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Decoy states have recently been proposed as a useful method for substantially improving the performance of
quantum key distribution �QKD�. Here, we present a general theory of the decoy state protocol based on only
two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy
states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states—
the vacuum and a weak decoy state—asymptotically approaches the theoretical limit of the most general type
of decoy state protocol �with an infinite number of decoy states�. We also present a one-decoy-state protocol.
Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long-
distance �larger than 100 km� QKD, our two-decoy-state protocol can be implemented with only a few hours
of experimental data. In conclusion, decoy state quantum key distribution is highly practical.
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I. INTRODUCTION

The goal of quantum key distribution �QKD� �1� is to
allow two distant parties Alice and Bob to share a common
string of secret data �known as the key�, in the presence of an
eavesdropper Eve. Unlike conventional cryptography, QKD
promises perfect security based on the fundamental laws of
physics. Proving the unconditional security of QKD is a hard
problem. Fortunately, this problem has recently been solved
�2,3�. See also �4�. Experimental QKD has been successfully
demonstrated over 100 km of commercial Telecom fibers
�5,6� and commercial QKD systems are already on the mar-
ket. The most important question of QKD is its security.
Real-life QKD systems are often based on attenuated laser
pulses �i.e., weak coherent states�, which occasionally give
out more than one photon. This opens up the possibility of
sophisticated eavesdropping attacks such as a photon number
splitting attack, where Eve stops all single-photon signals
and splits multiphoton signals, keeping one copy herself and
resending the rest to Bob. The security of practical QKD
systems has previously been discussed in �7�.

Hwang �8� proposed the decoy state method as an impor-
tant weapon to combat such a sophisticated attack: by pre-
paring and testing the transmission properties of some decoy
states, Alice and Bob are in a much better position to catch
an eavesdropper. Hwang specifically proposed to use a decoy
state with an average number of photons of order 1. Hwang’s
idea was highly innovative. However, his security analysis
was heuristic.

In �9�, we presented a rigorous security analysis of the
decoy state idea. More specifically, we combined the idea of
the entanglement distillation approach by Gottesman, Lo,
Lutkenhaus, and Preskill �GLLP� �7� with the decoy method
and achieved a formula for key generation rate:

R � q�− Q� f�E��H2�E�� + Q1�1 − H2�e1��� , �1�

where q depends on the implementation �1/2 for the
Bennett-Brassard 1984 �BB84� protocol due to the fact that
half of the time Alice and Bob disagree with the bases, and if
one uses the efficient BB84 protocol �10�, q�1�, the sub-

script � denotes the intensity of signal states, Q� is the gain
�11� of signal states, E� is the overall quantum bit error rate
�QBER�, Q1 is the gain of single-photon states, e1 is the error
rate of single-photon states, f�x� is the bidirectional error
correction efficiency �see, for example, �12�� as a function of
error rate, normally f�x��1 with Shannon limit f�x�=1, and
H2�x� is the binary Shannon information function, given by

H2�x� = − x log2�x� − �1 − x�log2�1 − x� .

Four key variables are needed in Eq. �1�. Q� and E� can
be measured directly from the experiment. Therefore, in the
paper �9�, we showed rigorously how one can, by using the
decoy state idea to estimate Q1 and e1, thus achieve the un-
conditional security of QKD with the key generation rate
given by Eq. �1�. Moreover, using the experimental param-
eters from a particular QKD experiment �that of Gobby,
Yuan, and Shields �GYS�� �5�, we showed that decoy state
QKD can be secure over 140 km of Telecom fibers. In sum-
mary, we showed clearly that the decoy state can indeed
substantially increase both the distance and the key genera-
tion rate of QKD.

For practical implementations, we also emphasized that
only a few decoy states will be sufficient �9�. This is so
because contributions from states with large photon numbers
are negligible in comparison with those from small photon
numbers. In particular, we proposed a vacuum+weak decoy
state protocol. That is to say, there are two decoy states—a
vacuum and a weak decoy state. Moreover, the signal state is
chosen to be of order 1 photon on average. The vacuum state
is particularly useful for estimating the background detection
rate. Intuitively, a weak decoy state allows us to lower-bound
Q1 and upper-bound e1.

Subsequently, the security of our vacuum+weak decoy
state protocol has been analyzed by Wang �13�. Let us denote
the intensities of the signal state and the nontrivial decoy
state by � and ��, respectively. Wang derived a useful upper
bound for �:
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� �
�

�� − �
� �e−�Q��

��e−��Q�

− 1	 +
�e−�Y0

��Q�

, �2�

where � is the proportion of “tagged” states in the sifted key
as defined by GLLP �7�. Whereas we �9� considered a strong
version of the GLLP result noted in Eq. �1�, Wang proposed
to use a weak version of the GLLP result:

R � qQ�
− H2�E�� + �1 − ���1 − H2� E�

1 − �
	� . �3�

Such a weak version of the GLLP result does not require an
estimation of e1. So it has the advantage that the estimation
process is simple. However, it leads to lower values of the
key generation rates and distances. The issue of statistical
fluctuations in decoy state QKD was also mentioned in �13�.

Our observation �9� that only a few decoy states are suf-
ficient for practical implementations has been studied further
and confirmed in a recent paper �14�.

The main goal of this paper is to analyze the security of a
rather general class of two-decoy-state protocols with two
weak decoy states and one signal state. Our main contribu-
tions are as follows. First, we derive a general theory for a
decoy state protocol with two weak decoy states. Whereas
Wang �13� considered only our vacuum+weak decoy state
protocol �9� �i.e., a protocol with two decoy states—the
vacuum and a weak coherent state�, our analysis here is more
general. Our decoy method applies even when both decoy
states are nonvacuum. Note that, in practice, it may be diffi-
cult to prepare a vacuum decoy state. For instance, standard
variable optical attenuators �VOAs� cannot block optical sig-
nals completely. For the special case of the vacuum+weak
decoy state protocol, our result generalizes the work of Wang
�13�.

Second, we perform an optimization of the key generation
rate in Eq. �1� as a function of the intensities of the two
decoy states and the signal state. Up till now, such an opti-
mization problem has been a key unresolved problem in the
subject. We solve this problem analytically by showing that
the key generation rate given by Eq. �1� is optimized when
both decoy states are weak. In fact, in the limit that both
decoy states are infinitesimally weak, we match the best
lower bound on Y1 and upper bound on e1 in the most gen-
eral decoy state theory where an infinite number of decoy
states are used. Therefore, asymptotically, there is no obvi-
ous advantage in using more than two decoy states.

Third, for practical applications, we study the correction
terms to the key generation rate when the intensities of the
two decoy states are nonzero. We see that the correction
terms �to the asymptotically zero-intensity case� are reason-
ably small. For the case where one of the two decoy states is
a vacuum �i.e., v2=0�, the correction term remains modest
even when the intensity of the second decoy state, �1, is as
high as 25% of that of the signal state.

Fourth, following �13�, we discuss the issue of statistical
fluctuations due to finite data size in real-life experiments.
We provide a rough estimation on the effects of statistical
fluctuations in practical implementations. Using a recent ex-
periment �5� as an example, we estimate that our weak decoy

state proposal with two decoy states �a vacuum and a weak
decoy state of strength �� can achieve secure QKD over
more than 100 km with only a few hours of experiments. A
caveat of our investigation is that we have not considered the
fluctuations in the intensities of Alice’s laser pulses �i.e., the
values of � ,�1, and �2�. This is mainly because of a lack of
reliable experimental data. In summary, our result demon-
strates that our two-decoy-state proposal is highly practical.

Fifth, we also present a one-decoy-state protocol. Such a
protocol has the advantage of being simple to implement, but
gives a lower key generation rate. Indeed, we have recently
demonstrated experimentally our one-decoy-state protocol
over 15 km �15�. This demonstrates that one decoy state is,
in fact, sufficient for many practical applications. In sum-
mary, decoy state QKD is simple and cheap to implement
and it is, therefore, ready for immediate commercialization.

We remark in passing that a different approach �based on
a strong reference pulse� to making another protocol �B92
protocol� �16�unconditionally secure over a long distance has
recently been proposed in a theoretical paper by Koashi �17�.

The organization of this paper is as follows. In Sec. II, we
model an optical-fiber-based QKD setup. In Sec. III, we first
give a general theory for m decoy states. We then propose
our practical decoy method with two decoy states. In addi-
tion, we optimize our choice of the average photon numbers
� of the signal state and �1 and �2 of the decoy states by
maximizing the key generation rate with the experimental
parameters in a specific QKD experiment �GYS� �5�. Fur-
thermore, we also present a simple one-decoy-state protocol.
In Sec. IV, we discuss the effects of statistical fluctuations in
the two-decoy-state method for finite data-set size �i.e., the
number of pulses transmitted by Alice�. Finally, in Sec. V, we
present some concluding remarks.

II. MODEL

In order to describe a real-world QKD system, we need to
model the source, channel, and detector. Here we consider a
widely used fiber-based setup model �18�.

A. Source

The laser source can be modeled as a weak coherent state.
Assuming that the phase of each pulse is totally randomized,
the photon number of each pulse follows a Poisson distribu-
tion with a parameter � as its expected photon number set by
Alice. Thus, the density matrix of the state emitted by Alice
is given by

�A = �
i=0

�
�i

i!
e−��i��i� , �4�

where �0��0� is the vacuum state and �i��i� is the density ma-
trix of the i-photon state for i=1,2 ,… .

B. Channel

For an optical-fiber-based QKD system, the losses in the
quantum channel can be derived from the loss coefficient �
measured in dB/km and the length of the fiber l in km. The
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channel transmittance tAB can be expressed as

tAB = 10−�l/10.

C. Detector

Let 	Bob denote the transmittance in Bob’s side, including
the internal transmittance of optical components tBob and de-
tector efficiency 	D,

	Bob = tBob	D.

Then the overall transmission and detection efficiency be-
tween Alice and Bob 	 is given by

	 = tAB	Bob. �5�

It is common to consider a threshold detector in Bob’s
side. That is to say, we assume that Bob’s detector can tell a
vacuum from a nonvacuum state. However, it cannot tell the
actual photon number in the received signal, if it contains at
least one photon.

It is reasonable to assume independence between the be-
haviors of the i photons in an i-photon state. Therefore the
transmittance of the i-photon state 	i with respect to a
threshold detector is given by

	i = 1 − �1 − 	�i �6�

for i=0,1 ,2 ,… .

D. Yield

Define Yi to be the yield of an i-photon state, i.e., the
conditional probability of a detection event at Bob’s side
given that Alice sends out an i-photon state. Note that Y0 is
the background rate, which includes the detector dark count
and other background contributions such as the stray light
from timing pulses.

The yield of an i-photon state, Yi, mainly comes from two
parts, background and true signal. Assuming that the back-
ground counts are independent of the signal photon detec-
tion, then Yi is given by

Yi = Y0 + 	i − Y0	i � Y0 + 	i. �7�

Here we assume that Y0 �typically 10−5� and 	 �typically
10−3� are small.

The gain of the i-photon state Qi is given by

Qi = Yi
�i

i!
e−�. �8�

The gain Qi is the product of the probability of Alice sending
out an i-photon state �follows a Poisson distribution� and the
conditional probability that Alice’s i-photon state �and back-
ground� will lead to a detection event for Bob.

E. Quantum bit error rate

The error rate of the i-photon state, ei, is given by

ei =
e0Y0 + edetector	i

Yi
�9�

where edetector is the probability that a photon hit the errone-
ous detector. edetector characterizes the alignment and stability

of the optical system. Experimentally, even at distances as
long as 122 km, edetector is more or less independent of the
distance. In what follows, we will assume that edetector is a
constant. We will assume that the background is random.
Thus the error rate of the background is e0= 1

2 . Note that Eqs.
�6�–�9� are satisfied for all i=0,1 ,2 ,… . The overall gain is
given by

Q� = �
i=0

�

Yi
�i

i!
e−� = Y0 + 1 − e−	�. �10�

The overall QBER is given by

E�Q� = �
i=0

�

eiYi
�i

i!
e−� = e0Y0 + edetector�1 − e−	�� . �11�

III. PRACTICAL DECOY METHOD

In this section, we will first discuss the choice of � for the
signal state to maximize the key generation rate as given by
Eq. �1�. Then, we will consider a specific protocol of two
weak decoy states and show how they can be used to esti-
mate Y1 and e1 rather accurately. After that, we will show
how to choose two decoy states to optimize the key genera-
tion rate in Eq. �1�. As a whole, we have a practical decoy
state protocol with two weak decoy states.

A. Choose optimal �

Here we will discuss how to choose the expected photon
number of signal states � to maximize the key generation
rate in Eq. �1�.

Let us begin with a general discussion. On one hand, we
need to maximize the gain of the single-photon state Q1,
which is the only source for the final secure key. To achieve
this, heuristically, we should maximize the probability of Al-
ice sending out single-photon signals. With a Poisson distri-
bution of the photon number, the single-photon fraction in
the signal source reaches its maximum when �=1. On the
other hand, we have to control the gain of multiphoton states
to ensure the security of the system. Thus, we should keep
the fraction Q1 /Q� high, which requires � not to be too
large. Therefore, intuitively we have

� � �0,1� .

As will be noted in Sec. III B, Alice and Bob can estimate
e1 and Y1 rather accurately in a simple decoy state protocol
�e.g., one involving only two decoy states�. Therefore, for
ease of discussion, we will discuss the case where Alice and
Bob can estimate e1 and Y1 perfectly. Minor errors in Alice’s
and Bob’s estimations of e1 and Y1 will generally lead to
rather modest change in the final key generation rate R. Ac-
cording to Eqs. �8� and �9�, Q1 will be maximized when �
=1 and e1 is independent of �, so we can expect that the
optimal expected photon number of the signal state is �
=O�1�.

We consider the case where the background rate is low
�Y0
	� and the transmittance is small 	
1 �typical values
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are Y0=10−5 and 	=10−3�. By substituting Eqs. �8�, �9�, �10�,
and �11� into Eq. �1�, the key generation rate is given by

R � − 	�f�edetector�H2�edetector� + 	�e−��1 − H2�edetector�� .

This rate is optimized if we choose �=�optimal which satis-
fies

�1 − ��exp�− �� =
f�edetector�H2�edetector�

1 − H2�edetector�
, �12�

where edetector is the probability that a photon hits the erro-
neous detector. Then, using the data shown in Table I ex-
tracted from a recent experiment �5�, we can solve this equa-
tion and obtain that �optimal

GYS �0.54 for f�e�=1 and �optimal
GYS

�0.48 for f�e�=1.22. As noted in �9�, the key generation rate
and distance are pretty stable against even a 20% change of
�.

B. General decoy method

Here we will give out the most general decoy state
method with m decoy states. This extends our earlier work in
�9�.

Suppose Alice and Bob choose the signal and decoy states
with expected photon numbers � ,�1 ,�2 ,… ,�m; they will get
the following gains and QBER’s for the signal state and de-
coy states:

Q�e� = �
i=0

�

Yi
�i

i!
,

E�Q�e� = �
i=0

�

eiYi
�i

i!
,

Q�1
e�1 = �

i=0

�

Yi

�1
i

i!
,

E�1
Q�1

e�1 = �
i=0

�

eiYi

�1
i

i!
,

Q�2
e�2 = �

i=0

�

Yi

�2
i

i!
,

E�2
Q�2

e�2 = �
i=0

�

eiYi

�2
i

i!
,

. . .

Q�m
e�m = �

i=0

�

Yi

�m
i

i!
,

E�m
Q�m

e�m = �
i=0

�

eiYi

�m
i

i!
. �13�

Question. Given Eqs. �13�, how can one find a tight lower
bound on R, which is given by Eq. �1�? This is a main opti-
mization problem for the design of decoy state protocols.

Note that in Eq. �1�, the first term and q are independent
of �Yi� and �ei�. Combining with Eq. �8�, we can simplify the
problem: How can we lower-bound

P = Y1�1 − H2�e1�� �14�

with the constraints given by Eqs. �13�?
When m→�, Alice and Bob can solve all �Yi� and �ei�

accurately in principle. This is the asymptotic case given in
�9�.

C. Two decoy states

As emphasized in �9�, only a few decoy states are needed
for practical implementations. A simple way to lower-bound
Eq. �14� is to lower-bound Y1 and upper-bound e1. Intu-
itively, only two decoy states are needed for the estimation of
Y1 and e1 and, therefore, for practical decoy state implemen-
tation. Here, we present a rigorous analysis to show more
precisely how to use two weak decoy states to estimate the
lower bound Y1 and upper bound e1.

Suppose Alice and Bob choose two decoy states with ex-
pected photon numbers �1 and �2 which satisfy

0 � �2 � �1,

�1 + �2 � � , �15�

where � is the expected photon number of the signal state.

1. Lower bound of Y1

Similar to Eq. �10�, the gains of these two decoy states are
given by

Q�1
= �

i=0

�

Yi

�1
i

i!
e−�1, �16�

Q�2
= �

i=0

�

Yi

�2
i

i!
e−�2. �17�

First Alice and Bob can estimate the lower bound of back-
ground rate Y0 by e�2� �Eq. �17�� −e�1� �Eq. �16��,

TABLE I. Key parameters for QKD experiments.

Experiment  �nm� � �dB/km� edetector �%� Y0 	Bob f �MHz�

GYS �5� 1550 0.21 3.3 1.7�10−6 0.045 2

Bourennane et al. �18� 1550 0.2 1 4�10−4 0.143 0.1

MA et al. PHYSICAL REVIEW A 72, 012326 �2005�

012326-4



�1Q�2
e�2 − �2Q�1

e�1

= ��1 − �2�Y0 − �1�2�Y2
�1 − �2

2!
+ Y3

�1
2 − �2

2

3!
+ ¯	

� ��1 − �2�Y0.

Thus, a crude lower bound of Y0 is given by

Y0 � Y0
L = max
�1Q�2

e�2 − �2Q�1
e�1

�1 − �2
,0 , �18�

where the equality sign will hold when �2=0; that is to say,
when a vacuum decoy ��2=0� is used, Eq. �18� is tight.

Now, from Eq. �10�, the contribution from multiphoton
states �with photon number �2� in the signal state can be
expressed by

�
i=2

�

Yi
�i

i!
= Q�e� − Y0 − Y1� . �19�

Combining Eqs. �16� and �17�, under condition Eq. �15�, we
have

Q�1
e�1 − Q�2

e�2 = Y1��1 − �2� + �
i=2

�
Yi

i!
��1

i − �2
i �

� Y1��1 − �2� +
�1

2 − �2
2

�2 �
i=2

�

Yi
�i

i!

= Y1��1 − �2� +
�1

2 − �2
2

�2 �Q�e� − Y0 − Y1��

� Y1��1 − �2� +
�1

2 − �2
2

�2 �Q�e� − Y0
L − Y1�� ,

�20�

where Y0
L was defined in Eq. �18�. Here, to prove the first

inequality in Eq. �20�, we have made use of the inequality
that ai−bi�a2−b2 whenever 0�a+b�1 and i�2. The
equality sign holds for the first inequality in Eq. �20� if and
only if Eve raises the yield of two-photon states and blocks
all the states with photon number greater than 2 �this was
also mentioned in �8��. The second equality in Eq. �20� is due
to Eq. �18�.

By solving inequality �20�, the lower bound of Y1 is given
by

Y1 � Y1
L,�1,�2 =

�

��1 − ��2 − �1
2 + �2

2�Q�1
e�1 − Q�2

e�2

−
�1

2 − �2
2

�2 �Q�e� − Y0
L�	 . �21�

Then the gain of single-photon states is given by, according
to Eq. �8�,

Q1 � Q1
L,�1,�2 =

�2e−�

��1 − ��2 − �1
2 + �2

2�Q�1
e�1 − Q�2

e�2

−
�1

2 − �2
2

�2 �Q�e� − Y0
L�	 , �22�

where Y0
L is given by Eq. �18�.

2. Upper bound of e1

According to Eq. �11�, the QBER of the weak decoy state
is given by

E�1
Q�1

e�1 = e0Y0 + e1�1Y1 + �
i=2

�

eiYi

�1
i

i!
, �23�

E�2
Q�2

e�2 = e0Y0 + e1�2Y1 + �
i=2

�

eiYi

�2
i

i!
. �24�

An upper bound of e1 can be obtained directly from Eqs. �23�
and �24�,

e1 � e1
U,�1,�2 =

E�1
Q�1

e�1 − E�2
Q�2

e�2

��1 − �2�Y1
L,�1,�2

. �25�

Note that Alice and Bob should substitute the lower bound of
Y1, Eq. �21�, into Eq. �25� to get an upper bound of e1.

In summary, by using two weak decoy states that satisfy
Eq. �15�, Alice and Bob can obtain a lower bound for the
yield Y1 with Eq. �21� �and then the gain Q1 with Eq. �22��
and an upper bound for the QBER e1 with Eq. �25� for the
single-photon signals. Subsequently, they can use Eq. �1� to
work out the key generation rate as

R � q�− Q�f�E��H2�E�� + Q1
L,�1,�2�1 − H2�e1

U,�1,�2��� .

�26�

This is the main procedure of our two-decoy-state proto-
col.

Now, the next question is, how good are our bounds for
Y1 and e1 for our two-decoy-state protocol? In what follows,
we will examine the performance of our two-weak-decoy-
state protocol by considering first the asymptotic case where
both �1 and �2 tend to 0. We will show that our bounds for Y1
and e1 are tight in this asymptotic limit.

3. Asymptotic case

We will now take the limit �1→0 and �2→0. When �2
��1
�=O�1�, substituting Eqs. �10�, �16�, and �17� into
Eq. �21�, the lower bound of Y1 becomes

Y1
L,0 = �Y1

L,�1,�2��1→0,�2→0

=
�

��1 − ��2 − �1
2 + �2

2 �Q�1
e�1 − Q�2

e�2���1→0,�2→0�

=
�

� − �1 − �2

1

�1 − �2

���Y0 + 	�1�e�1 − �Y0 + 	�2�e�2���1→0,�2→0�
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= Y0 + 	 , �27�

which matches the theoretical value Y1�Y0+	 from Eq. �7�.
Substituting Eqs. �11�, �23�, and �24� into Eq. �25�, the upper
bound of e1 becomes

e1
U,0 = e1

U,�1,�2��1→0,�2→0� =
e0Y0 + edetector	

Y1
, �28�

which matches the theoretical value from Eq. �9�.
The above calculation seems to suggest that our two-

decoy-state protocol is as good as the most general protocol
in the limit �1 ,�2→0. However, in real life, at least one of
the two quantities �1 and �2 must take on a nonzero value.
Therefore, we need to study the effects of finite �1 and �2.
This will be our next subject.

4. Deviation from theoretical values

Here, we consider how finite values of �1 and perhaps �2
will change our bounds for Y1 and e1.

The relative deviation of Y1 is given by

�Y1 =
Y1

L,0 − Y1
L,�1,�2

Y1
L,0 , �29�

where Y1
L,0 is the theoretical value of Y1 given in Eqs. �7� and

�27�, and Y1
L,�1,�2 is an estimation value of Y1 by our two-

decoy-state method as given in Eq. �21�.
The relative deviation of e1 is given by

�e1 =
e1

U,�1,�2 − e1
U,0

e1
U,0 , �30�

where e1
U,0 is the theoretical value of e1 given in Eqs. �9� and

�28�, and e1
U,�1,�2 is the estimation value of e1 by our two-

decoy-state method as given in Eq. �25�.
Under the approximation 	
1 and taking the first order

in �1 and �2, and substituting Eqs. �7�, �10�, �16�–�18�, and
�21� into Eq. �29�, the deviation of the lower bound of Y1 is
given by

Y1�Y1 = Y1
L,0 − Y1

L,�1,�2

= Y0 + 	 −
�

��1 − ��2 − �1
2 + �2

2

��Q�1
e�1 − Q�2

e�2 −
�1

2 − �2
2

�2 �Q�e� − Y0
L�	

� �e� − 1 − � −
�2

2
	� 1

� − �1 − �2
−

1

�
	Y0

+ �e� − 1 − ��
�1 + �2

� − �1 − �2
	 . �31�

Substituting Eqs. �9�, �11�, and �23�–�25�, and �31� into Eq.
�30�, the deviation of the upper bound of e1 is given by

e1�e1 = e1
U,�,0 − e1

U,0 = e1�Y1 + ��1 + �2��e1 −
e0Y0

2Y1
	 .

�32�

Now, from Eqs. �31� and �32�, we can see that decreasing
�1+�2 will improve the estimation of Y1 and e1. So, the
smaller �1+�2 is, the higher the key generation rate R is. In
the Appendix, we will prove that decreasing �1+�2 will im-
prove the estimation of Y1 and e1 in a general sense �i.e.,
without the limit 	
1 and taking the first order in �1 and
�2�. Therefore, we have reached the following important con-
clusion: for any fixed value of �1, the choice �2=0 will op-
timize the key generation rate. In this sense, the vacuum
+weak decoy state protocol, as first proposed in an intuitive
manner in �9�, is, in fact, optimal.

The above conclusion highlights the importance of the
vacuum+weak decoy state protocol. We will discuss it in
Sec. III D. Nonetheless, as remarked earlier, in practice, it
might not be easy to prepare a true vacuum state �with, say,
VOAs�. Therefore, our general theory on nonzero decoy
states, presented here, is important.

D. Vacuum+weak decoy state

Here we will introduce a special case of Sec. III C with
two decoy states: vacuum and a weak decoy state. This spe-
cial case was first proposed in �9� and analyzed in �13�. In
the end of Sec. III C, we pointed out that this case is optimal
for the two-decoy-state method.

1. Vacuum decoy state

Alice shuts off her photon source to perform the vacuum
decoy state. Through this decoy state, Alice and Bob can
estimate the background rate,

Qvacuum = Y0,

Evacuum = e0 =
1

2
. �33�

The dark counts occur randomly; thus the error rate of the
dark count is e0= 1

2 .

2. Weak decoy state

Alice and Bob choose a relatively weak decoy state with
expected photon number ���.

Here is the key difference between this special case and
our general case of the two-decoy-state protocol. Now, from
the vacuum decoy state Eq. �33�, Alice and Bob can estimate
Y0 accurately. So, the second inequality of Eq. �20� will be
tight. As in Eq. �21�, the lower bound of Y1 is given by

Y1 � Y1
L,�,0 = Y1

L,�,�2��2→0�

=
�

�� − �2�Q�e� − Q�e� �2

�2 −
�2 − �2

�2 Y0	 . �34�

So the gain of a single-photon state is given by �Eq. �8��

Q1 � Q1
L,�,0 =

�2e−�

�� − �2�Q�e� − Q�e� �2

�2 −
�2 − �2

�2 Y0	 . �35�

We remark that Eq. �34� can be used to provide a simple
derivation of the fraction of “tagged photons” � found in
Wang’s paper �13�,
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� =
Q� − Y0e−� − Y1�e−�

Q�

�
Q� − Y0e−� − Y1

L,�,0�e−�

Q�

=
Q� − Y0e−� − ��e−�/�� − ����Q�e� − Q�e���2/�2� − ���2 − �2�/�2�Y0�

Q�

=
�

� − �
� �e−�Q�

�e−�Q�

− 1	 +
�e−�Y0

�Q�

. �36�

Indeed, if we replace � by � and � by ��, Eq. �36� will be
exactly the same as Eq. �2�.

According to Eq. �25�, the upper bound of e1 is given by

e1 � e1
U,�,0 =

E�Q�e� − e0Y0

Y1
L,�,0�

. �37�

3. Deviation from theoretical values

Considering the approximation 	
1 and taking the first
order in �, as in Eqs. �31� and �32�, the theoretical deviations
of the vacuum+weak decoy method are given by

Y1�Y1 = Y1
L,0 − Y1

L,�,0

= Y0 + 	 −
�

�� − �2�Q�e� − Q�e� �2

�2 −
�2 − �2

�2 Y0	
�

�

�
�e� − 1 − ��	 +

�

�2�e� − 1 − � −
�2

2
	Y0,

e1�e1 = e1
U,�,0 − e1

U,0 � e1�Y1 + ��e1 −
e0Y0

2Y1
	 ,

from which we can see that decreasing � will improve the
estimation of Y1 and e1. So, the smaller � is, the higher the
key generation rate R is. Later, in Sec. IV, we will take into
account statistical fluctuations and give an estimation of the
optimal value of � which maximizes the key generation rate.

E. One decoy state

Here we will discuss a decoy state protocol with only one
decoy state. Such a protocol is easy to implement in experi-
ments, but may generally not be optimal. As noted earlier, we
have successfully performed an experimental implementa-
tion of one-decoy-state QKD in �15�.

1. A simple proposal

A simple method to analyze one-decoy-state QKD is by
substituting an upper bound of Y0 into Eq. �34� and a lower
bound of Y0 into Eq. �37� to lower-bound Y1 and upper-
bound e1.

An upper bound of Y0 can be derived from Eq. �11�,

Y0 �
E�Q�e�

e0
. �38�

Substituting the above upper bound into Eq. �34�, we get a
lower bound on Y1,

Y1 � Ȳ1
L,� =

�

�� − �2�Q�e� − Q�e� �2

�2 − E�Q�e��2 − �2

e0�2 	 .

�39�

A simple lower bound on e1 can be derived as follows:

e1 � ē1
U,� =

E�Q�e�

Y1
L,�,0�

. �40�

Now, by substituting Eqs. �39� and �40� into Eq. �1�, one
obtains a simple lower bound of the key generation rate. The
above lower bound has recently been used in our experimen-
tal decoy state QKD paper �15�. �In our experimental decoy

QKD paper �15�, we simplify our notation by denoting Ȳ1
L,�

by simply Y1
L and ē1

U,� by e1
U.�

2. Tighter bound

Another method is to apply the results of the vacuum
+weak decoy described in Sec. III D.

Let us assume that Alice and Bob perform the vacuum
+weak decoy method, but they prepare very few states as the
vacuum state. So they cannot estimate Y0 very well. We
claim that a single decoy protocol is the same as a vacuum
+weak decoy protocol, except that we do not know the value
of Y0. Since Alice and Bob do not know Y0, Eve can pick Y0
as she wishes. We argue that, on physical ground, it is ad-
vantageous for Eve to pick Y0 to be zero. This is because Eve
may gather more information on the single-photon signal
than the vacuum. Therefore, the bound for the case Y0=0
should still apply to our one-decoy protocol. �We have ex-
plicitly checked mathematically that our following conclu-
sion is correct, after lower-bounding Eq. �14� directly.� For
this reason, Alice and Bob can derive a bound on the key
generation rate R by substituting the following values of Y1

trial

and e1
trial into Eq. �1�:

Y1
trial =

�

�� − �2�Q�e� − Q�e� �2

�2	 ,

e1
trial =

E�Q�e�

Y1
trial�

. �41�

F. Example

Let us return to the two-decoy-state protocol. In Eqs. �27�
and �28�, we have shown that the two-decoy-state method is
optimal in the asymptotic case where �1 ,�2→0, in the sense
that its key generation rate approaches the most general de-
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coy state method of having an infinite number of decoy
states. Here, we will give an example to show that, even in
the case of finite �1 and �2, the performance of our two-
decoy-state method is only slightly worse than that of the
perfect decoy method. We will use the model in Sec. II to
calculate the deviations of the estimated values of Y1 and e1
from our two-decoy-state method from the correct values.
We use the data of GYS �5� with key parameters listed in
Table I.

For simplicity, we will use a special two-decoy-state
method: vacuum+weak. According to Eq. �12�, the optimal
expected photon number is �=0.48. We change the expected
photon number of weak decoy � to see how the estimates,
described by Eqs. �34� and �37�, deviate from the asymptotic
values, Eqs. �7� and �9�. The deviations are calculated by
Eqs. �29� and �30�. The results are shown in Fig. 1. From
Fig. 1, we can see that the estimate for Y1 is very good. Even
at � /�=25%, the deviation is only 3.5%. The estimate for e1
is slightly worse. The deviation will go to 16.8% when
� /�=25%. The deviations do not change much with fiber
length. Later, in Sec. IV, we will discuss how to choose op-
timal � when statistical fluctuations due to a finite experi-
mental time are taken into account.

Let RL denote for the lower bound of key generation rate,
according to Eq. �1�,

RL = q�− Q� f�E��H2�E�� + Q1
L,�,0�1 − H2�e1

U,�,0��� ,

�42�

where q= 1
2 with the standard BB84 protocol. The parameters

can be calculated from Eqs. �10�, �11�, �35�, and �37� and use
f�e�=1.22, which is the upper bound of f�e� in secure dis-

tance for this experiment �12�. Equation �5� shows the rela-
tionship between 	 and distance. The results are shown in
Fig. 2.

Now, from Fig. 2, we can see that even with finite � �say,
0.05�, the vacuum+weak protocol performs very like the
asymptotic one.

We note that Wang �13� has also studied a decoy state
protocol, first proposed by us �9�, with only two decoy states
for the special case where one of them is a vacuum. In �13�
the second decoy state is used to estimate the multiphoton
fraction � and use the formula directly from GLLP �7� to
calculate the key generation rate by Eq. �3�.

In Fig. 2, we compare the key generation rates of our
two-decoy-state method and Wang’s method �13� and find
that our method performs better. In what follows, we com-
pare the differences between our method and that of Wang.

�a� We consider error correction inefficiency f�e� for prac-
tical protocols. Wang did not consider this real-life issue. For
a fair comparison, we add this factor to Eq. �3�:

R � qQ�
− f�E��H2�E�� + �1 − ���1 − H2� E�

1 − �
	� .

�43�

�b� Apparently, the value of � was chosen in �13� in an
ad hoc manner, whereas we performed optimization in
Sec. III A and found that for GYS, the optimal value of
�=0.48 for our two-decoy-state method. Now, the best
�asymptotic� estimate Wang’s method can make is that �

FIG. 1. �Color online� The solid lines show the relative devia-
tions of Y1

L,�1,�2 and e1
U,�1,�2 from the asymptotic values �i.e., the

case �1 ,�2→0� as functions of � /� �where �=�1� with the fiber
length 40 km, and the dashed lines show the case of 140 km. The
bounds Y1

L,�1,�2 and e1
U,�1,�2 are given by Eqs. �34� and �37�, and the

true values are given by Eqs. �7� and �9�. We consider the
vacuum+weak protocol here ��1=� and �2=0�. The expected pho-
ton number is �=0.48 as calculated from Eq. �12�. The parameters
used are from GYS �5� as listed in Table I.

FIG. 2. �Color online� The dashed line shows the asymptotic
decoy state method �with infinite number of decoy states� with a
maximal secure distance of 142.05 km, using Eq. �1�. The solid line
shows our vacuum+weak decoy method, Eq. �42�, with �=0.48,
�1=0.05, and �2=0. It uses a strong version of the GLLP protocol
and its maximal distance is 140.55 km. The dotted line shows the
asymptotic case of Wang’s decoy method, Eq. �43� with �=0.30. It
uses a weak version of the GLLP protocol and its maximal distance
is about 128.55 km. This shows that our vacuum+weak decoy pro-
tocol comes very close to the asymptotic limit and performs better
than even the asymptotic case of Wang’s decoy method. The data
are from GYS �5� as listed in Table I.
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=� when ��→�. For a fair comparison, we have performed
an optimization of Wang’s asymptotic result Eq. �43� as well
�as in Sec. III A� and found that the value ��0.30 optimizes
the key generation rate in Wang’s method.

�c� In Eqs. �27� and �28�, we show that our two-decoy-
state method approaches a fundamental limit of the decoy
state �the infinite decoy state protocol� while the asymptotic
result in Wang �13� is strictly bounded away from the funda-
mental limit. Even with a finite v1, our vacuum+weak pro-
tocol is better than Wang’s asymptotic case.

�d� Why do we get a stronger result than Wang �13�?
Wang did not estimate e1 and used E� / �1−�� as the upper
bound of e1 �this corresponds to a weak version of the GLLP
result �7��. We estimate e1 more accurately following GLLP
�a strong version of the GLLP result�.

IV. STATISTICAL FLUCTUATIONS

In this section, we would like to discuss the effect of finite
data-set size in real-life experiments on our estimation
process for Y1 and e1. We will also discuss how statistical
fluctuations might affect our choice of �1 and �2. We will
provide a list of those fluctuations and discuss how we will
deal with them. We remark that Wang �13� has previously
considered the issue of fluctuations of Y1.

All real-life experiments are done in a finite time. Ideally,
we would like to consider a QKD experiment that can be
performed within, say, a few hours or so. This means that our
data-set size is finite. Here, we will see that this type of
statistical fluctuation is a rather complex problem. We do not
have a full solution to the problem. Nonetheless, we will
provide some rough estimation based on standard error
analysis which suggests that the statistical fluctuation prob-
lem of the two-decoy-state method for a QKD experiment
appears to be under control, if we run an experiment over
only a few hours.

A. What parameters are fluctuating?

Recall that from Eq. �1�, there are four parameters that we
need to take into account: the gain Q� and QBER E� of the
signal state and the gain Q1 and QBER e1 of the single-
photon state. The gain of the signal state Q� is measured
directly from experiment. We note that the fluctuations of the
the signal error rate E� are not important because E� is not
used at all in the estimation of Y1 and e1. �See Eqs. �21� and
�25� or Eqs. �35� and �37�.� Therefore, the important issue is
the statistical fluctuations of Q1 and e1 due to the finite data-
set size of signal states and decoy states.

To show the complexity of the problem, we will now
discuss the following five sources of fluctuations. The
first thing to notice is that, in practice, the intensity of the
lasers used by Alice will be fluctuating. In other words, even
the parameters � ,�1, and �2 suffer from small statistical
fluctuations. Without hard experimental data, it is difficult to
pinpoint the extent of their fluctuations. To simplify our
analysis, we will ignore their fluctuations in this paper.

The second thing to notice is that so far in our analysis we
have assumed that the proportion of photon number eigen-

states in each type of state is fixed. For instance, if N signal
states of intensity � are emitted, we assume that exactly
N�e−� out of the N signal states are single photons. In real
life, the number �e−� is only a probability; the actual num-
ber of single-photon signals will fluctuate statistically. The
fluctuation here is dictated by the law of large number
though. So this problem should be solvable. For simplicity,
we will neglect this source of fluctuations in this paper. �It
was subsequently pointed out to us by Gottesman and
Preskill that the above two sources of fluctuations can be
combined into the fluctuations in the photon number fre-
quency distribution of the underlying signal and decoy states.
These fluctuations will generally average out to zero in the
limit of a large number of signals, provided that there is no
systematic error in the experimental setup.�

The third thing to notice is that, as noted by Wang �13�,
the yield Yi may fluctuate in the sense that Yi for the signal
state might be slightly different from Yi� of the decoy state.
We remark that if one uses the vacuum state as one of the
decoy states, then by observing the yield of the vacuum de-
coy state, conceptually, one has a very good handle on the
yield of the vacuum component of the signal state �in terms
of hypergeometric functions�. Note, however, that the back-
ground rate is generally rather low �typically 10−5�. So, to
obtain a reasonable estimation on the background rate, a
rather large number �say 107� of vacuum decoy states will be
needed. �As noted in �9�, even a 20% fluctuation in the back-
ground will have small effect on the key generation rates and
distances.� Note that, with the exception of the case n=0 �the
vacuum case�, neither Yi and Yi� is directly observable in an
experiment. In a real experiment, one can measure only some
averaged properties. For instance, the yield Q� of the signal
state, which can be experimentally measured, has its origin
as the weighted averaged yields of the various photon num-
ber eigenstates Yi whereas that for the decoy state is given by
the weighted average of Yi�. How to relate the observed av-
eraged properties, e.g., Q�, to the underlying values of the
Yi’s is a challenging question. In summary, owing to the
fluctuations of Yi for n�0, it is not clear to us how to derive
a closed-form solution to the problem.

Fourth, we note that the error rates ei for the signal can
also be different from the error rates ei for the decoy state,
due to underlying statistical fluctuations. Actually, the fluc-
tuation of e1 appears to the dominant source of errors in the
estimation process. �See, for example, Table II.� This is be-
cause the parameter e1 is rather small �say a few percent� and
it appears in combination with another small parameter Y1 in
Eq. �11� for the QBER.

Fifth, we noted that for security in the GLLP �7� formula
�Eq. �1��, we need to correct phase errors, rather than bit-flip
errors. From Shor and Preskill’s proof �3�, we know that the
bit-flip error rate and the phase error rate are supposed to be
the same only in the asymptotic limit. Therefore, for a finite
data set, one has to consider statistical fluctuations. This
problem is well studied �3�. Since the number of signal states
is generally very big, we will ignore this fluctuation from
now on.

Qualitatively, the yields of the signal and decoy states
tend to decrease exponentially with distance. Therefore, sta-
tistical fluctuations tend to become more and more important
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as the distance of QKD increases. In general, as the distance
of QKD increases, larger and large data sets will be needed
for the reliable estimation of Y1 and e1 �and hence R�, thus
requiring a longer QKD experiment.

In this paper, we will neglect the fluctuations due to the
first two and the fifth sources listed above. Even though we
cannot find any closed-form solution for the third and fourth
sources of fluctuations, it should be possible to tackle the
problem by simulations. Here, we are contented with a more
elementary analysis. We will simply apply standard error
analysis to perform a rough estimation on the effects of fluc-
tuations due to the third and fourth sources. We remark that
the origin of the problem is strictly classical statistical fluc-
tuations. There is nothing quantum in this statistical analysis.
While standard error analysis �using essentially normal dis-
tributions� may not give a completely correct answer, we
expect that it is correct at least in the order of magnitude.

Our estimation, which will be presented below, shows
that, for long-distance ��100 km� QKD with our two-decoy-
state protocol, the statistical fluctuations effect �from the
third and fourth sources only� appears to be manageable.
This is so provided that a QKD experiment is run for a rea-
sonable period of time of only a few hours. Our analysis
supports the viewpoint that our two-decoy-state protocol is
practical for real-life implementations.

We remark in passing that the actual classical memory
space requirement for Alice and Bob is rather modest
��1 Gbyte� because at long distance, only a small fraction
of the signals will give rise to detection events.

We emphasize that we have not fully solved the statistical
fluctuation problem for decoy state QKD. This problem turns
out to be quite complex. We remark that this statistical fluc-
tuation problem will affect all earlier results including
�8,9,13�. In future investigations, it will be interesting to
study the issue of classical statistical fluctuations in more
detail.

B. Standard error analysis

In what follows, we present a general procedure for study-
ing the statistical fluctuations �due to the third and fourth
sources noted above� by using standard error analysis.

Denote the number of pulses �sent by Alice� for the signal
as NS, and for two decoy states as N1 and N2. Then, the total
number of pulses sent by Alice is given by

N = NS + N1 + N2. �44�

Then the parameter q in Eq. �1� is given by

q =
NS

2N
. �45�

Here we assume Alice and Bob perform the standard BB84
protocol. So there is a factor of 1

2 .
In practice, since N is finite, the statistical fluctuations

of Q1 and e1 cannot be neglected. All these additional devia-
tions will be related to data sizes NS , N1, and N2 and can, in
principle, be obtained from statistical analysis. A natural
question to ask is the following. Given total data size
N=const, how can we distribute it to NS , N1, and N2 to
maximize the key generation rate R ? This question also
relates to another one: how can we choose optimal weak
decoys �1 and �2 to minimize the effects of statistical fluc-
tuations?

In principle, our optimization procedure should go as fol-
lows. First �this is the hard part�, one needs to derive a lower
bound of Q1 and an upper bound of e1 �as functions of data-
set size NS , N1 , N2 , �1, and �2�, taking into full account the
statistical fluctuations. Second, one substitutes those bounds
in Eq. �1� to calculate the lower bound of the key generation
rate, denoted by RL. Thus, RL is a function of
NS , N1 , N2 , �1, and �2, and will be maximized when the
optimal distribution satisfies

�RL

�NS
=

�RL

�N1
=

�RL

�N2
= 0, �46�

given N=NS+N1+N2=const.

C. Choice of �1 and �2

Now, from the theoretical deviations of Y1 and e1, Eqs.
�29� and �30�, reducing � may decrease the theoretical devia-
tions. We need to take statistical fluctuations into account.
Given a fixed N1+N2, reducing �1 and �2 will decrease the

TABLE II. The pulse number distribution and � are calculated from Eqs. �46� and �47�. B̃ is the lower

bound of final key bits. All results are obtained by numerical analysis using MATLAB. The variable �̃Y1

denotes the relative error in our estimation process of Y1 from its true value by using the data from a finite
experiment. This relative error originates from statistical fluctuations. This definition contrasts with the
definition of �Y1 in Eq. �29� which refers to the relative difference between the values of Y1 for the case �i�
where �1 and �2 are finite and the case �ii� where �1 and �2 approach zero. Similarly, other �’s denote the
relative errors in our estimates for the corresponding variables in the subscript of �. All the statistical
fluctuation is of the confidence interval of ten standard deviations �i.e., 1–�1.5��10−23�. The data come from
GYS �5�, listed in Table I.

l � u� N NS N1 N2

103.62 km 0.479 10 6�109 3.98�109 1.76�109 2.52�108

	 � B̃�bits� �Y0 �Y1 �e1 �R

3�10−4 0.127 2.17�104 48.31% 7.09% 97.61% 74.11%
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number of detection events of decoy states, which in turn
causes a larger statistical fluctuation. Thus, there exists an
optimal choice of �1 and �2 that maximizes the lower bound
of the key generation rate RL,

�RL

��1
=

�RL

��2
= 0,

which can be simplified to

�

��1
�Ŷ1

L,�1,�2�1 − H2�ê1
U,�1,�2��� = 0,

�

��2
�Ŷ1

L,�1,�2�1 − H2�ê1
U,�1,�2��� = 0, �47�

where Ŷ1
L,�1,�2 and ê1

U,�1,�2 are the lower bound to Y1 and the
upper bound to e1 when statistical fluctuations are consid-
ered.

Given the total data-set size in Eq. �44�, in principle, one
can solve Eqs. �46� and �47� to get NS , N1 , N2 , �1, and �2.

D. Simulation

In real life, solving Eqs. �46� and �47� is a complicated
problem. In what follows, we will be contented with a rough
estimation procedure using standard error analysis com-
monly used by experimentalists.

Some assumptions. In the following, we will discuss the
vacuum+weak decoy method only.

�1� The signal state is used much more often than the two
decoy states. Given the large number of signal states, it is
reasonable to ignore the statistical fluctuations in signal
states.

�2� We assume that the decoy state used in the actual
experiment is conceptually only a part of an infinite popula-
tion of decoy states. There are underlying values for Q� and
E� as defined by the population of decoy states. In each
realization, the decoy state allows us to obtain some esti-
mates for these underlying Q� and E�. Alice and Bob can use
the fluctuations of Q� ,E� to calculate the fluctuation of the
estimates of Y1 and e1.

�3� We neglect the change of f�E�� due to small changes
in E�.

�4� When the number of events �e.g., the total detection
event of the vacuum decoy state� is large �say �50�, we
assume that the statistical characteristic of a parameter can
be described by a normal distribution.

We will use the experiment parameters in Table I and
show numerical solutions of Eqs. �44�, �46�, and �47�. We
pick the total data size to be N=6�109. Now, the GYS
experiment �5� has a repetition rate of 2 MHz and an up time
of less than 50% �20�. Therefore, it should take only a few
hours to perform our proposed experiment. The optimal �
=0.48 can be calculated by Eq. �12� and we use f�e�=1.22.

In the fiber length of 103.62 km �	=3�10−4�, the opti-
mal pulse distribution of data, �, and the deviations from the
perfect decoy method are listed in Table II.

For each fiber length we can solve Eqs. �46� and �47� to
get NS , NE , N1 , N2, and �.

Figure 3 shows how the optimal � changes with fiber
length. We can see that the optimal � is small ��0.1� through
the whole distance. In fact, it starts at a value ��0.04 at zero
distance and increases almost linearly with the distance.

Figure 4 shows the vacuum+weak state with statistical
fluctuations as compared to the asymptotic case of an infinite
decoy state and without statistical fluctuations. We can see
that even taking into account the statistical fluctuations, the
vacuum+weak protocol is not far from the asymptotic result.
In particular, in the short-distance region, our two-decoy-
state method with statistical fluctuations approaches the per-
formance of the asymptotic limit of infinite decoy states and
no statistical fluctuations. This is so because the channel is
not very lossy and statistical fluctuations are easily under
control. This fact highlights the feasibility of our proposal.

Wang �13� picked the total data-set size N=8.4�1010. For
long-distance QKD, this will take more than one day of ex-
periment with the current GYS setup �5�. In order to perform
a fair comparison with Wang result �13�, we will now use the
data-set size N=8.4�1010. Figure 5 shows RL vs fiber length
l with N=8.4�1010 fixed and compares our vacuum+weak
protocol with Wang’s result.

We have the following comments.
�a� Wang �13� chooses the value of � in an ad hoc man-

ner. Here we note that, for Wang’s asymptotic case, the op-
timal choice of � is �� �0.25,0.3�.

�b� Even if we choose �� �0.25,0.3�, the maximal secure
distance of Wang’s asymptotic case is still less than that of
our two-decoy-state method with statistical fluctuations. In
other words, the performance of our two-decoy-state method
with statistical fluctuations is still better than the asymptotic

FIG. 3. �Color online� The solid line shows the simulation result
of the vacuum+weak protocol �Eqs. �34� and �37�� with statistical
fluctuations. The dashed line shows the result for the one-decoy-
state method �Eq. �41��. Here, we pick the data-set size �total num-
ber of pulses emitted by Alice� to be N=6�109. We find the opti-
mal � for each fiber length by numerically solving Eqs. �44�, �46�,
and �47�. The confidence interval for statistical fluctuation is ten
standard deviations �i.e., 1–�1.5��10−23�. The data are from GYS
�5� as listed in Table I. The expected photon number of the signal
state is calculated by Eq. �12�, getting �=0.48. The second decoy
state �vacuum decoy� becomes useful at 82 km.

PRACTICAL DECOY STATE FOR QUANTUM KEY … PHYSICAL REVIEW A 72, 012326 �2005�

012326-11



value �i.e., without considering statistical fluctuations� given
by Wang’s method.

�c� Note that the GYS experiment �5� has a very low
background rate �Y0=1.7�10−6� and high edetector. The typi-
cal values of these two key parameters are Y0=10−5 and
edetector=1%. If the background rate is higher and edetector is
lower, then our results will have more advantage over
Wang’s. We illustrate this fact in Fig. 6 by using the data
from the Bourennane et al. experiment �19�.

V. CONCLUSION

We studied the two-decoy-state protocol where two weak
decoy states of intensities �1 and �2 and a signal state with
intensity � are employed. We derived a general formula for
the key generation rate R of the protocol and showed that the
asymptotically limiting case where �1 and �2 tend to zero
gives an optimal key generation rate which is the same as
having infinite number of decoy states. This result seems to
suggest that there is no fundamental conceptual advantage in
using more than two decoy states. Using the data from the
GYS experiment �5�, we studied the effect of finite �1 and �2
on the value of the key generation rate R. In particular, we
considered a vacuum+weak protocol, proposed in �9� and
analyzed in �13�, where �2=0, and showed that R does not
change much even when �1 /� is as high as 25%. We also

derived the optimal choice of expected photon number � of
the signal state, following our earlier work �9�. Finally, we
considered the issue of statistical fluctuations due to a finite
data-set size. We remark that statistical fluctuations have also
been considered in the recent work of Wang �13�. Here, we
listed five different sources of fluctuations. While the prob-
lem is highly complex, we provided an estimation based on
standard error analysis. We believe that such an analysis,
while not rigorous, will give at least the correct order of
magnitude estimation to the problem. This is so because this
is a classical estimation problem. There is nothing quantum
about it. That is to say, there are no subtle quantum attacks to
consider. Our estimation showed that two-decoy-state QKD
appears to be highly practical. Using data from a recent ex-
periment �5�, we showed that, even for long-distance �i..e,
over 100 km� QKD, only a few hours of data are sufficient
for its implementation. The memory size requirement is also
rather modest ��1 GByte�. A caveat is that we have not
considered the fluctuations of the laser intensities of Alice,
i.e., the values of � , �1, and �2. This is because we do not
have reliable experimental data to perform such an investi-
gation. For short-distance QKD, the effects of statistical fluc-
tuations are suppressed because the transmittance and useful
data rate are much higher than for long-distance QKD. Fi-
nally, we noted that statistical fluctuations will affect our
choice of decoy states �1 and �2 and performed an optimiza-
tion for the special case where �2=0.

FIG. 4. �Color online� The dotted line shows the performance of
the perfect decoy state method �with infinite number of decoy states
and no statistical fluctuations�. The maximal distance is about 142
km. The solid line shows the simulation result of the vacuum
+weak protocol �Eqs. �34� and �37�� with statistical fluctuations. Its
maximal distance is about 125 km. The dashed line shows the result
for the one-decoy-state method �Eq. �41�� with maximal distance
122 km. We pick a data-set size �i.e., total number of pulses emitted
by Alice� to be N=6�109. Note that even with statistical fluctua-
tions and a rather modest data-set size, our vacuum+weak decoy
protocol comes rather close to asymptotic limit, particularly at short
distances. The second decoy state �vacuum decoy� becomes useful
at 82 km. The data are from GYS �5� as listed in Table I. The
expected photon number of the signal state is calculated by Eq.
�12�, getting �=0.48.

FIG. 5. �Color online� Here, we consider the data-set size �i.e.,
the number of pulses emitted by Alice� to be N=8.4�1010, follow-
ing Wang �13�. The dashed line shows the performance of the per-
fect decoy state method. Its maximal distance is 142 km. The solid
line shows the simulation result of the vacuum+weak decoy state
method with statistical fluctuations. Its maximal distance is 132 km.
The dotted line shows the asymptotic case �i.e., an idealized ver-
sion� of Wang’s method. Its maximal distance is 128.55 km. This
figure shows clearly that with a data-set size N=8.4�1010, our
protocol, which considers statistical fluctuations, performs better
even than the idealized version of Wang’s protocol, where statistical
fluctuations are neglected. For our asymptotic case and two decoy
state with statistical fluctuation �=0.48, and for Wang’s asymptotic
case �=0.3, which are optimized.
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In summary, our investigation demonstrates that a simple
two-decoy-state protocol with vacuum+weak decoy states is
highly practical and can achieve unconditional security for
long-distance �over 100 km� QKD, even with only a few
hours of experimental data.

As a final note, we have also studied a simple one-decoy-
state protocol. Recently, we have experimentally imple-
mented our one-decoy-state protocol over 15 km of Telecom
fibers �15�, thus demonstrating the feasibility of our pro-
posal.
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APPENDIX

In this appendix, we will prove that the vacuum+weak
decoy protocol is optimal among the two-weak-decoy proto-
cols. We do so by proving that, for a fixed �1 �which is larger
than �2�, the lower bound Y1

L,�1,�2 can be no greater than
Y1

L,�1,0 �see Eq. �A8�, and the upper bound e1
U,�1,�2 can be no

less than e1
U,�1,0 �see Eq. �A10��. We will consider those

bounds as given in Eqs. �21� and �25�. In what follows, we
assume the conditions given by Eq. �15�,

0 � �2 � �1,

�1 + �2 � � . �A1�

Theorem. Given � ,�1 ,	 ,Y0, and edetector, the lower bound
of Y1 given in Eq. �21�,

Y1
L,�1,�2 =

�

��1 − ��2 − �1
2 + �2

2

��Q�1
e�1 − Q�2

e�2 −
�1

2 − �2
2

�2 Q�e�	 ,

is a decreasing function of �2, and the upper bound of e1
given in Eq. �25�,

e1
U,�1,�2 =

E�1
Q�1

e�1 − E�2
Q�2

e�2

��1 − �2�Y1
L,�1,�2

,

is an increasing function of �2, under conditions Eq. �48�.
Here Q� , Q�1

, Q�2
, E� , E�1

, and E�2
are given by Eqs. �10�

and �11�.
Proof. First we will prove that Y1

L,�1,�2 is a decreasing
function of �2 and then prove that e1

U,�1,�2 is an increasing
function of �2.

Define functions G��� and J��� as

G��� = Q�e� = �Y0 + 1 − e−	��e�,

J��� = E�Q�e� = �e0Y0 + edetector�1 − e−	���e�.

Take the first derivative of G��� and J���,

G���� = Q�e� + 	e�1−	��,

J���� = E�Q�e� + 	edetectore
�1−	��,

which are both increasing functions, and G�����0, J����
�0. By mathematical induction, it is not difficult to prove
the following claim.

Claim 1. For any order derivative of G��� and J���,
G�n�����0 and J�n�����0 are increasing functions.

Some useful inequalities. With Claim 1 and the Taylor
Series of G���, we have

G��� = �
i=0

i=�

G�i����
�i

i!
� �G���� . �A2�

According to the mean value theorem,

FIG. 6. �Color online� Here, we compare various protocols us-
ing the parameters of Bourenanne et al. �19�, listed in Table I and
�18�. The dashed line shows the performance of the perfect decoy
state method. It has a maximal secure distance of about 68.6 km.
The solid line shows the simulation result of the vacuum+weak
decoy state method with statistical fluctuations. The maximal dis-
tance is about 67.2 km. The dotted line shows the asymptotic case
�i.e., neglecting statistical fluctuations� of Wang’s method, whose
maximal distance is about 55.5 km. For our asymptotic case and
two decoy states with statistical fluctuation �=0.77, and for Wang’s
asymptotic case �=0.43, which are optimized.
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G��1� − G��2�
�1 − �2

= G���3� ,

J��1� − J��2�
�1 − �2

= J���4� , �A3�

where �3 ,�4� ��2 ,�1�. Because G���� and J���� are increas-
ing functions, we can bound Eq. �A3�,

G���2� �
G��1� − G��2�

�1 − �2
� G���1� , �A4�

J���2� �
J��1� − J��2�

�1 − �2
� J���1� . �A5�

Similarly,

G���2� �
G���1� − G���2�

�1 − �2
� G���1� . �A6�

Define a function

F��2� =
1

� − �1 − �2
�Q�e� −

�

�1 − �2
�Q�1

e�1 − Q�2
e�2�	

=
1

� − �1 − �2
�G��� −

�

�1 − �2
�G��1� − G��2��	 .

Claim 2. The function F��2� is an increasing function of
�2, under the conditions given in Eq. �A1�.

Proof. To determine if the function is increasing or de-
creasing we will need the derivative:

F���2� =
1

�� − �1 − �2�2�G��� −
�

�1 − �2
�G��1� − G��2��	 −

1

� − �1 − �2

�

��1 − �2�2 �G��1� − G��2�� +
1

� − �1 − �2

�

�1 − �2
G���2�

�
1

�� − �1 − �2�2 �G��� − �G���1�� −
1

� − �1 − �2

�

�1 − �2
G���1� +

1

� − �1 − �2

�

�1 − �2
G���2�

�
1

�� − �1 − �2�2 ��G���� − �G���1 + �2�� −
�

� − �1 − �2
G���1� �

�

� − �1 − �2
�G���1 + �2� − G���1�� � 0. �A7�

Here, to prove the first inequality, we have made use of Eq. �A4�; to prove the second inequality, we have made use of Eqs.
�A2� and �A6� and Claim 1; to prove the third inequality, we have made use of Eq. �A6�; to prove the last inequality, we have
made use of Claim 1.

Proof that Y1
L,�1,�2 is a decreasing function. Rewrite the lower bound of Y1, in Eq. �21�,

Y1
L,�1,�2 =

�

��1 − ��2 − �1
2 + �2

2�Q�1
e�1 − Q�2

e�2 −
�1

2 − �2
2

�2 Q�e�	
=

�

��1 − ��2 − �1
2 + �2

2 �Q�1
e�1 − Q�2

e�2� −
�

��1 − ��2 − �1
2 + �2

2

�1
2 − �2

2

�2 Q�e� =
�

� − �1 − �2

Q�1
e�1 − Q�2

e�2

�1 − �2

−
�1 + �2

� − �1 − �2

Q�e�

�

=
�

� − �1 − �2

Q�1
e�1 − Q�2

e�2

�1 − �2
− � 1

� − �1 − �2
−

1

�
	Q�e�

=
1

�
Q�e� −

1

� − �1 − �2
�Q�e� −

�

�1 − �2
�Q�1

e�1 − Q�2
e�2�	 =

1

�
Q�e� − F��2� . �A8�

With Claim 2, we show that Y1
L,�1,�2 is a decreasing function of �2.

Define a function

K��2� =
E�1

Q�1
e�1 − E�2

Q�2
e�2

�1 − �2
=

J��1� − J��2�
�1 − �2

.

Claim 3. The function K��2� is an increasing function with �2.
Proof. To determine if the function is increasing or de-creasing we will need the derivative:
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K���2� =
J��1� − J��2�

��1 − �2�2 −
J���2�
�1 − �2

�
J���2�
�1 − �2

−
J���2�
�1 − �2

= 0,

�A9�

where the first inequality is due to Eq. �A5�.
Proof that e1

U,�1,�2 is an increasing function. Reform the
lower bound of e1, in Eq. �25�,

e1
U,�1,�2 =

E�1
Q�1

e�1 − E�2
Q�2

e�2

��1 − �2�Y1
L,�1,�2

=
K��2�
Y1

L,�1,�2
. �A10�

With Claim 3 and the decreasing function of Y1
L,�1,�2, we

show that e1
U,�1,�2 is an increasing function of �2.

In summary, we have proved the theorem.
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