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Abstract

The differential Mueller matrix expresses the local action of an optical medium on the evolution of

a propagating electromagnetic field, including partially coherent and partially polarized waves.

Here, we present a derivation of the differential Mueller matrix from the canonical form of Type I

Mueller matrices without making use of the exponential generators of uniform media. We

demonstrate how to practically obtain this parameterization numerically using an eigenvalue

decomposition and find validity criteria to ensure that the matrix satisfies the constraints of a

physical system. This provides a convenient tool-set to investigate depolarization effects and

extends previous treatments of the differential Mueller matrix formalism.

The Stokes-Mueller formalism governs the propagation of coherent as well as partially

coherent and partially polarized paraxial waves. Azzam first introduced the differential

formalism for Mueller matrices in 1978 [1], relating the local change of the four-element

Stokes vector S along the propagation direction to the 4×4 differential, or local, Mueller

matrix m:

(1)

The deterministic case of retardation and diattenuation is well understood [1]. The extension

of this formalism to include depolarization effects, however, has attracted recent interest:

Ortega-Quijano et al. provided a detailed eigen-analysis of the matrices M and m [2], and

later derived m with an analogy to group theory [3]. Ossikovski first discussed the

constraints that a differential Mueller matrix m must fulfill when corresponding to a

physically valid Mueller matrix [4], without, however, providing criteria that would be

simple to verify. Germer [5] proposed a parameterization for m, that was later shown by

Devlaminck to not correctly account for the physicality in all situations [6]. Devlaminck

proposed an alternative parameterization, restricted to diagonal depolarizing matrices, and
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then extended to a more general situation [7]. The same author recently also provided an

interesting model for the physical interpretation of depolarization media [8], and together

with Ossikovski, a general criterion for the physical realizability [9]. Still, a simple and

practical way to obtain the parameterization of a general m has been missing.

Here, we derive the differential Mueller matrix directly from the canonical decomposition of

Mueller matrices, introduced by Rao et al. [10], and completed by Simon [11]. We confirm

the validity criteria of Devlaminck et al. [6] and obtain a parameterization that can be easily

performed numerically and offers insight into the depolarization mechanism. Restricting our

analysis to the case of diagonalizable Mueller matrices (i.e. type I according to Rao [10]),

which represent the majority of experimental Mueller matrices, we can express a Mueller

matrix M in its canonical form

(2)

where L1,2 ∈ SO(3,1) and K = diag(K0, K1, K2, K3) is a diagonal matrix, with K0 ≥ max(|

K1|, |K2|, |K3|) and subject to the constraints

(3)

The first element of diagonal matrix K is positive and exceeds the norm of all other

elements. The remaining elements do not have to be ordered, but it is always possible to find

a permutation of L1,2 to do so.

As discussed by Ortega-Quijano [3], an element of SO(3,1) corresponds to a non-

depolarizing, i.e. deterministic, Mueller matrix acting as a combination of a retarder and a

diattenuator. By definition det(L) = 1, which excludes any attenuation from L and can result

in a transmission exceeding unity. L further has the important property LT·G·L = G,

where T denotes the transpose and G = diag(1, −1, −1, −1) is the Minkowski matrix.

Through Eq. (1), the differential Mueller matrix is defined as m = (dM/dz)·M−1, and taking

the derivative of Eq. (2) one finds

(4)

In the limit z → 0, indicated by a sub-index 0, the vanishing layer described by M(z) has no

more effect and one finds M0 = I, and accordingly K0 = I as well as L20 = L10
−1 and

(5)

The first two terms are identical to dL/dz where L = L2·L1. Although L0 = I, the derivative

dL0/dz is generally not zero and defines the deterministic part of the differential Mueller
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matrix with the well-known 6 parameters corresponding to retardation (τ1, τ2, τ3) and

diattenuation (τ4, τ5, τ6). This can be verified by employing the derivatives of LT·G·L = G
and using L0 = I to find that dL0/dz = −G·dL0

T/dz·G, in accordance with the symmetry

properties of mdet = −G·mdet
T·G, which contains the Minkowski symmetric components of

m, as discussed by Ossikovski [4].

Because G·L2 = (L2
T)−1·G, and G·dK/dz·G = dK/dz, the third term defines the depolarizing

differential Mueller matrix, with the symmetry property mdep = G·mdep
T·G, containing the

Minkowski antisymmetric components of m [4]. mdep defines the additional 10 parameters,

including the overall attenuation, to complete the familiar symmetric and antisymmetric 16

parameters of the complete differential Mueller matrix:

(6)

The differential Mueller matrix mdep is then of the form

(7)

where L ∈ SO(3,1) and D = diag(D0, D1, D2, D3) is defined through the derivate of the

diagonal matrix K. It is always possible to separate a general M into two consecutive

elements and perform the limit z → 0 on the second term, whereas the first term drops out

from the computation of m. Taking the limit z → 0 thus does not limit the generality of this

formalism. Eq. (7) was further obtained without any assumptions on the uniformity of the

medium and without the use of exponential generators. It is a generalization of previous

results [6], and is valid as long as M is a continuous function of z that verifies Eq. (3) at each

depth and has defined derivatives.

Next, in order to verify under which conditions m is a physically valid differential matrix,

we recall the original derivation of m according to Azzam [1]:

(8)

Accordingly, the matrix M(Δz) = I + Δz m has to be a physically valid Mueller matrix for

sufficiently small Δz. Following Rao [10] and Simon [11], the N-matrix N = MT·G·M of a

Mueller matrix M allows to find the positive semi-definite matrix G·N = L1·K·K·L1
−1, with

K subject to Eq. (2) for physically valid M. Applied to M(Δz) and limiting the analysis to

the first order in Δz :

(9)

The deterministic component mdet is not subject to any constraints and is eliminated from

Eq. (9). But the matrix D from mdep = L·D·L−1 has to match I + 2ΔzD = K·K.
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Approximating (1 + 2ΔzDn)1/2 ≈ 1 + ΔzDn we retrieve K, which is subject to the constraints

from Eq. (3).

Because Δz is small, the presence of the identity matrix ensures the first constraint on K for

any D. For the remaining three constraints it is convenient to express

 to obtain the conditions

(10)

This result confirms the criteria evoked by Devlaminck et al. [6], but was derived for the

general case of an arbitrary differential matrix m and is tied directly to the validity criteria of

a Mueller matrix M. Geometrically speaking, the vector , originating from the

point [1, 1, 1]T has to point inside the tetrahedron that forms the validity bound on the

elements of K [11]. Following Devlaminck et al. [6], it is also possible to parameterize D =

D0I − diag(0, d2+d3, d1+d3, d1+d2), in which case the criteria of Eq. (10) translate to d1,2,3 ≥

0. D0 defines the attenuation of the medium and for a passive system D0 ≤ 0.

In order to practically verify the criteria from Eq. (10), a convenient way to obtain the

parameterization of Eq. (7) is needed. A candidate matrix m is first separated into its

deterministic mdet = (m−G·mT·G)/2 and depolarizing part mdep = (m+G·mT·G)/2. It is

helpful to decompose the SO(3,1) matrix L of Eq. (7) into the sequence of a retarder and a

diattenuator L = LD·LR, with

(11)

where a is a normalized vector, and a a scalar, related to the diattenuation d of the

diattenuator LD by d = tanh a. R is an SO(3) rotation matrix, defined by a rotation axis r and

a rotation angle r.

Next, we note that Eq. (7) is simply an eigenvalue decomposition of mdep, where the

eigenvectors correspond to the scaled columns of an element of SO(3,1). It is thus clear that

for a valid mdep all its eigenvalues have to be real-valued and because of LT·G·L = G only

one eigenvector v features a positive Minkowski-norm vT·G·v. This eigenvector identifies

the only physically possible Stokes vector that is mapped onto itself by mdep. Observing

now that

(12)

where X = R·diag(D1, D2, D3)·RT, it becomes obvious that this eigenvector is given by the

first column-vector of LD times D0:
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(13)

This vector is completely depolarized by the inverse of LD and bypasses the effects of LR

and  to then be re-polarized by the first column of LD. Diagonalizing a candidate

matrix mdep = P·Λ·P−1 and dividing the only eigenvector with a positive Minkowski-norm

by the square root of this norm provides the first column vector of LD, from where the entire

matrix LD is recovered according to Eq. (11). Left-multiplying the (permuted) eigenvector

matrix with LD
−1 then provides the rotation matrix LR = Ld

−1·P. To ensure det(LR) = 1, it

might be necessary to permute the order of the last three eigenvalues/eigenvectors, which

leaves four possible permutations. By convention, the permutation resulting in the smallest

retardation of LR was chosen. Given a matrix mdep, it is thus possible to obtain its L·D·L−1

decomposition, and directly verify the positivity of d1,2,3 and hence its validity.

Applied to the experimental values used as an example by Germer (Eq. (19) of [5]), this

results in the following decomposition

(14)

To obtain more insight into the effect of the involved parameters, it is interesting to express

the change of the degree of polarization (DOP) with depth dDOP/dz, caused by a differential

depolarizing matrix acting on an input state S = I[1, DOP sT]. The input Stokes vector is

decomposed into intensity I and normalized Q,U,V components s, scaled by the DOP which

is obtained from DOP = (1−(ST·G·S)/I2)1/2. For the derivative:

(15)

Fig. 1 displays dDOP/dz as well as the angle φ that the Q,U,V components of dS = mdep·S
extend with s as a function of the elevation and azimuth of s on the Poincare-sphere and for

a DOP = 0.42. Figs. 1(a) and 1(b) correspond to a matrix mdep in the special situation where

a = 0 and LD = I, without attenuation, and randomly generated rr = [0.2627; −0.0045;

0.456]T and d1,2,3 = [1.2925, 0.8695, 0.1671]T. In this case mdep simplifies to:

(16)

and any input aligned along s experiences the same amount of depolarization as −s. 

define distinct depolarization coefficients along the principle axes defined by the columns of
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R. The principle axes are indicated in Fig. (1) by green markers, with a square shape for the

positive direction, and a circle for the negative direction. The size of the markers is

decreasing in accordance with the effective absolute principle value . In this example all

dDOP/dz values are negative, leading to an increasing depolarization, and the largest

depolarization is achieved along the principle value . The other two principle

axes feature the minimum depolarization and a saddle-point. Along all these axes, the Q,U,V

components of dS are parallel to the original S and besides the depolarizing effect do not

alter the polarization state. Any other polarization state changes the orientation of its

polarized component s upon propagation.

The general case of a ≠ 0 can be expressed as a superposition of this first case and an

additional term:

(17)

The first term defines the same symmetric depolarization as observed in Figs. 1(a) and 1(b),

whereas the second term breaks this symmetry. As previously observed, the first column of

LD is an eigenvector of the system that represents a physically admissible Stokes vector,

oriented along s = a, with a DOP = tanh a. The second term cancels the depolarization of the

first term for this particular input polarization state, and it is only subject to the attenuation

D0, without otherwise changing the orientation of s or its DOP. The opposite vector −s,

however, is subject, in general, to both depolarization and re-orientation. The vector a thus

breaks the symmetry of the first term by defining a privileged polarization direction along

which the depolarization cancels out completely for a given input DOP.

Figs. 1(c) and 1(d) display the general effect of mdep for identical rr and d1,2,3 as before, and

with an additional aa = [0.3173; −0.1003; −0.0979]T, resulting in an eigenstate DOP =

0.334. The asymmetry is evident, and forces the orientation of the Q,U,V components of dS
parallel to s for the input state s = a, which is indicated by the gray square. The opposite

direction −a, marked by the gray circle, does not carry any special feature.

Fig. 2 shows dDOP/dz along the principle directions defined by the columns of R as well as

a. In the symmetric first case, the depolarization is proportional to the input DOP, identical

for negative and positive s, and depolarizing for all possible input states. The general case is

more involved, and also renders the other axes asymmetric. The maximum and minimum

depolarizations occur along directions that do not result in simple analytical expressions.

And for DOP ≤ tanh a, mdep acts as a polarizer, for appropriately oriented input states. In the

special case when a aligns with one of the columns of R, then the maximum and minimum

depolarization directions become coincident with +a and −a respectively. In this special
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case, the vector n aligns in parallel to the vector a and the expression Eq. (17) simplifies

significantly:

(18)

where  corresponds to the column of R with which a aligns.

However, all polarization states except the eigenvector [cosh a, aTsinh a]T or any

polarization state aligned with the columns of R in the trivial case, are subject not only to

depolarization but also a change of their polarized component. This precludes a trivial result

of the propagation through a uniform medium for all but these polarization preserving

state(s). This stresses the importance and effect of the parameter vector a.

Returning to the analysis of the experimental data of Eq. (14), a negligible a was found,

indicating that the medium principally acts as a symmetric depolarizer. The small value of rr
further demonstrates that the eigenstates of the medium were well aligned with the

laboratory frame.

In conclusion, we have presented a parameterization of the differential Mueller matrix

following the canonical decomposition of a Mueller matrix of type I of Rao et al. [10]. This

parameterization can be directly obtained numerically from a simple eigenvalue-

decomposition and offers an interesting separation into two depolarization mechanisms: one

acting symmetrically on polarization states that are opposite to each other on the Poincare

sphere, whereas the other effect lacks this symmetry and can cause a polarizing effect on an

input state aligned along a specific direction while depolarizing its opposite state. Based on

this derivation, we were able to formulate criteria for the physical validity of a differential

Mueller matrix in the most general case of a continuous medium, which constrain three of

the 16 parameters of a differential Mueller matrix.
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Fig 1.
Variation of the DOP with depth dDOP/dz, ((a), (c)) and angle φ between input and

differential Stokes vector ((b), (d)) for a symmetric ((a),(b)) and a general ((c),(d)) mdep. The

symmetric case has identical effect on Stokes vectors opposite from each other on the

Poincare sphere, whereas the general case displays a strong asymmetry, sparing input

polarizations aligned along the specific direction defined by the parametric vector a, but

depolarizing inputs along −a (See text for details).
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Fig 2.
dDOP/dz for the symmetric (a) and the general (b) case, evaluated along the principle

directions (rn indicates the n-th column of the rotation matrix R). In the symmetric case, the

depolarization depends linearly on the input DOP. The general case polarizes inputs aligned

close to a for a DOP ≤ tanh a and has unequal effect on opposite polarization states.
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