7 4 0 127 35 31 48 171.00 174.00 1.7544% 255 0 0 67 83
swim 7 4 0 82 30 15 44 347.00 347.00 0.0000% 116 134 0 48 61
mgrid 7 4 0 104 31 21 44 588.00 588.00 0.0000% 161 166 0 49 63
applu 7 4 0 118 29 27 42 484.00 484.00 0.0000% 182 172 0 165 181
mesa 585 22 3 8513 495 3539 345 72.87 75.77 3.9799% 21696 0 0 531 681
galgel 11 4 0 534 62 142 58 265.00 265.00 0.0000% 1515 952 0 281 317
art 73 20 3 895 105 406 174 31.40 31.43 0.1060% 1874 0 0 89 129
equake 69 19 3 862 103 381 154 46.50 46.83 0.7168% 1710 0 0 93 129
facerec 7 4 0 213 55 50 66 239.00 239.00 0.0000% 826 775 0 127 150
ammp 181 20 3 2014 132 901 178 91.87 93.53 1.8143% 5039 0 0 217 279
lucas 7 4 0 98 43 20 55 151.00 150.00 -0.6623% 129 0 0 121 127
fma3d 7 4 0 1341 77 438 72 200.00 201.00 0.5000% 4161 0 0 1429 1633
sixtrack 13 4 0 667 92 208 72 425.00 425.33 0.0786% 3979 3312 0 1463 1618
apsi 7 4 0 372 40 98 54 351.00 351.00 0.0000% 1126 878 0 201 236

Browsers

mshtml.dll 1,526 139 21 64,662 10,452 15,344 29,557 78,676 0 0 2,995 4,594
xul.dll 145,224 283 34 262,079 55,025 65,359 17,273 273,437 0 0 11,498 15,620

offline and does not influence the runtime performance.

2) Performance of Load-Time Randomization: In our

prototype, the load-time randomization is done by bootstrap

code placed in the protected executable. Results show that

the load time randomization is very fast.

For mshtml.dll in IE6, there are less than 216 code
stubs in the Springboard section, and each stub occupies

less than 16 bytes. The whole memory movement when

reordering is less than 16 · 216 = 1M . And the evaluated

load time is about 16 milliseconds. Similarly, xul.dll has
less than 219 stubs and takes about 117 milliseconds.

3) Runtime Overhead on SPEC CPU2000: All the 26
applications in the SPEC CPU2000 benchmark are hardened

by CCFIR. Then the median run time over 9 trials is

evaluated. Figure 10 shows the performance overhead caused

by CCFIR, while Table II shows the detailed run time data.

When protecting targets of all indirect call/jmp/ret instruc-
tions, CCFIR introduces an overhead of 3.6% on the aver-

age over the SPECint2000 benchmark and only 0.59% for

SPECfp2000. The largest overhead is 8.6% on perlbmk,
an interpreter in which every opcode is implemented with an

indirect jump. For lucas, there is a slight speed-up, maybe
due to increased code alignment.

On SPECint2006, the average overhead is about 4.2%.

For space reasons, the detailed data are not listed here.

Compared with other protections, such as [13][49], CCFIR

is capable of protecting all binaries in the SPEC 2000/2006

benchmarks, with a reasonable overhead.

Statistics: Table II also lists the modifications made by
CCFIR to the SPEC CPU2000 applications and 2 browsers.

The columns under redirected fp/ret_addr in

the table represent the count of code entries redirected by

CCFIR, including hard-coded function pointers, imported

function pointers, pointers returned by GetProcAddress and
return addresses pushed by call instructions. Taking gcc as
an example, 1000 hard coded function pointers and 26 im-

ported functions are redirected, and GetProcAddress is called
3 times. Moreover, there are 12185 call instructions in the
whole application. All these 13214 (= 1000+26+3+12185)

code entries are redirected by CCFIR.

The columns under validated instructions
record the count of indirect call/jmp/ret instructions which
are validated by CCFIR. For gcc, there are only 263 indirect
call/jmp instructions and 5628 ret instructions. So, targets of
5891 (= 263+5628) instructions are validated by CCFIR.

Performance Analysis: As discussed in Section IV-C,
BitRewrite skips redirecting some function pointers and

skips instrumenting checks for some indirect jumps. The

column under optimiz. in Table II counts how many

function pointers are skipped. For gcc, 612 function point-
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ers are skipped, while only 1029 (=1000+26+3) pointers

are redirected. So, about 38% function pointers are not

redirected and thus the runtime overhead are greatly reduced.

For the original CFI, the attached ID (a potentially s-

low prefetchnta instruction) will always be executed

in direct control transfers. But for CCFIR, there are no

extra overheads in this case. In addition, the direct control

transfers cover most of the control transfers in applications.

And thus, CCFIR is much faster than original CFI.

Return instructions play a large part in CCFIR’s overall

performance. We also repeated our measurements (detailed

data omitted) in a mode in which CCFIR protects only

indirect call/jmp but not ret instructions. In this configuration
the overhead is 0.79% for SPECint2000, much smaller than

the 3.6% overhead when ret instructions are also protected.
The 10 Fortran applications in SPECfp2000 have few

indirectly used function pointers and imported functions, so

the overhead is much smaller than applications written in

C/C++, as those in SPECint2000.

4) Runtime Overhead on Real World Browsers.: One core
module each of FF3 and IE6 is hardened by CCFIR sepa-

rately, as described above. We attempted to test each browser

against the Sunspider [50] and Google V8 benchmarks [51].

Unfortunately the benchmarks do not support IE6, so

we only report results for Firefox (JIT is turned off).

The overhead caused by CCFIR was small. When testing

with Sunspider, the run time increases from 2130.7ms to

2150.3ms. When testing with the Google V8 benchmark,

the score drops from 369 to 361 (larger results are better).

B. Protection Effects

1) Eliminating ROP Gadgets: CCFIR can be used to

defend against ROP attacks because it will validate ret
instructions’ targets. Only instructions directly following a

call site can be the targets of ret instructions. As a result,
after applying CCFIR on the target binary, ROP gadgets that

do not directly follow call sites are unusable, including any

that start from the middle of legal instructions.

To evaluate this protection we count the number of

gadgets in our benchmark applications. First, we use the tool

Mona [52] to count the gadgets in the original applications

and the rewritten applications. As shown in the columns

under #gadgets in Table II, after hardening, Mona only

finds gadgets in 7 out of the 26 applications, but none of

these gadgets will pass the validation of CCFIR.

2) Randomization Entropy: CCFIR’s load-time random-
ization makes it hard to guess the address of a target function

or a return site, and thus raises the bar for attackers to hijack

the control flow, including return-to-libc and ROP attacks.

Our Springboard’s size is 128MB (i.e. 227). All code stubs
are randomized within the Springboard. Each stub takes less

than 16 bytes and is aligned to 8 or 16 bytes.

This degree of randomization makes a brute-force search

infeasible. For each stub, there are 223 (=227/16) possible

Table III: Real World Exploit Samples Prevented by CCFIR.

ID App Vul Type Vul Module Protected

CVE-2011-0065 FF 3 Use After Free xul.dll yes
CVE-2010-0249 IE 6 Use After Free mshtml.dll yes
CVE-2010-3962 IE 6 Use After Free mshtml.dll yes
CVE-2011-1260 IE 6 Mem. Corrupt mshtml.dll yes
CVE-2005-1790 IE 6 Mem. Corrupt mshtml.dll yes
CVE-2008-0348 coolplayer Stack Overflow core exe yes
CVE-2010-5081 RM-MP3 Stack Overflow core exe yes
OSVDB-83362 urlhunter Stack Overflow core exe yes
CVE-2007-1195 XM ftp Format String core exe yes
OSVDB-82798 ComSndFTP Format String core exe yes

positions after load-time randomization. To chain k target

gadgets together, the attacker has to probe 223 · (223 − 1) ·
· · · · (223 − k + 1) times in the worst case.
3) Protection against Real World Exploits: We also chose

10 publicly available exploits from Metasploit [53] against

FF3, IE6 and 5 other applications. These experiments are

performed in a virtual machine running Windows XP SP3

within a separate experiment network. Table III shows the

10 vulnerabilities attacked by exploits we used.

Taking CVE-2011-0065 as an example, this vulnerability

exists in Firefox 3.x before 3.6.17. It is a use-after-free

vulnerability which can cause arbitrary code execution, when

exploited by techniques such as heap spray [54].

After hardening the vulnerable module xul.dll with

CCFIR, we drive Firefox to access the attack URL again,

and the error handler added by CCFIR is triggered. The

remaining 9 exploits, which target IE6 and other 5 applica-

tions, are also prevented by CCFIR in a similar manner.

VI. DISCUSSION

A. Possible Attacks

To attack CCFIR, an attacker may:

(a) forge a valid target.

(b) change memory pages’ protection attributes to change

instructions directly or to add forged targets.

(c) use a dangerous target that is used by the program.

(d) jump to valid targets or chain them to launch attacks.

For (a), the attacker has to use a page which is writable

and executable at the same time. For modern programs

protected by DEP, this depends on the attack (b).

Some APIs are inherently dangerous (e.g. WinExec), or
are dangerous because they can disable page protections (e.g.

VirtualProtect in the Virt* family). These functions
are rarely used through indirect calls in regular applications.

CCFIR raises an alert if such functions are called indirectly.

CCFIR randomizes their entry addresses to make it even

harder for attackers to guess or steal them, providing some

protection before developers provide a patch.

If a program calls Virt* functions directly and only

uses constant flProtect or flNewProtect arguments
which do not make the page executable, it will be immune

to such attacks as (a) or (b) after being hardened by
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CCFIR. If a program calls Virt* functions to make a

page executable for JIT, attackers still have a chance to

utilize these functions, but again they need to penetrate the

randomization generated by CCFIR. We still suggest that the

program carefully check the arguments before such calls.
For (d), attackers’ abilities are greatly constrained by

CCFIR. As discussed in Section IV-E, indirect call/jmp are
enforced to flow to valid and non-sensitive function entry

points. In addition, normal return instructions cannot jump

into sensitive functions or any function entries. So, the

Turing-completeness of return-to-libc attacks is broken. Be-

sides, ROP attacks that to jump to the middle of instructions

or basic blocks become impossible, while chaining gadgets

also becomes much more difficult.
When CCFIR is only applied to parts of a program,

attackers still have a chance to modify pointers flowing

to unprotected external modules. In this situation, ASLR

and other memory-allocation-based protection methods will

provide valuable defense and make attackers spend much

more effort to find the vulnerable locations. But of course

we still recommend applying CCFIR to the whole system to

provide the best protection.
B. Race Condition of Return Address
The code sequence that CCFIR uses to validate a return

address has a TOCTTOU (time of check to time of use) race

condition in a multi-threaded program. CCFIR checks the

value of [esp] and then executes ret in the next instruction,
but the return address is stored in memory in the interim,

where it could be modified by another thread.
The race could be avoided by storing the value in a

register, but this would have a substantial performance penal-

ty because it would disrupt the CPU’s branch prediction.

(Modern CPUs use a private shadow stack to predict the

targets of return instructions, while other indirect jumps use

a less sophisticated prediction mechanism.)
This race condition affects any other return protection

scheme that checks the return value in-place, including

MSVC’s /GS, GCC’s SSP, and PittSFIeld [38]. However the

time window in the race is extremely small, so in practice

the odds of a successful attack will be small. To avoid the

possibility of repeated attacks within a process, CCFIR’s

validation will terminate a process immediately if it detects

an illegal return address.
VII. CONCLUSION

In this paper, we propose a new approach called CCFIR

to ensure that indirect control transfers jump only to known

targets. It can be used to enforce CFI, which provides a solid

base for software protection. It can block various attacks

against control transfers, including most ROP attacks.
CCFIR can be applied through binary rewriting on exe-

cutables generated by modern compilers. Its runtime over-

head is low (about 3.6% measured by SPECint2000). CC-

FIR’s techniques can also be used directly in the compilation

process to provide protections for software.
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