Practical Cryptanalysis of ARMADILLO-2

María Naya-Plasencia and Thomas Peyrin

University of Versailles - France
Nanyang Technological University - Singapore

FSE 2012

Washington - March 19, 2012

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

What is ARMADILLO-2?

- ARMADILLO-2 is a lightweight, multi-purpose cryptographic primitive published by Badel et al. at CHES 2010
- in the original article, ARMADILLO-1 is proposed but the authors identified a security issue and advised to use ARMADILLO-2
- ARMADILLO-2 is
- a FIL-MAC
- a stream-cipher
- a hash function
- they are all based on an internal function that uses data-dependent bit transpositions
- 5 different parameters sizes defined

The basic building block: a parametrized permutation Q_{X}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{X}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{X}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{x}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{x}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{x}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The basic building block: a parametrized permutation Q_{x}

ARMADILLO-2 uses a permutation $Q_{A}(B)$ as basic building block:

- the internal state is initialized with input B we apply a steps, where a is the bitsize of the input parameter A
- for each step i :
- extract bit i from A
- if $\mathrm{A}[\mathrm{i}]=0$, apply the bitwise permutations σ_{0}, otherwise σ_{1}
- bitwise XOR the constant $1010 \cdots 10$ to the internal state

The ARMADILLO-2 compression function

The ARMADILLO-2 compression function

Cryptanalysis of ARMADILLO-2

Abdelraheem et al. (ASIACRYPT 2011):

- key recovery attack on the FIL-MAC
- key recovery attack on the stream cipher
- (second)-preimage attack on the hash function
... but computation and memory complexity is very high, often close to the generic complexity (example 256-bit preimage with 2^{208} computations and 2^{205} memory or 2^{249} computations and 2^{45} memory)

We provide very practical attacks (only a few operations):

- distinguisher and related-key recovery on the stream cipher
- free-start collision on the compression function (chosen-related IVs)
- semi-free-start collision on the compression/hash function (chosen IV)

First tools

For two random k-bit words A and B of Hamming weight a and b respectively, the probability that $\operatorname{HAM}(A \wedge B)=i$ is

$$
P_{\mathrm{and}}(k, a, b, i)=\frac{\binom{a}{i}\binom{k-a}{b-i}}{\binom{k}{b}}=\frac{\binom{b}{i}\binom{k-b}{a-i}}{\binom{k}{a}} .
$$

For two random k-bit words A and B of Hamming weight a and b respectively, the probability that $\operatorname{HAM}(A \oplus B)=i$ is

$$
P_{\mathrm{xOr}}(k, a, b, i)= \begin{cases}P_{\text {and }}\left(k, a, b, \frac{a+b-i}{2}\right) & \text { for }(a+b-i) \text { even } \\ 0 & \text { for }(a+b-i) \text { odd }\end{cases}
$$

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

The differential path - right side

The differential path - right side

The differential path - right side

We have $\operatorname{HAM}(\Delta X)=1$ with probability 1

The differential path - right side

We have $\Delta X=0 \ldots 01$ with probability $P_{X}=\frac{1}{k}$

The differential path - left side

The differential path - left side

The differential path - left side

We have b active bits after first step with probability

$$
P_{\text {step }}(b)
$$

The differential path - left side

We have $\operatorname{HAM}(\Delta Y)=b$ with probability
$P_{\text {step }}(b)$

The differential path - left side

The differential path - overall differential probability

The overall collision probability is

$$
P_{X} \cdot \sum_{i=1}^{i=m} P_{\text {step }}(i) \cdot P_{\text {out }}(i)=\frac{1}{k} \cdot \sum_{i=1}^{i=m} P_{\text {step }}(i) \cdot \prod_{i=0}^{i=b-1} \frac{m-i}{k-i}
$$

The freedom degrees
For randomly chosen values of C and M, the collision probability will be too small:

- if b is small, $P_{\text {step }}(b)$ is very low
- if b is big, $P_{\text {out }}(b)$ is very low

However, we can use the freedom degrees:

- by fixing the value of M and the difference position, one can first handle the left part of the differential path $\left(Q_{M}\right)$
- then by forcing the inputs value $(C \| M)$ to have very low (or very high) Hamming weight $h w$ it will be possible to have $P_{\text {step }}(b)$ high with b small

$$
P_{\text {step }}(b, h w)=\frac{h w}{c} \cdot P_{\mathrm{xOr}}(k, h w, h w-1, b)+\frac{c-h w}{c} \cdot P_{\mathrm{xor}}(k, h w, h w+1, b)
$$

Attack complexity and results

The total attack complexity is (probability P_{X} can be handled separately):

$$
\frac{1}{\sum_{i=1}^{i=m} P_{\text {step }}(i, h w) \cdot P_{\text {out }}(i)}
$$

scheme parameters			attack	
k	c	m	generic complexity	attack complexity
128	80	48	2^{40}	$2^{7.5}$
192	128	64	2^{64}	$2^{7.8}$
240	160	80	2^{80}	$2^{8.1}$
288	192	96	2^{96}	$2^{8.3}$
384	256	128	2^{128}	$2^{8.7}$

We implemented and verified the attack

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

The differential path - right side

The differential path - right side

Assume we force the first g bits of M to a certain value (g being the most significant difference bit of M)

The differential path - right side

We would like a collision after step g, and this event can be obtained by solving a very particular system of linear equations since we know all first g steps

The differential path - right side

If the internal collision is obtained, we have $\Delta X=0$ with probability 1

The differential path - left side

The differential path - left side

Assume we have b active bits on M

The differential path - left side

We have b active bits after applying Q_{X} with probability 1

The differential path - left side

We have $\Delta M S B_{c}(Y)=0$ with probability

$$
\begin{aligned}
P_{\text {out }}(b) & =P_{\text {and }}(k, m, b, b) \\
& =\prod_{i=0}^{i=b-1} \frac{m-i}{k-i}
\end{aligned}
$$

The freedom degrees

The system of linear equations:

- admits at least a solution with a probability depending on the number of cycles of a complex composition of σ_{0} and σ_{1} (for random permutations σ_{0} and σ_{1}, we have a probability of $2^{-\log (k)}$)
- the average number of solutions is 1

Thus, in order to find a collision, we need:

- that the guess of the g bits of M is valid (with probability 2^{-g})
- that the b active bits in M are truncated on the output of Q_{X} (with probability $\left.P_{\text {out }}(b)\right)$

Minimizing g and b will provide better complexity, but we need enough randomization to eventually find a solution

Attack complexity and results

The total attack complexity is:

$$
\frac{2^{g}}{P_{\text {out }}(b)}, \text { with }\binom{g}{b} \geq 2 \cdot P_{\text {out }}^{-1}(b) \text { so as to find a solution }
$$

scheme parameters			attack	
k	c	m	generic complexity	attack complexity
128	80	48	2^{40}	$2^{8.9}$
192	128	64	2^{64}	$2^{10.2}$
240	160	80	2^{80}	$2^{10.2}$
288	192	96	2^{96}	$2^{10.2}$
384	256	128	2^{128}	$2^{10.2}$

We implemented and verified the attack

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

ARMADILLO-2 is not secure, attack complexities are very low:

- the diffusion can be controlled too easily
- local linearization allows to render linear the complex part of the differential paths
- the permutation $Q_{A}(B)$ preserves the parity of the input

And Now for Something Completely Different

NTU is looking for

- a few PhD students (3 to 4 years)
- a few postdocs (1 to 2 years renewable)
on
- symmetric-key cryptography (cryptanalysis and/or design)
- lightweight cryptography
contact: thomas.peyrin@ntu.edu.sg

Thank you for your attention !

