
Practical Data Hiding in TCP/IP
Kamran Ahsan

Government of Ontario
123 Edward Street

Toronto, Ontario Canada
+1 416 212-3100

kamran.ahsan@cbs.gov.on.ca

Deepa Kundur
University of Toronto

10 King’s College Road
Toronto, Ontario Canada

+1 416 946-5181

deepa.kundur@utoronto.ca

ABSTRACT
This work relates the areas of steganography, network protocols
and security for practical data hiding in communication networks
employing TCP/IP. Two approaches are proposed based on
packet header manipulation and packet ordering within the IPSec
framework. For the former the Internet protocol IPv4 header is
analyzed to identify covert channels by exploiting redundancy and
multiple interpretations of protocol strategies; by passing
supplementary information through IPv4 headers we demonstrate
how security mechanisms can be enhanced in routers, firewalls,
and for services such as authentication, audit and logging without
considerable additions to software or hardware. For the latter
approach, we show the use of packet sorting for steganographic
embedding with IPSec can allow for enhanced network security.

Keywords
Data hiding, steganography, covert channels, TCP/IP, network
security, toral automorphism, IPSec, packet sorting.

1. INTRODUCTION
 Modern computer networks, such as the Internet, are designed
for communication, connectedness and collaboration; their
specification is “open” (i.e., publicly available) which presents
difficulties with respect to security. As the Internet permeates
our daily lives, there is an immense need to address issues of
protection; flexible security for evolving network applications is
required. This work attempts to integrate traditional network
security with another emerging technology, data hiding. We first
identify covert channels in TCP/IP, and then suggest application
scenarios in which we make use of the supplementary bandwidth
to enhance network security for current computer networks.
 As described in [1], a covert channel is a communication link
between two parties that allows one individual to transfer

information to the other in a manner that violates the system’s
security policy. Covert channels are classified into covert storage
channels, in which one transfers information to another by writing
to a shared storage location, and covert timing channels, in which
one signals information to another by modulating temporal system
resources. We focus on covert channels in computer networks for
which data hiding takes place by making use of the network
packet streams as the cover object. Since these packets traverse
different network topologies and are shared at various network
nodes before reaching their intended destination, we take into
account network behavior for data hiding design.

1.1 Framework
 We assume that our communicating parties denoted Alice and
Bob, transfer information overtly over a computer network and
employ data hiding involving the TCP/IP protocol suite to
covertly communicate supplementary information. Data hiding is
employed through a stego-algorithm that takes as input the covert
message Ck , a sequence of network packets {Pk} known as the
cover-network packet sequence and possibly a secret key to
generate a stego-network packet sequence {Sk} that contains the
overt payload of {Pk} while piggy -backing Ck. The stego-network
packet sequence {Sk} is sent to Bob over a computer network.
The covert message Ck traverses a generally non-ideal channel
characterized by the network behavior on the packet Sk. Keeping
in view a model of the channel, Bob deciphers the covert message
to produce C*k.

 The basic framework is shown in Figure 1. We summarize
relevant points below:
• For reasons of security, Alice and Bob may employ the use of a

symmetric secret key, so that only Bob can detect the

The authors wish to thank the support of Bell University Labs
(BUL) and the Nortel Institute for Telecommunications (NIT) of
the University of Toronto for providing funding for this work.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop Multimedia and Security at ACM Multimedia’02, December
6, 2002, Juan-les-Pins on the French Riviera.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Figure 1. The general covert channel framework in
TCP/IP

information accurately. In addition, for the packet sorting
approach, Alice and Bob are both assumed to implement IPSec.

• The stego-network packet, Sk, may pass through one or more
intermediate network nodes in order to reach Bob. The covert
channel, by definition, must be non-detectable by these nodes
which can be ensured if and only if the intermediate node finds
no critical difference between {Pk} and {Sk} while processing
the sequence. The reader should note that we define “non-
detectability” with respect to standard network node capability
and not a human observer.

• At an intermediate node, a stego-network packet Sk may be
dropped due to the non-availability of buffer capacity.
However, this possibility is assumed to be nonexistent in our
analysis of the proposed algorithms. We are focusing on that
network traffic which is most unlikely to be dropped due to
buffer unavailability. Such a condition is possible, if we
consider QoS mechanisms through which network traffic can be
prioritized as a preferred class. In addition, we assume there is
remote possibility that the same stego network packet is
corrupted during transmission and consequently be dropped by
the data link layer mechanisms.

The next section summarizes our work in comparison to the
previous contributions in the area of data hiding in computer
networks to provide perspective for this paper.

1.2 A More Complete Picture
 Our research can be considered, in part, a logical extension to [2]
and [3] in which Handel & Sandford and Wolf propose the
reserved or unused fields in packet headers for data hiding; we
adopt more specific approaches. The proposed data hiding
scenarios are more practical and robust since they are based on
redundancies and multiple interpretations of process strategies of
the Internet protocol. This makes the scenarios non-detectable to
various automated security mechanisms and intermediate nodes.
 This research also expands on the work presented in [4] as
concrete steganographic encoding and decoding techniques are
suggested for interoperability with network security mechanisms
such as firewalls and routers. The header fields we select for data
hiding are flexible for sending covert data without interfering with
standard network processes while being accessible to routers and
firewalls. In contrast, [4] suggests the use of the TCP sequence
number and acknowledgement number fields, which reflect the
number of bytes sent and acknowledged. These fields, we believe,
are therefore inflexible for covert data transfer.
 Overall, we attempt to provide improved data hiding
approaches based on several interesting papers in the area.
Moreover, we take into account, in part, the effect of the network
on the stego-network packet Sk, and provide novel applications
scenarios utilizing concepts proposed by Ackermann et al. [5].
Together, we hope to present a more complete picture of the data
hiding in computer networks. The remainder of the paper details
our proposed data hiding techniques.

2. PACKET HEADER MANIPULATION
 In designing our data hiding approaches, we consider functional
interfaces required in all IP implementations; a summary of these
interfaces is found in [6]. In this way, we avoid identifying covert
channels specific to particular TCP/IP software implementations,
which are not available for general use.
 The reader should note that the layered structure of networks
requires the IP datagram to encapsulate information received from
the transport layer. For example, IP headers encapsulate ICMP
messages and IGMP report and query messages. Covert channels
in the IPv4 header can, therefore also, be associated with those
identified in the TCP, ICMP or IGMP headers.
 We present two data hiding scenarios in this section. Each
technique makes use of redundancy in the representation of
information in the Internet Protocol for effective data hiding.

Figure 2. The IPv4 Header

2.1 Data Hiding Scenario 1
 A close study of [6] reveals that there exists redundancy in the
Internet Protocol’s fragmentation strategy. Figure 2 displays the
IPv4 header. The Flags field contains fragmentation information.
The first bit is reserved, the second is denoted DF (to represent
Do not Fragment), and the third is denoted MF (to represent More
Fragment). An un-fragmented datagram has all zero fragmentation
information (i.e. MF = 0 and 13-bit Fragment Offset = 0) which
gives rise to a redundancy condition, i.e. DF (Do not Fragment)
can carry either “0” or “1” subject to the knowledge of the
maximum size of the datagram. This aspect is exploited in Data
Hiding Scenario 1.
 Consider two workstations on the same network with users
Alice and Bob who have decided to have a covert communication
employing the protocol suite of the network. They are aware that
the network administrator is very security cautious and the
TCP/IP software is configured properly as per the security policy
of the organization. Alice and Bob have knowledge of the MTU
(maximum transmission unit) of their network and are aware of the
fragmentation strategy, which follows the standard design
considerations of IP [6].
 Based on the above explanation, it can be shown the datagrams
in Tables 1 and 2 bear the same meaning to the overt network
provided that Alice and Bob have the MTU information

beforehand. Thus, this redundancy leads to the possibility of
covert information through judicious selection of each
representation. Datagrams 1 and 2 sent by Alice can therefore
communicate “1” and “0” respectively to Bob. The constraint,
however, is that both parties require prior knowledge of the
MTU.

Table 1. Datagram 1 Covertly Communicating ‘1’

Datagram
1

16-bit Id.
field

3-bit flag
field

13-bit frag.
offset

16-bit
Total len.

1 XX…XX 0 1 0 00...00 472

Table 2. Datagram 2 Covertly Communicating ‘0’

Datagram
2

16-bit Id.
field

3-bit flag
field

13-bit frag.
offset

16-bit
Total len.

1 XX…XX 0 0 0 00...00 472

 To demonstrate how both datagrams are similar from the
perspective of a network, we note that Datagram 1 is of moderate
length, but fragmentation is not allowed since the DF bit is set.
Datagram 2 of the same length has the fragmentation bit unset, yet
fragmentation is not possible since it is below the value of the
MTU. Since Alice and Bob know the MTU of their network and
have agreed to send a datagram of size smaller than MTU there
will be no fragmentation. Details can be found in [8].

2.2 Data Hiding Scenario 2
 Data Hiding Scenario 2 involves the 16-bit identification field of
the IPv4 header shown in Figure 2, through chaotic mixing (toral
automorphism systems). This identification field carries a value
assigned by the sender to aid in assembling the fragments of a
datagram at the receiver. The only limitation on the identification
field by the fragmentation strategy is that it is unique for a specific
source-destination pair as long as the datagram is alive on the
Internet [6].

2.2.1 Toral Automorphism Systems
 Toral Automorphisms are strongly chaotic (mixing) systems [7]
that have found application in digital image watermarking. A two-
dimensional toral automorphism is a spatial transformation
applied to two-dimensional square planar regions. The main
mathematical structure in this process is a 2×2 matrix A,
consisting of constant elements representing the toral
automorphism mapping, of the form:

+1
11

kk

and constrained to have elements that belong to the set of positive
integers and a determinant of 1. The latter property ensures the
existence of the inverse automorphism represented by A-1, the
inverse matrix. The iterated application of A on a point r

(belonging to integer lattice L and having coordinates as x and y),
result in a dynamical system, that can be expressed as follows:

,....2,1,0),1(mod
1

==
+

n
n

Ar
n
r (2.1)

The dynamical system pertaining to the complete lattice L can be
obtained by having all the points on the lattice subjected to
iterated actions of the toral automorphism matrix, A. Therefore,
we can represent this as AN (k): L → L and

)(mod
1

11

1

1 N
n

y
n

x

kk
n

y
n

x

+

=
+

+ (2.2)

It can be shown that the transformed points obtained at each
iteration are statistically uncorrelated with each other and depend
on the parameters k and N where N is the dimension of the lattice
[9]. Moreover these dynamical systems are periodic in nature and
are therefore capable of returning to their initial state after a
specified number of iterations. The reader should note that the
transformation of all the points in the lattice takes place in such a
way that the lattice representing a digital image, for example,
appears as a completely deformed image having no visual relation
with the original image. The transformation, thus, has a random
nature if the parameters are unknown. This is useful for
scrambling as we will see in our application to data hiding in the
IPv4 header identification field.

2.2.2 Generation of Sequences
 Consider a two-dimensional diagonal integer-lattice (i.e., the
diagonal points are the only ones considered in the iterated
application of A). For our use, the size of the defined lattice is
represented by K to distinguish it as being a design variable
(instead of N which was fixed as described above) and is defined to
be the main key. This main key K determines the number of
elements in a generated sequence. The parameter k as shown in
(2.2) is defined as the sub-key in our scenario and affects the
period of the iterated transformation. It can be shown that given
the main key K, choosing a specific k generates a family of
sequences that can be generated through the repeated iterative
application of the toral automorphism [9]. The main and sub-
keys, dictate the number of possible unique sequences that can be
obtained (as the transformation is applied in succession) which we
term sorted sequences of the original sequence. We can select a
single unique sequence from the set of sorted sequences; this
selection takes place with the use of a third key (which is to the
number of times the toral automorphism is applied).
 Therefore, once the main key, the sub-key and the third key are
set, one can generate a specific sequence from an initial. To
summarize, the main key determines the number of elements in a
sequence, the sub-key the total number of possible unique
sequences generated through iterated application of the toral
automorphism, and the third key a specific sequence out of that

total number of sorted sequences obtained. Thus, given all three
keys one can map from an initial sequence to another sequence.

2.2.3 Scenario
 The strength of a data hiding scheme depends on its non-
detectability either by the administrator or by any automated
network-monitoring scheme; its identification field appears to be
perfectly “normal”. Chaotic mixing provides structured scrambling
and enables Alice and Bob to perform the following operations, in
line with the framework detailed in Section 3. Alice and Bob both
have prior knowledge all three secret keys discussed in the
previous section. For the purpose of demonstrating our scheme,
we let the data to be communicated covertly Ck be the capital
letters of the English language; this requires that the choice of K
and k be such that there are at least 26 elements in a sorted
sequence.

2.2.3.1 Alice’s End
 Alice performs the following operations to encode a covert data
symbol (i.e., letter of the alphabet):
1. Alice selects a specific sorted sequence from the keys: K and k

and the third key (which may be dynamic for every covert
symbol).

2. A look-up table is formed whereby each element of the sorted
sequence from Step 2 is matched up with each one of the capital
letters of the English language.

3. The resulting table is used to map each letter to an 8-bit binary
equivalent.

4. By appending another independent randomly generated 8 bits
to the result of the previous step, the 16-bit identification field
of IPv4 header is formed such that it is unique and compatible
for the IPv4 identification field.

2.2.3.2 Bob’s End
 To decode, Bob generates the look-up table with the
information of all the keys. By looking at the identification field
of the received packet, Bob can easily decipher the covert
information being sent by Alice.
 We present an example of the technique below. Suppose K=26
and k=1; the total number of sequences will be 42. Selecting
sequence number as 8, the following table provides information
regarding the identification field generation of IPv4 header:

Table 3. Generation of Identification Field

Alphabets Seq. for
8th iter.

Binary
Equ.

4-bit
Encoding

Ident.
field

A 1 0000 0001 01 0 1 X X
B 14 0000 1110 0 E 0 E X X
… … … … …
Y 6 0000 0110 0 6 0 6 X X
Z 19 0001 0011 1 3 1 3 X X

 Table 3 shows an example of identification field generation
based on the toral automorphism. The second column represents
the 8th sorted sequence of the possible 42 sorted sequences based
on K as 26 and k as 1. The third column represents the binary
equivalent of the second column. Consequently, the fourth column
expresses the binary equivalent in 4-bit form. The last column of
Table 1 represents the identification field value of the IPv4 header.
 Our method of using the identification field of the IPv4 header
through the generation of uncorrelated sequences does not require
that Alice and Bob to be on the same network; they could
communicate across the Internet as well. The randomness in the
identification field values makes this scheme non-detectable
against the detection of secret data through packet filtering and
stateful inspection type firewalls. The covert data is scrambled in
an efficient way, so that statistical cryptanalysis and traffic
analysis cannot, in general, be easily automated to decipher the
information.

2.3 Potential Applications
 Associating supplementary information sent via covert
mechanisms employing packet header manipulation algorithms
find the following application scenarios:
1. Enhanced filtering criteria in packet filtering routers (firewalls).

If the additional information pertains to a user or an application,
a more reinforced filtering policy can be defined.

2. A client server architecture wherein several clients make a
request to the FTP server, say of a library. A log file can be
maintained, for audit purposes, based on the requests sent by
various users. Moreover, serving the request by transferring a
digital image to the user, say, can have the same user
information or library information tied to the content packets.
This scenario of tags tied to the content can allow for audit.

3. A logging process for the above application scenario based on
the user or application specific-information completes the
picture (i.e. logging of valid user), maintaining the record of user
requests based on user information and ultimately serving the
user requests by having either the user information or the server
/ source (library) information tied to the content packets to
avoid unlawful use such as copyright violation.

4. Adding value to content delivery networks. A content delivery
network is an overlay network to the public Internet or private
networks, built specifically for the high performance delivery of
content. Use of supplementary covert data adds intelligence to
networking wherein the network makes path decisions based on
more than simple labels such as IP address.

3. DATA HIDING BY PACKET SORTING
 In this section, we describe, in general terms, the use of packet
ordering for covert communication. There are n! ways in which to
arrange a set of n objects. If the order of these objects is not of
concern, then there is an opportunity through judicious selection
of an arrangement of the n objects to covertly communicate a

maximum of log2(n!) bits. For a set of n=25 objects, for instance,
83.7 bits can be communicated. The capacity of data hiding
increases dramatically for large n.
 Applying this principle to our framework, we consider data
hiding through network packet ordering. Modifying the order of
packets requires no change of the packet content (i.e., the payload
and the headers are not affected). Therefore, no major
modifications are expected either in the protocol definition, design,
or in the overall system. Based on these advantages, the
feasibility of data hiding using packet sorting within the TCP/IP
protocol suite is explored.
 The packet sorting and resorting processes require a reference in
order to relate packet numbers to their actual semantic order. The
natural packet ordering of the cover-network packet sequence is
needed so that the stego-network packet sequence ordering
(sorting) can be undone (resorting) to extract out the covert and
overt information within the packets, which we assume to be of
use. The 32-bit sequence number field of the authentication header
(AH) and encapsulating security payload (ESP) in the IPSec
protocol provides information on natural ordering of the packet
stream and is, therefore, utilized for data hiding. The primary
objective of the identification field is to detect replay attacks and
is, therefore, directly related to packet numbers and ordering.
 Unlike the packet header manipulation approach, the cover
object is a sequence of network packets {Pk} to embed one covert
message symbol rather than a single packet Pk. The stego-
algorithm sorts the original cover-network packet sequence
resulting in the generation of “sorted” packets having the sorted
sequence numbers in their headers. The stego-network packet
sequence {Sk} may pass through one or more intermediate
network nodes in order to reach Bob. Since the network cannot
guarantee proper sequencing for packet delivery, the transmission
process is modeled as a non-ideal channel characterized by the
position error(s) imposed by the practical network behavior.

3.1 Sorting and Resorting Algorithm
 A block diagram of the embedding and detection processes is
shown in Figure 3 in which we see that Alice and Bob both
implement IPSec. We, once again, borrow the concept of toral
automorphism, to aid in our data hiding scenario. The sorting (i.e.,
embedding) and resorting (i.e., detection) algorithms are described
below. Alice and Bob are both assumed to share a secret
symmetric key prior to covert transmission consisting of the main
key and sub-key as previously described. In contrast to the header
manipulation scheme, the third key is the actual covert data sent
and, therefore, only selected by Alice, and estimated by Bob.

3.1.1 Alice’s End
1. Alice uses the three keys in order to generate the stego-network

packet sequence (i.e., sorted sequence) from her end; the three
keys uniquely determine the toral automorphism transformation
as well as the number of times it is applied to the original order
of the cover-network packet sequence to generate the sorted

stego-network packet sequence. The main key K is from the set
of positive integers and determines the number of elements in
the sequence to be sorted. The sub-key k is a parameter of the
toral automorphism matrix A detailed in [9].

a) Alice takes the covert data to be transmitted Ck and sets it as
the third key which denotes the number of times A is applied
to determine the particular stego-network packet sequence.

2. Alice physically assigns new-sorted sequence numbers to the
data packets and transmits them.

3.1.2 Network Behavior
In an ideal network there is no physical change in order that
packets are received; this is called a what-is-sent-is-what-is-
received (WISIWIR) environment. However, a real network
results in out of order delivery of packets, which is analyzed later
in this paper.

3.1.3 Bob’s End
1. Based on the knowledge of K and k knowledge, Bob generates

all the possible valid sequences.
2. From the received sequence, Bob estimates the closest possible

valid sequence transmitted (i.e., the third key in the toral
automorphism process) to determine Ck*.

In the remainder of Section 3, we detail our embedding process
under a WISIWIR environment. In Section 4, we relax this
condition for more practical networks.

3.2 Algorithm Details
 The embedding process takes a original packet sequence, O, as
its input and is expressed as:

KXXXXO321= Equation 3.1.

where K is the main key and iX , for i = 1, 2, 3, 4,….,K ,
represents the ith packet of the packet sequence to produce the
sorted packet sequence S. Referring to the periodic nature of toral
automorphism systems [10], we know that after a specific number
of iterations, N, all the points in integer lattice come back to their
initial locations. The total number of unique sequences is
represented as:

)(),....,3(),2(),1(NSSSSP = Equation 3.2

Figure 3. The block diagram of sorting and resorting process

where P is the set of possible sorted sequences generated from the
chaotic sequence structure and S(i) is the ith valid sequence. The
reader should note that the chaotic mixing structure does not
generate all possible permutations of the set of K packets and
hence N ≠ K!. To transmit a covert symbol, we effectively select
the appropriate sequence from the set P.
The sorted packet sequence, as a result of chaotic mixing process,
is therefore:

KXXXXiS ′′′′=)(321 Equation 3.3

where S(i)∈ P and i = 1, 2,….,N. Here jX ′ , for j = 1, 2, 3, 4…K,
represents the jth packet of the packet sequence. For packet
sequences having more than K packets in their sequence, the
sorting process follows [11]:

KxxOKMXS xKM ≤+−=′ +−);()1()()1(Equation 3.4

Here M represents the multiple of K, therefore if the packet lies
within the first multiple of K, then M would be 1 and likewise 2
for second multiple and so on, and O(x) represents the original
sequence packet either equal to or less than the main key K. The
received sorted sequence, R can be expressed as:

KXXXXR ′′′′′′′′=321 Equation 3.5
At Bob’s end, given K and k the received sequence, R passes
through the resorting process to decipher the covert information,
Ck. For WISIWIR, the received sequence can be perfectly
estimated to be Ck. For the packet sequences having packets more
than K, the resorting process follows [10]:

KxKMXOKMXR xKMxKM ≤−−′′+−=′′ +−+−);)1(()1()()1()1(

Equation 3.6

4. Best Sequence Estimation in Resorting
 In this section we relax our WISIWIR assumption. There is no
guarantee that packets take specific routes. The Internet layer
offers best effort connectionless delivery mechanism [6] and hence
treats every packet individually. Packets thus experience varying
levels of latency as they progress through the network.
Given this non-ideal nature of overt communication channel, we
model the network behavior of introducing position errors (PEs) in
a sequence of packets at the network layer. Internet packet
dynamics are studied and analyzed in [11] and [12]. Paxson’s
work [11] involves a number of sites that ran special measurement
daemons to estimate of various network parameters including out
of order packet delivery. The analysis established the following
characteristics of out of order receipt of packets:
§ Out of order delivery is fairly prevalent in the Internet.
§ Overall, 2% of all the first run data packets and 0.6% of the

ACKs arrived out of order, whereas for the second run the
percentages are 0.3% and 0.1% respectively.
§ Reordering only rarely has significant impact on TCP

performance since generally the scale of reordering is just a few

packets. Reordering some times occurs in groups as large as
dozens of packets, it usually involves only one or two packets.

Based on Paxson’s findings [11], we focus on small scale
reordering to model our non-ideal covert channel. We consider
small scale reordering to be in the order of two, three or four
position errors. Taking this into account, our covert data
estimation process attempts to map the received sequence to an
appropriate sent sequence. This process is inspired by [13] and
detailed in the next section.

4.1 The Longest Subsequence (LSS) Method
 To estimate the covert data the received sequence xR ′′ is
compared to each possible candidate sent sequence xiS)(′ .
 The longest subsequence (LSS) method consists of the following
steps (the reader is referred to Ref. [8] for further details):
1. Compute the number of position errors (PEs) between the

received and candidate sent sequence. We do a point-wise
subtraction of each packet number between the received and
candidate sent sequence. Through this subtraction, we identify
locations where the position difference is zero (i.e., the packet
locations match up for the two sequences). The number of PEs
is obtained by subtracting number of zeros from the main key
value, K.

2. If the PE is less than or equal to a threshold (depending on the
assumed network behavior), then proceed. Otherwise term the
candidate an impossible sequence.

3. Subject the received sequence to a right shift absolute
subtraction (RSAS) [8]. Step 1 is repeated.

4. Truncate the last packet of the sent sequence and the first
packet of the received sequence. Perform RSAS and identify
and count the number of zeros.

5. Repeat Step 4 by continuing to shift until the first packet of the
sent sequence undergoes RSAS with the last packet of the
received sequence. For each one of these steps, identify and
count the number of zeros (i.e., the number of places the
positions of the received and candidate sequences match up).

6. Count the total number of zeros resulting from Steps 3 to 5.
7. Determine a resultant subsequence from the positions in the

sequences where zeros are identified using the process identified
in [8].

8. If the resultant subsequence conforms to both the received and
candidate sequences then the subsequence is termed the best
estimate sequence.

9. Otherwise the received sequence undergoes RSAS one more
time. Subtract one from the total number of resulting zeros from
this Step 6.

10. Repeat Steps 3 to 7 until the number of zeros in every step is
counted, added to the previous and becomes equal to the
resultant number of zero as worked out in Step 9.

11. Determine the corresponding resultant subsequence as in Step
7.

12. If the resultant subsequence does not conform in both the
received and candidate sequences, then the received sequence is
classified as an error sequence.

13. Otherwise it is termed a longest subsequence specific to the
received candidate sequence pair.

 The process is conducted for all candidates sent sequences. For
each of the longest subsequences, the one having greatest number
of zeros is termed the longest subsequence which provides an
estimate of the transmitted sequence and hence the covert data. An
error condition may arise when two longest subsequences have
equal number of zeros. Once again, due to space limitations, the
reader is referred to Ref. [8] for a more comprehensive description.
Our goal in this paper is to provide a succinct description of the
process.

4.2 Simulation and Testing
 The process is simulated for different values of K ranging from
4 to 8 (inclusive), and k=1. The results are also valid for packet
sequences that are multiples of these main key sizes. A practical
communication network causing 3 to 6 (inclusive) position errors
is simulated.
 To provide an exhaustive and conservative measure of the
success of our scheme in a practical network, we look at the
decoding error rates of the covert data for all possible received
packet sequences; thus, for a set of n packets, we identify the
error rates for all n! possible permutations. This can be shown to
provide an upper-bound on the error rates for standard network
behavior.
 For example, a 4-packet sequence has 24 permutations. Each
one of the 24 permutations is treated as a received sequence. Each
one of these received sequences then undergoes the RSAS process
with each one of the 2 possible valid sequences sent (for K=4 and
k=1, there will be only 2 sorted sequences and, hence, one bit of
covert data can be sent). The best estimate process as detailed in
Section 4 is then applied to decode the covert data.
 From covert communication perspective, we would like to
correctly decode the covert data. Naturally, impossible sequences
are not considered and errors are not required. The dominance of
these ignored sequences reduces the number of sequences mapped
into one of the other three received sequence categories. The
mapping of the received sequence to either an evident sequence or
as LSS based best estimate sequence is therefore highly desirable
for parties involved in covert communication. As per the
framework detailed in Section 2, the non-ideal behavior of the
network is considered in the form of introducing position errors
(PEs) in the packet sequences. For each one of the position error
scenarios considered (3 position error to 6 position error), the
simulations show the availability of the desirable categories in
percentages. Moreover simulations also point out which sent
sequence is most likely to be mapped at the receiving end. Table 4
shows that sequence 3, S(3), is most likely to be mapped.
 The remaining position error scenarios as resulted from
simulations are analyzed in the same way.

4.2.1 Mixed Network Behavior
 Assuming network as making mixed position errors randomly,
Table 5 shows that the percentage of those received sequences
which would be mapped to the same valid sequence is quite
significant i.e. 42% for 4-packet sequences (2 and 3 PEs) and 35%
for 5-packet sequences (3 and 4 PEs).

 Overall, as detailed in Ref. [8] and summarized in this paper,
the simulations suggest that the use of packet sorting is
potentially viable for data hiding in computer networks.

4.3 Usage Scenarios
 The data hiding process employing the packet sorting technique
in the IP Sec environment finds following applications:
1. Preliminary (added) authentication in the IP Sec environment.
2. A mechanism to facilitate enhanced anti-traffic analysis by

having packets with sorted sequence numbers.
3. Enhanced security mechanisms for IP Sec protocols; ESP

operating in tunnel mode, which enables enriched security for
virtual private networks (VPNs).

The details of these scenarios will be a topic of another paper.

5. Conclusions
 This paper presents two practical data hiding approaches in the
TCP/IP protocol suite. The techniques look at IPv4 header
manipulation and packet ordering in an IP Sec environment to pass
supplementary information through covert channels.

 We demonstrate how IPv4 header manipulation can be used to
pass supplementary information over the Internet. We present
two practical data hiding techniques for TCP/IP based on
fragmentation strategies and the identification field; the
identification field value is independent of the fragmentation
strategy in the Internet Protocol, making both takes jointly viable.
The existence of these covert channels may be useful in enhancing
several basic network functions such as router filtering, auditing
and logging processes.

 We have also presented a practical algorithm for packet sorting
and resorting based on toral automorphisms. Our development is
ad hoc in order to provide a proof-of-concept regarding the
viability of using packet sorting in practical networks. Future
work will look at formal development of a theory for packet
sorting using coding strategies taking into account a position error
model of the network behavior to guarantee optimal covert
communication capacity.

6. REFERENCES

[1] “Department of defence trusted computer system evaluation
criteria,” Tech. Rep.DOD 5200.28-ST, Department of
Defence, December 1985. Supersedes CSC-STD-001-83.

[2] T. Handel and M.Sandford., “Hiding data in the OSI network
model,” (Cambridge, U.K.), First International Workshop on
Information Hiding, May-June 1996.

[3] M. Wolf, “Covert channels in LAN protocols,” Proceedings
of the Workshop on Local Area Network Security
(LANSEC’89), pp. 91 – 102, 1989.

[4] C. H. Rowland, “Covert channels in the TCP/IP protocol
suite,” Tech. Rep. 5, First Monday, Peer Reviewed Journal
on the Internet, July 1997.

[5] R. Ackermann, U. Roedig, M. Zink, C. Griwodz, and R.
Steinmetz, “Associating network flows with user and
application information,” Eight ACM International
Multimedia Conference, Los Angeles, California, 2000.

[6] U. S. C. Information Sciences Institute, “Internet protocol,
darpa internet program , protocol specification,” September
1981. Specification prepared for Defense Advanced Research
Projects Agency.

[7] D. Arrowsmith and C. M. Place, An Introduction to
Dynamical Systems. Cambridge University Press, 1990.

[8] K. Ahsan, Covert Channel Analysis and Data Hiding in
TCP/IP, M.A.Sc. thesis, Dept. of Electrical and Computer
Engineering, University of Toronto, August 2002.

[9] I. Pitas and G. Voyatzis, “Chaotic mixing of digital images
and applications to watermarking,” in European Conference
on Multimedia Applications Services and Techniques
(EMAST’ 96), vol. 2, pp. 687–695, 1996.

[10] T.Shiroshita, O. Takahashi, and M. Yamashita, “Integrating
layered security into reliable multicast,” in IEEE Third

International Workshop on Protocols for Multimedia
Systems, 1996.

[11] V. Paxson, “End-to-end internet packet dynamics,” in
IEEE/ACM Transactions on Networking, vol. 7(3), pp. 277–
292, 1999.

[12] D. J.Mogul, “Observing TCP dynamics in real networks,” in
SIGCOMM ’92, pp. 305–317, August 1992.

[13] D. I. Pullin, R. Manderville, and A. Corlett, “On the packet
ordering problem,”. Presented to the IPPM working group in
the 51st IETF meeting in London, U.K. , August 2001.

Table 4. K= 6 (imprvd.); S(4); Network Behavior: 3 PE or less

Table 5. Mixed Behavior of Network

Recvd.
Sequence
Category

Seq. 1
S(1)

Seq. 2
S(2)

Seq. 3
S(3)

Seq.4
S(4)

Total

Impossible - - - - 541
Error - - - - 15

Evident 33 36 40 34 143
Best

Estimate
5 5 4 7 21

Total 38 41 44 41 720

Main Key
(packet

sequences)

Mixed
Position
Errors

Common
Sequences

%age of
Common

Sequences
4-packet 2 and 3 PEs 10 42%
5-packet 3 and 4 PEs 42 35%

