Practical Data Analysis for

Designed Experiments

Brian S. Yandell
University of Wisconsin
Madison
USA

CHAPMAN \& HALL
London • Weinheim • New York • Tokyo • Melbourne • Madras

Contents

Preface xiii
Part A: Placing Data in Context 1
1 Practical Data Analysis 3
1.1 Effect of factors 4
1.2 Nature of data 6
1.3 Summary tables 7
1.4 Plots for statistics 9
1.5 Computing 13
1.6 Interpretation 16
1.7 Problems 18
2 Collaboration in Science 21
2.1 Asking questions 22
2.2 Learning from plots 23
2.3 Mechanics of a consulting session 24
2.4 Philosophy and ethics 26
2.5- Intelligence, culture and learning 28
2.6 Writing 29
2.7 Problems 32
3 Experimental Design 35
3.1 Types of studies 35
3.2 Designed experiments 37
3.3 Design structure 38
3.4 Treatment structure 42
3.5 Designs in this book 43
3.6 Problems 44
Part B: Working with Groups of Data 47
4 Group Summaries 49
4.1 Graphical summaries 49
4.2 Estimates of means and variance 53
4.3 Assumptions and pivot statistics 58
4.4 Interval estimates of means 60
4.5 Testing hypotheses about means 63
4.6 Formal inference on the variance 65
4.7 Problems 67
5 Comparing Several Means 71
5.1 Linear contrasts of means 73
5.2 An overall test of difference 77
5.3 Partitioning sums of squares 78
5.4 Expected mean squares 81
5.5 Power and sample size 82
5.6 Problems 86
6 Multiple Comparisons of Means 89
6.1 Experiment- and comparison-wise error rates 89
6.2 Comparisons based on F tests 91
6.3 Comparisons based on range of means 97
6.4 Comparison of comparisons 100
6.5 Problems 103
Part C: Sorting out Effects with Data 105
7 Factorial Designs 107
7.1 Cell means models 107
7.2 Effects models 108
7.3 Estimable functions 110
7.4 Linear constraints 114
7.5 General form of estimable functions 117
7.6 Problems 124
8 Balanced Experiments 125
8.1 Additive models 125
8.2 Full models with two factors 129
8.3 Interaction plots 133
8.4 Higher-order models 139
8.5 Problems 142
9 Model Selection 145
9.1 Pooling interactions 145
9.2 Selecting the 'best' model 147
9.3 Model selection criteria 150
9.4 One observation per cell 151
9.5 Tukey's test for interaction 155
9.6 Problems 157
Part D: Dealing with Imbalance 159
10 Unbalanced Experiments 161
10.1 Unequal samples 161
10.2 Additive model 164
10.3 Types I, II, III and IV 167
10.4 Problems 175
11 Missing Cells 177
11.1 What are missing cells? 177
11.2 Connected cells and incomplete designs 180
11.3 Type IV comparisons 184
11.4 Latin square designs 187
11.5 Fractional factorial designs 189
11.6 Problems 193
12 Linear Models Inference 195
12.1 Matrix preliminaries 195
12.2 Ordinary least squares 196
12.3 Weighted least squares 197
12.4 Maximum likelihood 198
12.5 Restricted maximum likelihood 199
12.6 Inference for fixed effect models 200
12.7 Anova and regression models 202
12.8 Problems 205
Part E: Questioning Assumptions 207
13 Residual Plots 209
13.1 Departures from assumptions 210
13.2 Incorrect model 213
13.3 Correlated responses 215
13.4 Unequal variance 216
13.5 Non-normal data 216
13.6 Problems 219
14 Comparisons with Unequal Variance 221
14.1 Comparing means when variances are unequal 221
14.2 Weighted analysis of variance 222
14.3 Satterthwaite approximation 224
14.4 Generalized inference 225
14.5 Testing for unequal variances 226
14.6 Problems 227
15 Getting Free from Assumptions 229
15.1 Transforming data 229
15.2 Comparisons using ranks 234
15.3 Randomization 235
15.4 Monte Carlo methods 236
15.5 Problems 237
Part F: Regressing with Factors 239
16 Ordered Groups 241
16.1 Groups in a line 241
16.2 Testing for linearity 243
16.3 Path analysis diagrams 245
16.4 Regression calibration 248
16.5 Classical error in variables 250
16.6 Problems 252
17 Parallel Lines 255
17.1 Parallel lines model 256
17.2 Adjusted estimates 258
17.3 Plots with symbols 261
17.4 Sequential tests with multiple responses 263
17.5 Sequential tests with driving covariate 266
17.6 Adjusted (Type III) tests of hypotheses 268
17.7 Different slopes for different groups 269
17.8 Problems 274
18 Multiple Responses 275
18.1 Overall tests for group differences 276
18.2 Matrix analog to F test 283
18.3 How do groups differ? 284
18.4 Causal models 289
18.5 Problems 293
Part G: Deciding on Fixed or Random Effects 295
19 Models with Random Effects 297
19.1 Single-factor random model 298
19.2 Test for class variation 302
19.3 Distribution of sums of squares 304
19.4 Variance components 306
19.5 Grand mean 309
19.6 Problems 311
20 General Random Models 313
20.1 Two-factor random models 313
20.2 Unbalanced two-factor random model 318
20.3 General random model 322
20.4 Quadratic forms in random effects 323
20.5 Application to two-factor random model 324
20.6 Problems 326
21 Mixed Effects Models 327
21.1 Two-factor mixed models 327
21.2 General mixed models 330
21.3 Problems 332
Part H: Nesting Experimental Units 335
22 Nested Designs 337
22.1 Sub-sampling 338
22.2 Blocking 341
22.3 Nested and crossed factors 346
22.4 Nesting of fixed effects 348
22.5 Nesting of random effects 350
22.6 Problems 354
23 Split Plot Design 357
23.1 Several views of split plot 357
23.2 Split plot model 361
23.3 Contrasts in a split plot 365
23.4 Problems 367
24 General Nested Designs 369
24.1 Extensions of split plot 369
24.2 Strip plot 372
24.3 Imbalance in nested designs 373
24.4 Covariates in nested designs 374
24.5 Explained variation in nested designs 377
24.6 Problems 378
Part I: Repeating Measures on Subjects 381
25 Repeated Measures as Split Plot 383
25.1 Repeated measures designs 383
25.2 Repeated measures model 386
25.3 Split plot more or less 388
25.4 Expected mean squares under sphericity 390
25.5 Contrasts under sphericity 394
25.6 Problems 396
26 Adjustments for Correlation 399
26.1 Adjustments to split plot 399
26.2 Contrasts over time 402
26.3 Multivariate repeated measures 405
26.4 Problems 408
27 Cross-over Design 411
27.1 Cross-over model 412
27.2 Confounding in cross-over designs 413
27.3 Partition of sum of squares 415
27.4 Replicated Latin square design 416
27.5 General cross-over designs 418

- 27.6 Problems 419
References 423
Index 430

