Practical Deniable Encryption

Marek Klonowski, Przemysław Kubiak, Mirosław Kutyłowski

Wrocław University of Technology

Nový Smokovec, January 2008

Wrocław

Introduction

Previous work
Our
contribution

Motivation

- We believe that the adversary cannot decrypt the ciphertext without the private key, but ...

Motivation

- We believe that the adversary cannot decrypt the ciphertext without the private key, but ...
$■$ strong adversary has a power to demand a private key (violence, law enforcement procedures).

Coercion in regular encryption scheme

Introduction
Previous work
Our
contribution

Regular encryption

- Encryption:
m - message

$$
c=E n c(m, r)
$$

- Decryption:

$$
m=\operatorname{Dec}(c)
$$

Coercion in regular encryption scheme

In case of coercion one can ...
\square refuse presenting the key (key is lost or forgotten)

- reveal a fake parameters r^{\prime} instead r, such that $\operatorname{Enc}(m, r)=\operatorname{Enc}\left(m_{f}, r^{\prime}\right)$ and m_{f} is "legal".

Idea of the solution due to Canetti et al.

"Deniable Encryption" due to R.Canetti,C.Dwork,M.Naor,R.Ostovski[CRYPTO 97]
(Sender) deniable encryption:
$\phi(\cdot, \cdot, \cdot, \cdot)$ - faking algorithm
$r^{\prime}:=\phi\left(m, m_{f}, c, r\right)$ such that $c=\operatorname{Enc}\left(m_{f}, r^{\prime}\right)$

Idea of the solution due to Canetti et al.

"Deniable Encryption" due to R.Canetti,C.Dwork,M.Naor,R.Ostovski[CRYPTO 97]
(Sender) deniable encryption:

$$
\begin{aligned}
& \phi(\cdot, \cdot, \cdot, \cdot) \text { - faking algorithm } \\
& r^{\prime}:=\phi\left(m, m_{f}, c, r\right) \text { such that } c=E n c\left(m_{f}, r^{\prime}\right)
\end{aligned}
$$

In case of coercion, (sender,reciver) reveals "legal" m_{f} and r ' instead of "banned" m and r.

Scheme of Canetti al.

Translucent set

Family \mathcal{S}_{t} is called translucent set if
$\square \mathcal{S}_{t} \subset\{0,1\}^{t}$ and $\left|\mathcal{S}_{t}\right|<2^{t-k}$, for sufficiently large $k(t)$.

- It is easy to find random element $x \in \mathcal{S}_{t}$
\square Given $x \in\{0,1\}^{t}$ and trapdoor information d it is easy to check if $x \in \mathcal{S}_{t}$
\square Without d it is not computationally feasible to decide if $x \in \mathcal{S}_{t}$

Translucent set: construction

f - one way permutation, B - hard core-predicate

$$
\mathcal{S}_{t}=\left\{x=x_{0}\left\|b_{1}\right\| \ldots \| b_{k} \in\{0,1\}^{s+k} \mid\left(\forall_{i \leq k}\right) B\left(f^{-i}\left(x_{0}\right)=b_{i}\right)\right\}
$$

Scheme of Canetti al.

Encryption

Encryption:

$\square S \in S_{t}, R$ - randomly chosen from $\{0,1\}^{t}$
■ To encrypt 0 (resp. 1) odd (resp. even) number $i \in 1 \ldots n$ is chosen.
■ Ciphrertext of single bit consist of i S-elements followed by $n-i R$-elements.
Decryption: Parity of S-elements points if the ciphertext encodes 1 or 0.

Scheme of Canetti al.

Opening single bit
Honest Opening: The Sender reveals the real random choices used during encoding.
Dishonest Opening: Parity is changed - single S-element is claimed to be randomly chosen R.

Scheme of Canetti al.

Opening single bit
Honest Opening: The Sender reveals the real random choices used during encoding.
Dishonest Opening: Parity is changed - single S-element is claimed to be randomly chosen R.

■ Scheme provides sender-deniability
\square More effective modifications of the basic scheme were presented

Nested construction based on Canetti et al.'s protocol

Motivation

- Coercer knows that the deniable encryption scheme is used. So the coercer can demand the "true" message.
- Idea: to reveal faked m_{f}, on the second demand reveal also "slightly banned" m^{\prime}, but the real message m is hidden in a deeper layer.

Nested construction

Nested translucent sets

Let $t=s+2 k$. Represent each $x \in\{0,1\}^{t+2 k}$ as

$$
x=x_{0}\left\|b_{1}^{\star}\right\| \ldots\left\|b_{k}^{\star}\right\| b_{1}\|\ldots\| b_{k}
$$

where $x_{0} \in\{0,1\}^{s}$ is followed by $2 k$ bits. Then we define translucent sets as:

$$
\mathcal{S}_{t}^{\star}=\left\{x=x_{0}| | b_{1}^{\star}\|\ldots\| b_{k}^{\star}\left\|b_{1}\right\| \ldots \| b_{k} \mid\left(\forall_{i} \leq k\right) B\left(f^{\star-1}\left(x_{0}\right)=b_{i}^{\star}\right\}\right.
$$

and

$$
\mathcal{S}_{t}=\left\{x_{0}\left\|b_{1}^{\star} \ldots\right\| b_{k}^{\star}\left\|b_{1}\right\| \ldots \| b_{k} \mid\left(\forall_{i} \leq k\right) B\left(f^{-1}\left(x_{0}\left\|b_{1}^{\star} \ldots\right\| b_{k}^{\star}\right)=b_{i}\right\}\right.
$$

Nested construction

Russian dolls - like encryption

- at the price of bandwith of the information channel we can embedded more than two layers of deniability,
- hierarchy of "banned" messages- coercer does not know where the bottom is.

Postponed One-Time Pad

Outline

■ shared key, provides sender (sender-and-receiver) deniability
■ very efficient (size of the ciphertext, computational complexity)

- on principle,can be built on the top of any encryption scheme

■ allows to deny d consecutive encrypted message

Postponed One-Time Pad, basic version

Preliminaries

Global parameters:
$\square \mathfrak{R}=\mathbb{F}_{2^{128}}$
■ $E: \mathfrak{R} \rightarrow \mathfrak{R}$, encryption scheme
■ $a_{1}, a_{2}, F\left(a_{1}\right)$ global parameters from \mathfrak{R}
Secret information shared by the sender and the receiver:
■ $R: \mathfrak{R} \rightarrow \mathfrak{R}$, random polynomial
$\square b \in \mathfrak{R}$

Postponed One-Time Pad, basic version

Encryption

In order to send message m_{i} sender computes:
$1 E\left(m_{i}\right)$-regular ciphertext of m_{i},
$2 b:=R(b)$,
$3 F_{i}$-straight line determined by $\left(a_{1}, F\left(a_{1}\right)\right),(b, E(m))$,
4 the ciphertext $F_{i}\left(a_{2}\right)$ is sent to the receiver.

Postponed One-Time Pad, basic version

Encryption

In order to send message m_{i} sender computes:
$1 E\left(m_{i}\right)$-regular ciphertext of m_{i},
$2 b:=R(b)$,
$3 F_{i}$-straight line determined by $\left(a_{1}, F\left(a_{1}\right)\right),(b, E(m))$,
4 the ciphertext $F_{i}\left(a_{2}\right)$ is sent to the receiver.

Decryption

Since the receiver can get actual value of b, he can find $F_{i}(b)$ and then $m_{i}=E^{-1}(F(b))$

Postponed One-Time Pad, basic version

Dishonest opening -idea

For any set d of messages $m_{f, 1}, m_{f, 2}, \ldots, m_{f, d}$ it is easy to reconstruct a polynomial R_{f} such that gives results that are coherent with previously sent values and decryption procedure gives $m_{f, 1}, m_{f, 2}, \ldots, m_{f, d}$.

Postponed One-Time Pad, basic version

Dishonest opening -idea

For any set d of messages $m_{f, 1}, m_{f, 2}, \ldots, m_{f, d}$ it is easy to reconstruct a polynomial R_{f} such that gives results that are coherent with previously sent values and decryption procedure gives $m_{f, 1}, m_{f, 2}, \ldots, m_{f, d}$.

Details of this scheme are described in the paper

ElGamal -based deniable encryption

Idea

- Scheme perfectly mimics regular ElGamal encryption scheme.
- Sender and receiver share a secret key of regular ElGamal scheme.
- Fake message m_{f} must be fixed in advance.
- Board band subliminal channel

EIGamal -based deniable encryption

Idea

- Scheme perfectly mimics regular ElGamal encryption scheme.
- Sender and receiver share a secret key of regular ElGamal scheme.
- Fake message m_{f} must be fixed in advance.

■ Board band subliminal channel

Preliminaries

\square Public parameters $-0<x<p-1$ is a private key, public key is $y=g^{x}$.
\square Sender and receiver share a secret s and the receiver reveals his secret key x to the sender.

EIGamal -based deniable encryption

Introduction
Previous work

Encryption

$\square k=H A S H\left(s \| m_{f}\right)$ is computed
■

$$
\begin{aligned}
\alpha & :=g^{k} \cdot m, \\
\beta & :=\left(y^{k} \cdot m^{x}\right) \cdot m_{f} .
\end{aligned}
$$

ElGamal -based deniable encryption

Decryption

Having s and x one can easily retrieve m

\[

\]

Faked decryption

Receiver can reveal x. The attacker can check that this message is in fact a regular, valid ElGamal encryption of the message m_{f}

Some other ideas

■ subliminal channel in other schemes

- embedding covert channel in deniable encryption schems

Introduction
Previous work
Our
contribution

THANK YOU FOR YOUR ATTENTION

