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Abstract

Phase I trials evaluating the safety of multi-drug combinations are becoming more common in 

oncology. Despite the emergence of novel methodology in the area, it is rare that innovative 

approaches are used in practice. In this article, we review three methods for Phase I combination 

studies that are easy to understand and straightforward to implement. We demonstrate the 

operating characteristics of the designs through illustration in a single trial, as well as through 

extensive simulation studies, with the aim of increasing the use of novel approaches in phase I 

combination studies. Design specifications and software capabilities are also discussed.
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1 Introduction

In oncology drug development, there has been an increasing interest in investigating the 

potential of drug combinations for patient treatment. The motivation to treat with drug 

combinations stems from the desire to improve the response of the patient, especially those 

who have been resistant to traditional treatment. Multi-agent dose-finding trials present the 

significant challenge of finding a MTD combination (MTDC), or combinations, of the 

agents being tested with the typically small sample sizes involved in phase I studies. Many 

authors have developed dose-finding methods for drug combinations, a thorough review of 

which is given in Harrington et al. (2013). Despite the developments of new methods in the 

area, a recent literature review revealed that the use of novel methods in practice is quite 

limited (Riviere et al., 2015). A recent editorial in Journal of Clinical Oncology by 

Mandrekar (2014) described the use of the method of Ivanova and Wang (2004) in a Phase I 

study of neratinib in combination with temsirolimus in patients with human epidermal 
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growth factor receptor 2-dependent and other solid tumors (Gandhi et al., 2014), and called 

for more frequent use of novel designs. Wages et al. (2015) added to the discussion of 

Riviere et al. (2015) by describing the current implementation of novel methods in several 

ongoing early-phase combination studies, two of which are described below as motivating 

examples.

The limited use of innovative approaches in practice has lead to a recent push to introduce 

simpler methods centered on toxicity probability intervals, with the aim of greater feasibility 

and likelihood of being implemented. In the single-agent setting, Ivanova et al (2007) 

proposed the cumulative cohort design, which was extended to ordinal and continuous 

outcomes by Ivanova and Kim (2009). Ji et al.(2010) developed the modified toxicity 

probability interval (mTPI) design and, more recently, Liu and Yuan (2015) introduced the 

Bayesian optimal interval (BOIN) method. In the multi-agent setting, Mander and Sweeting 

(2015) proposed a curve-free method that relies on the product of independent beta 

probabilities, similar to the mTPI. This method aims to identify several combinations that 

form a maximum tolerated contour. The BOIN method has recently been extended to the 

combination setting by Lin and Yin (2015). In this paper, our objective is to shed some light 

on BOIN for combinations and compare it to some existing approaches that have been 

recently implemented in practice, within the context of real trial examples. Clinical trial 

design specifications, such as cohort size, skipping restrictions, stopping rules, etc., can be 

application (i.e. protocol/design) specific, and can therefore be difficult to generalize to all 

practical situations. In this paper, two of the designs discussed have been implemented in 

published/ongoing studies, so we illustrate them using the specifications utilized in practice. 

In the next section, we discuss some of the challenges associated with designing phase I 

combination studies. In Sections 3 – 5, we review three practical multi-agent dose-finding 

methods. In Section 6, we conduct simulations in order to illustrate the methods in a single 

trial, as well as to assess their performance over many trials. Finally, we conclude with some 

discussion.

2 General considerations in combination dose-finding

In general, we consider two-agent combination trials to be testing agents A and B with dose 

levels i = 1, …, I for A and j = 1, …, J for B, resulting in a I × J dose combination matrix. 

Let dij denote the combination consisting of dose level i of agent A and dose level j of agent 

B. Denote the probability of dose-limiting toxicity (DLT) at dij with πij and the target 

toxicity rate specified by physicians by ϕ. A key assumption to phase I methods for single-

agent trials is the monotonicity of the dose-toxicity curve. In this case, the curve is said to 

follow a “simple order” because the ordering of DLT probabilities for any pair of doses is 

known and administration of greater doses of the agent can be expected to produce DLT's in 

increasing proportions of patients. In studies testing combinations, the probabilities of DLT 

often follow a “partial order” (Barlow et al, 1972) in that there are pairs of combinations for 

which the ordering of the probabilities is not known.

The monotonicity assumption lends itself to escalation along a single line of doses. Given 

the toxicity response (DLT; yes/no) for a particular patient, we either recommend the same 

dose for the next patient or move to one of two adjacent doses (i.e. either escalate one dose 
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higher or de-escalate to one dose lower). In a multi-agent trial, there will most likely be 

more than one possible treatment on which to enroll the next patient cohort in a decision of 

escalation, which implies a set, ℰ, of “possible escalation combinations.” As an illustration, 

consider the 3 × 3 matrix in Figure 1. Suppose the first cohort receives combination d11 and 

no DLT's are observed. If d11 is well-tolerated, it is not clear which dose pair should be 

assigned to the next cohort of patients. The set of possible escalation combinations for d11 

would then consist of two combinations ℰ={d12, d21}. As demonstrated in Figure 1, there 

are several directions in which the trial could move in deciding which combination the next 

entered cohort should receive. Because we make the assumption that each drug has been 

carefully investigated before being combined, we assume that the probability of DLT for 

each drug increases monotonically when the dose of the other drug is being held fixed (i.e. 

across rows and up columns of the matrix of drug combinations). It may be clear that dose 

d12 is more toxic than d11, but, in the off-diagonal direction, we may not know the ordering 

between d12 and d21 because we increased the dose of A and decreased the dose of B. In 

terms of DLT probability, the conditions π11 < π12 and π11 < π21 may hold without it being 

possible to order π21 and π12 with respect to one another. It could be that π12 < π21 or π12 > 

π21.

2.1 Assumption of a single ordering

A traditional approach to this problem is to pre-select combinations with a known toxicity 

order, and apply a single-agent design by escalating and de-escalating along a chosen path. 

This could be done by, a priori, pre-specifying a subset of combinations for which we know 

the toxicity ordering. For instance, in the 3 × 3 grid in Figure 1, a selected subset of 

combinations that satisfies the monotonicity assumption is given by

This approach transforms the two-dimensional dose-finding space into a one-dimensional 

space, and was the approach taken in much of the early early work in combinations. Korn 

and Simon (1993) present a graphical method, called the “tolerable dose diagram,” based on 

single agent toxicity profiles, for guiding the escalation strategy in combination. Kramar, 

Lebecq and Candahl (1999) also lay out an a priori ordering for the combinations, and 

estimate the MTDC using a parametric model for the probability of a DLT as a function of 

the doses of the two agents in combination. The disadvantage of this approach is that it 

limits the number of combinations that can be considered and it can potentially miss 

promising dose combinations located outside of the path.

2.2 Specifying a small set of possible orderings

Rather than work with a single ordering, another approach to dealing with added complexity 

is to specify multiple possible orderings and appeal to established model selection 

techniques. Taking into account known and unknown relationships between combinations 

using the assumption of monotonicity up columns and across rows of the matrix, this 

approach proceeds by laying out multiple possible simple orders of the dose-toxicity 

relationship. For instance, for the 3 × 3 grid in Figure 1, two possible orderings of the DLT 

probabilities, πij, are
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Two methods making use of this approach are the Conaway, Dunbar, and Peddada (CDP) 

design (Conaway et al., 2004) and Wages, Conaway and O'Quigley (POCRM, 2011a,b), 

which are described in detail in subsequent sections.

2.3 Use of more fully parameterized models

The CDP design and POCRM both take an “underparameterized” approach, and, in the case 

of POCRM, rely upon several single parameter models from a CRM class of models 

(O'Quigley et al., 1990). Additional parameters can be utilized to further increase flexibility 

and account for possible interactive effects the two agents may have on the DLT 

probabilities. Thall et al. (2003) proposed a six-parameter model for the DLT probabilities 

of the dose combinations in order to identify a toxicity equivalence contour. Wang and 

Ivanova (2005) proposed a logistic-type regression for combinations that used the doses of 

the two agents as the covariates. Yin and Yuan (2009a,b) developed a Bayesian adaptive 

design based on latent 2 × 2 tables (2009a) and a copula-type model (2009b) for two agents. 

Braun and Wang (2010) proposed a hierarchical Bayesian model for the probability of 

toxicity at each combination. Hirakawa et al. (2013) proposed a dose-finding method based 

on the shrunken predictive probability of toxicity for the two agents. Baily et al. (2009) and 

Riviere et al. (2014) outlined Bayesian dose-finding procedures employing a logistic model. 

Jin et al. (2015) described using Bayesian model averaging over several candidate models, 

including a logistic model, a log-linear model, a Clayton-type copula (Clayton, 1978) model, 

and the six-parameter model of Thall et al. (2003). The added mathematical complexity in 

using more flexible models may hinder the implementation of these methods in practice. 

Estimation of the model parameters can be unstable due to the limited sample sizes observed 

in early-phase studies.

The review of Riviere et al. (2015) concluded that these approaches are not being employed 

in practice, with very few of the trials described by the authors implementing a novel 

approach. Most used some form of the one-dimensional approach described above in 

Section 2.1. This argues for the development of more simple approaches, provided they 

perform as well, or nearly as well, as methods that attempt to fully model the drug 

combination surface. Simulation results in recent publications (Wages, 2015; Hirakawa et 

al., 2015; Yin and Lin, 2015) demonstrate the strong performance of under-parameterized 

approaches, relative to more fully-parameterized approaches. In this article, we compare 

performance of three methods - (1) the CDP design, (2) POCRM, and (3) the BOIN method 

for combinations - based on 6 evaluation indices under 12 true combination-toxicity 

scenarios. In general, our goal is to evaluate (1) how well each method identifies MTDC's at 

and around the target rate, and (2) how well each method allocates patients to combinations 

at and around the target rate. We also provide a brief discussion of how feasible it is to 

implement each method given its respective design specifications and software capabilities.
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3 Conaway, Dunbar, Peddada (CDP) design

3.1 Phase I trial example using CDP method

A phase I, single-institution, investigator-initiated trial was designed and conducted to study 

induction therapy with VELCADE and Vorinostat in patients with surgically resectable non-

small cell lung cancer (NSCLC) (Jones et al., 2012). The primary objective of the study was 

to determine the MTDC of 3 doses (1.0, 1.3, 1.6 mg/m2) of VELCADE and 4 doses (100, 

200, 400, 600 mg) of Vorinostat in patients with NSCLC. The two-staged design of 

Conaway et al. (CDP; 2004) was used to estimate the MTDC of the 12 (3 × 4) drug 

combinations. The target toxicity rate for determining the MTD combination was 33%.

3.2 CDP estimation procedure

The CDP design is based on the estimation procedure of Hwang and Peddada (1994), which 

discusses parameter estimation subject to order restrictions. The procedure uses different 

estimation procedures for “nodal” and “non-nodal” parameters. A nodal parameter is one 

whose ordering is known with respect to all other parameters. For example, in a I × J matrix 

of drug combinations, the probability of DLT, π11, at combination d11 is a nodal parameter 

because it is known that π11 < πi+1,j and π11 < πi,j+1 for i, j ≥ 1. For nodal parameters, 

estimation proceeds by establishing a simple order that is consistent with the partial order. 

This is done by guessing the unknown inequalities, and obtaining isotonic regression 

estimates of the nodal parameters πij based on the Pool Adjacent Violators Algorithm 

(PAVA; Barlow et al., 1972). In order to estimate the non-nodal parameters, Hwang and 

Peddada (1994) eliminate the smallest number of parameters that make a non-nodal 

parameter into a nodal parameter. For instance, π12 is a non-nodal parameter because it is 

unknown whether π12 < π21 or vice versa. Estimates of the non-nodal parameters can be 

obtained using a version of PAVA for simple orders that fixes the nodal parameters at their 

previously estimated values. Hwang and Peddada (1994) show that the resulting estimates 

satisfy the partial order. The CDP design computed estimates of the parameters under all 

possible guesses and averaged them in order to eliminate the dependence of the estimates on 

a single guess at the ordering between non-nodal parameters.

The CDP method is a two-stage design. The initial stage is designed to quickly escalate 

through treatment combinations that are non-toxic (in single patient cohorts until first DLT 

is observed) and the second stage implements the Hwang and Peddada (1994) estimates. 

Throughout the second stage, the toxic response data for combination dij is of the form Y = 

{yij; i = 1, …, I; j = 1, …, J} with yij equal to the number of observed toxicities from patients 

treated with combination dij. Let  denote the set of treatments that have been administered 

thus far in the trial such that  = {dij : nij > 0}, where nij denotes the number of patients 

treated on each combination. Using a Beta(αij, βij) prior for the πij, the updated DLT 

probabilities, only for dij ∈ , are given by
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The estimation procedure of Hwang and Peddada (1994) is applied to the updated posterior 

means π̂
ij for dij ∈ .

3.3 CDP design specifications

If appropriate prior information is available to investigators, it is described through a prior 

distribution of the form πij ~ Beta(αij, βij). The investigators specify the expected value of πij 

and an upper limit uij such that they are 95% certain that the toxicity probability will not 

exceed uij. The equations,

are solved in order to obtain prior specifications for αij and βij. Another prior specification 

for the CDP method is to choose a subset of possible dose-toxicity orders based on ordering 

the combinations by rows, columns, and diagonals of the drug combination matrix. Using 

the guidance of Wages and Conaway (2013), we choose a subset of approximately 6–9 

orderings. This provides an appropriate balance between choosing enough orderings so that 

we include adequate information to account for the uncertainty surrounding partially ordered 

dose-toxicity curves, without increasing the dimension of the problem so much so that we 

diminish performance. Arrange the orderings according to movements across rows, up 

columns and along diagonals. Since, in a large matrix, there could many ways to arrange 

combinations along a diagonal, we restrict movements to only moving across rows, up 

columns, and up or down any diagonal. For instance, in the 3 × 3 grid in Figure 1, six 

orderings arranged in this manner are given by:

1. across rows:

2. up columns:

3. up diagonals:

4. down diagonals:

5. down-up diagonals:

6. up-down diagonals:
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3.4 CDP dose-finding algorithm

Stage 1—The first patient is entered at the lowest combination d11. In the CDP method, the 

possible escalation combinations are defined as

so that ℰ = {neighboring combinations for which we know we are escalating}. For instance, 

if combination d11 is deemed safe, then the next cohort is treated with a combination chosen 

from among ℰ = {d21, d12}. If ℰ contains multiple combinations, the next cohort is 

randomized to a combination in the set. Once a DLT is observed, Stage 2 begins.

Stage 2—For all dij ∈ , we compute the loss, L(π̂ij, ϕ), associated with each 

combination. In this paper, as in the CDP design, we implement a symmetric loss function 

so that L(π̂ij, ϕ) = |π̂ij − ϕ|.

1.
Let , and let  be the set of combinations with losses equal to 

the minimum observed loss,  = {dij : Lij(π̂ij, ϕ) = lmin}.

2. If there is a single combination, dij ∈ , then the suggested combination is dij, with 

an estimated DLT probability of π̂ij

3. If  contains more than one combination, then we randomly choose from among 

them according to the rules:

a. If π̂ij > ϕ ∀ dij ∈ , we randomly choose from among the set  of candidate 

combinations.

b. If π̂
ij ≤ ϕ for at least one dij ∈ , we choose randomly among the 

combinations in  that are candidate for having the “largest” DLT 

probability.

4. If the suggested combination has an estimated DLT probability that is less than the 

target, a combination is chosen at random from ℰ that have not yet been tested in 

the trial.

5. The MTDC is defined as di*j* such that

where  = {(dij : nij > 0} is the set of tried combinations.
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4 Partial order continual reassessment method (POCRM)

4.1 Phase I trial example 1 using POCRM

A dose escalation study was designed to determine the MTD / appropriate phase II dose 

combination of two small molecule inhibitors for refractory solid tumors and untreated 

metastatic disease. Agent A contained three doses (1.0, 1.5, 2.0 mg/day) and Agent B 

contained three doses (1000, 1250, 1500 mg/day), for a total of 9 (3 ×3) drug combinations. 

This FDA/IRB approved trial was designed using the two-stage POCRM (Wages et al., 

2011b). Each stage treated patients in single patient cohorts, and the target toxicity rate for 

determining the MTD combination was 30%.

4.2 Phase I trial example 2 using POCRM

A phase I trial was designed to determine the MTD of a combination of long peptides plus a 

toll-like receptor (TLR) agonists with or without a form of incomplete Freund's adjuvant 

(IFA) for the treatment of melanoma (NCT01585350). In this FDA/IRB approved trial, TLR 

agonists had 4 dose levels (25, 100, 400, 1600 EU) and IFA had three subgroups: 0 - IFA is 

not administered with any vaccine, V1 - IFA is administered with just the first vaccine, and 

V6 - IFA is administered in all vaccines. This trial was also designed using the two-stage 

POCRM (Wages et al., 2011b) There are a total of 12 combinations under consideration, and 

the target rate for determining the MTD combination was 33%.

4.3 POCRM estimation procedure

The CRM for partial orders is based on utilizing a class of working models that correspond 

to possible orderings of the toxicity probabilities for the combinations. Specifically, suppose 

there are M possible orderings being considered which are indexed by m. For a particular 

ordering, we model the true probability of toxicity, πij, corresponding to combination dij, via 

a power model

where the αij(m) represent the skeleton of the model under ordering m. In work done by 

Wages, the use of other single-parameter working models common to the CRM class, such 

as a hyperbolic tangent function or a one-parameter logistic model, was explored and found 

that there is little difference in the operating characteristics among the various model 

choices. We let the plausibility of each ordering under consideration be described by a set of 

prior weights τ = {τ(1), …, τ(M)}, where τ(m) ≥ 0 and ∑τ(m) = 1;m = 1, …, M. Using the 

accumulated data, Ωi, from i patients, the MLE âm of the parameter am can be computed for 

each of the m orderings, along with the value of the log-likelihood, ℒm(âm | Ωi), at âm. 

Wages et al. (2011b) proposes an escalation method that first chooses the ordering that 

maximizes the updated model weight
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before each patient inclusion. If we denote this ordering by m*, the authors use the estimate 

âm* to estimate the toxicity probabilities for each combination under ordering m* so that π̂
ij 

≈ ψm*(dij, âm*).

4.4 POCRM design specifications

As in the CDP design, a prior specification for POCRM is to choose a subset of possible 

dose-toxicity orders. We again rely on the guidance of Wages and Conaway (2013) and 

choose approximately 6–9 orderings based on ordering the combinations by rows, columns, 

and diagonals of the drug combination matrix. Another specification that needs to be made 

prior to beginning the study is a set of skeleton values αij(m). We utilize the algorithm of 

Lee and Cheung (2009) to generate reasonable skeleton values using the function getprior 
in R package dfcrm. We simply need to specify skeleton values at each combination that 

are adequately spaced (O'Quigley and Zohar, 2010), and adjust them to correspond to each 

of the possible orderings, in order for POCRM to have good performance in terms of 

identifying an MTDC. The location of these skeleton values can be adjusted to correspond to 

each of the possible orderings using the getwm function in R package pocrm (Wages and 

Varhegyi, 2013).

4.5 POCRM dose-finding algorithm

Within the framework of sequential likelihood estimation, an initial escalation scheme is 

needed, since the likelihood fails to have a solution on the interior of the parameter space 

unless some heterogeneity (i.e. at least one DLT and one non-DLT) in the responses has 

been observed.

Stage 1—In our comparative study, in attempt to make the methods as comparable as 

possible, the initial escalation stage utilized in POCRM simulations is the same as that of the 

CDP design, where allocation is guided according to ℰ = {(i + 1, j), (i, j + 1)}.

Stage 2—Subsequent to a DLT being observed, the second stage of the trial begins.

1. Based on the accumulated data from i patients Ωi, the estimated toxicity 

probabilities π̂ij are obtained for all combinations being tested, based on the 

procedure described above.

2. The next entered patient is then allocated to the dose combination with estimated 

toxicity probability closest to the target rate so that |π̂
ij − ϕ| is minimized.

3. There is no formal skipping restriction placed on model-based allocation in the 

POCRM method. That is, movement within the matrix is not restricted to a 

neighbor of the currently occupied combination in Stage 2. This is meant to allow 

for adequate exploration of the drug combination space. For instance, movement 

from d13 to d31 “skips” over d22, yet it is unknown whether this move is actually an 

escalation or a de-escalation due to the partial order, so we allow such a move to 

encourage experimentation throughout the matrix and to avoid getting “stuck” in 

certain regions of the space.

4. The MTDC is defined as di*j* such that
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after a total sample size of n patients.

5 Bayesian optimal interval (BOIN) design

5.1 BOIN estimation procedure

The BOIN method allocates patients to combinations based on lower and upper cut-off 

values, denoted ΔL > 0 and ΔU > 0, such that 0 < ϕ − ΔL < ϕ + ΔU < 1. Optimal values of ΔL 

and ΔU are given by

where ϕ1 is the highest DLT probability that is regarded as sub-therapeutic indicating 

escalation should be considered and ϕ2 (> ϕ1) is the lowest DLT probability that is regarded 

as too toxic indicating that de-escalation should be considered. Detailed derivations of ΔL 

and ΔU are provided in Lin and Yin (2015). Suppose the current cohort of patients is treated 

at dij, and let π̂
ij = yij/nij be the estimated DLT rate, where yij is the number of observed 

DLT's and nij is the number of patients treated at dij. Based on the data from the current 

cohort, possible sets, ℰ and , for escalation and de-escalation, respectively, consist of row 

and column neighbors to the current combination.

5.2 BOIN design specifications

In practical situations, given a target rate of ϕ, the specifications of ϕ1 ∈ [0.5ϕ, 0.7ϕ] and ϕ2 

∈ [1.3ϕ, 1.5ϕ] are appropriate and yield good operating characteristics. The default values 

recommended by the authors of the BOIN method, both in single- (Liu and Yuan, 2015) and 

multiple-agents (Lin and Yin, 2015), are ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ. The prior distribution on 

each πij is Beta(0.5, 0.5).

5.3 BOIN allocation algorithm

The BOIN method for combinations allocates patient cohorts according to the following 

dose-finding algorithm.

1. Allocate the first cohort of patients to the lowest dose of each drug, i.e. 

combination d11

2. Based on the treatment of the current cohort at combination dij

a. If πîj ≤ ϕ − ΔL, escalate to the combination in ℰ that maximizes Pr{πi′j′ ∈ (ϕ 

− ΔL, ϕ + ΔU)| yi′j′}
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b. If π̂ij ≥ ϕ + ΔU, de-escalate to the combination in  that maximizes Pr{πi′j′ ∈ 

(ϕ − ΔL, ϕ + ΔU)| yi′j′}

c. Otherwise, if ϕ − ΔL < π̂
ij < ϕ + ΔU, stay at the current combination dij

3. Continue this allocation procedure until the maximum sample size is reached.

During the allocation algorithm, if more than one combination is contained in ℰ or , the 

method randomly chooses one with equal probability. If no combinations are contained in ℰ 

and , the current combination is retained. On the boundary of the combination space, if i = 

1 and π̂
ij ≥ ϕ + ΔU, the next combination is di,j−1, unless dij = d11 in which case the 

combination would remain d11. If i = I and πîj ≤ ϕ − ΔL, the next combination is di,j+1, 

unless dij = dIJ in which case the combination would remain dIJ. Similar allocations can be 

made with respect to the boundaries of j. After accrual of the maximum sample size into the 

study, estimates of the DLT rates, π̃ij, at each combinations are generated using bivariate 

isotonic regression (Barlow et al., 1972). The MTD combination di*,j* that is selected at the 

conclusion of the trial is that with the estimated DLT rate closest to the target rate so that

where  = {(dij : nij > 0} is the set of tried combinations.

6 Numerical studies

6.1 Simulation settings

We compared the operating characteristics among the three methods by simulating 2000 

trials under 12 scenarios with 3 × 3, 3 × 4, and 4 × 3 dose combination matrices with 

varying positions and number of true MTDCs, as shown in Table 1. These matrices, as well 

the simulation specifications (target rate ϕ, sample size n, etc.), correspond to the trial 

examples described in the previous sections. The target rate is set to ϕ = 0.30 in Scenarios 

1–4, ϕ = 0.33 in Scenarios 5–8, and ϕ = 0.20 in Scenarios 9–12. The sample size is n = 27 in 

Scenarios 1–4, n = 36 in Scenarios 5–8, and n = 36 in Scenarios 9–12. Throughout the 

simulations studies, for each method, a cohort of size 1 is used. In practice, patients can 

sometimes be treated in larger cohort sizes (i.e. 3), but since the POCRM and CDP methods 

were implemented in practical situations using smaller cohorts, we decided to illustrate 

performance using this specification. This was also aided by the fact that the R code for the 

BOIN method allowed the cohort size to be specified by the user, so we thought the most 

justifiable comparison would involve making it the same as the other methods. The true 

scenarios were used in designing the trial and obtaining approval of scientific review 

committees; IRBs and the FDA. In each scenario, an acceptable MTDC is defined as any 

combination with a true DLT probability within 5% of the target rate; (i.e. ϕ ± 0.05). An 

overdose combination is defined as any combination with true DLT probability larger than 

5% above the target rate; (i.e. > ϕ + 0.05).

For the CDP design, we present results for a prior that sets the prior mean equal to the target 

rate. We take the prior mean to equal ϕ, and a prior upper 95% limit of 0.70 for all 
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combinations. We utilized six possible orderings in all scenarios, arranging the combinations 

across rows, up columns, and up or down any diagonal. For POCRM, we utilized the same 

set of possible orderings as the CDP design. A uniform prior, τ, was placed on the orderings. 

The skeleton values, αij(m), were generated according to the algorithm of Lee and Cheung 

(2009) using the getprior function in R package dfcrm. Specifically, for 3 × 3 

combinations, we used getprior(0.05,0.30,4,9); for 3 × 4 combinations, we used 

getprior(0.05,0.33,6,12); and for 4 × 3 combinations, we used getprior(0.04,0.20,6,12). All 

simulation results were carried out using the functions of pocrm. For the BOIN method, we 

used the default values ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ and Beta(0.5, 0.5) prior for the DLT 

probability at each combination. The boundaries for the BOIN method are ϕ − ΔL ≈ 0.236, 

ϕ + ΔU ≈ 0.359 for Scenarios 1–4, ϕ − ΔL ≈ 0.263, ϕ + ΔU ≈ 0.398 for Scenarios 5–8, and 

ϕ − ΔL ≈ 0.157, ϕ + ΔU ≈ 0.238 for Scenarios 9–12.

6.2 Single trial illustration

In the simulation of DLT outcomes in a trial, the tolerance of each patient can be considered 

a uniformly distributed random variable on the interval [0, 1], which we term a patient's 

latent toxicity tolerance and denote uk for the kth entered patient (O'Quigley, Paoletti, 

Maccario, 2002). At the combination (dij) assigned to patient k, if the tolerance is less than 

or equal to its true DLT probability (i.e. uk ≤ πij), then patient k has a DLT; otherwise the 

patient has a non-DLT outcome. Of course, in a real trial, it is impossible to observe a 

patient's latent tolerance, but it is a useful tool in simulation and can be used to compare the 

operating characteristics of different designs within a single trial. Based on the same latent 

tolerance sequence, the allocation algorithms of the BOIN method, the CDP method, and 

POCRM can be evaluated using the same patients, although each patient will not be 

necessarily treated at the same combination with each method.

In conducting this exercise to compare the three methods discussed in this paper, we 

generated the latent tolerance sequence in Table 2 for n = 27 patients using the function 

runif(27) in R. The allocation algorithm is illustrated using the true DLT probabilities in 

Scenario 3 from Table 1, with target rate ϕ = 0.30. Each method begins on the lowest 

combination so that patient 1 receives d11. Because the tolerance u1 = 0.9776, he/she does 

not have a DLT, since u1 > 0.02. Escalating in cohorts of size 1, each method then 

recommends that the second patient receive one of two combinations in the set ℰ = {d12, 

d21}. The BOIN method and the CDP method randomize the second patient to d12, whereas 

POCRM randomizes to d21. The latent tolerance u2 = 0.5949 is larger than both π12 = 0.20 

and π21 = 0.06, resulting in a non-DLT outcome for each method. The first DLT occurs for 

each method at the 4th entered patient, based on a latent tolerance of u4 = 0.055, which is 

less than the true DLT probability for the combination recommended to this patient by each 

method. Notice at this point, both the CDP method and POCRM would terminate Stage 1 of 

their designs due to heterogeneity in the DLT outcomes, and proceed with their respective 

Stage 2. The BOIN method is a single stage design and thus proceeds in the same manner 

throughout the trial.

There are some interesting features to each design as it sequentially allocates. For this 

particular latent tolerance sequence, the algorithm of the CDP method appears to settle on 
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d22 very quickly (i.e. after patient 5), while POCRM and the BOIN method move around the 

drug combination space more. For this tolerance sequence, given this scenario, this is a very 

attractive feature for the CDP design, because it treats 23 of 27 patients, and ultimately 

recommends as the MTDC, d22, which has a true DLT probability of π22 = 0.33. However, 

this is only one simulated trial for a single latent sequence. Quickly settling on a 

combination can be a very good thing if that combination is an acceptable MTDC, but can 

be a poor design feature if the settled on combination is not an acceptable MTDC. Related to 

movement around the drug combination space, it is of interest to note that POCRM allows 

movement at both ends of a diagonal of the matrix. In other words, after patient 13 receives 

d13, the next combination recommended is d31. This represents a two dose level change in 

both agents, although it is unknown in practice whether this is actually an escalation or a de-

escalation. After n = 27 patients, POCRM recommends d13 as the MTDC, which has a true 

DLT probability of π13 = 0.33.

For the BOIN method, it is worth paying close attention to patients 22–24. Patient 22 

receives d22 and experiences DLT. At this point in the trial, π̂22 = y22/n22 = 2/9 ≈ 0.22. 

Since π̂
22 < 0.236(ϕ−ΔL), the method recommends escalation to d32 after this DLT. Patient 

23 receives d32 and does not experience DLT. At this point in the trial, π̂32 = y32/n32 = 3/8 ≈ 

0.38. Since π̂32 > 0.358(ϕ + ΔU), the method recommends de-escalation to d23 after this non-

DLT. Thus, in this simulated trial, there are instances in which the BOIN method allows a 

de-escalation after non-DLT, as well as an escalation after a DLT. These recommendations 

appear to violate the principle of coherence, as defined by Cheung (2005). However, Liu and 

Yuan (2015) extended the coherence definition to include both short-term memory 

coherence and long-term memory coherence, and discussed the notion that long-term 

memory coherence is more practically relevant. Although the recommendations of patients 

23 and 24 violate short-term memory coherence, they obey long-term memory coherence, 

and, by this definition, can be considered justifiable allocations. At the conclusion of the 

trial, the BOIN method recommends d22 as the MTDC, which has a true DLT probability of 

π22 = 0.33. Each method recommends an acceptable MTDC in this simulated trial given the 

same latent toxicity sequence.

6.3 Evaluating performance over many situations

We assessed performance of the three methods based on 6 evaluation indices under 12 

toxicity scenarios. In general, our goal is to evaluate (1) how well each method locates 

MTDC's at and around the target rate (i.e. acceptable MTDC's), and (2) how well each 

method allocates patients to acceptable MTDC's. Of course, there will always be certain 

scenarios in which some methods perform better than others. Therefore, a useful tool in 

comparing dose-finding designs can be average performance over a broad range of 

scenarios. While traditional evaluation measures, such as the percentage of recommendation 

and allocation for true MTDC's are useful in assessing performance, it is also beneficial to 

consider the entire distribution of selected dose combination, as it provides more detailed 

information as to what combinations are being recommended if a true acceptable MTDC is 

missed. Cheung (2011) proposes to use the accuracy index, after n patients, defined as
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where πij is the true toxicity probability of dose combination dij and ρij is the probability of 

selecting dose combination dij as the MTDC. The maximum value of An is 1 with larger 

values (close to 1) indicating that the method possesses high accuracy.

6.4 Results

Figures 2 and 3 show the operating characteristics of the 3 methods under 12 scenarios. 

Across the 12 scenarios, the BOIN method, the CDP design and POCRM methods 

demonstrated averages of 47.4%, 43.0%, and 48.3% recommendation rates for true 

acceptable MTDCs, respectively. The BOIN design, the CDP design, and POCRM 

demonstrated averages of 26.7%, 23.7%, and 25.7% recommendation rates for overdose 

combinations, respectively. The average number of patients allocated to true acceptable 

MTDCs of the the BOIN method, the CDP design, and POCRM methods were averages of 

11.8, 11.3, and 12.7, respectively. The overall percentage of observed toxicities of the BOIN 

method, the CDP design, and POCRM methods were averages of 27.3%, 26.3%, and 25.7%, 

respectively. Although this percentage is lowest for POCRM, it is desirable for the value to 

be as close as possible to the target rate ϕ, which varies over the scenarios considered. 

Therefore, this overall percentage as a benchmark for performance is difficult to judge. In 

Scenarios 1–8, the BOIN method yields the average overall toxicity percentage closest to ϕ, 

whereas POCRM does so in Scenarios 9–12. Average number of patients allocated to a dose 

combination above the true MTDCs of the BOIN method, the CDP design, and POCRM 

methods were averages of 12.7, 11.23, and 9.92, respectively. Based on the accuracy index, 

the POCRM yielded a value of 0.583, the BOIN method produced a value of 0.576, and the 

CDP design resulted in a value of 0.564.

One of the most notable operating characteristics that should be taken away from these 

results occurs in Scenarios 2, 5, and 9 in which the only acceptable MTDC is the highest 

dose level of each agent, and thus is located at the top right corner of the drug combination 

matrix. In these cases, the CDP design struggles to select the highest combination relative to 

the other methods, and its performance in terms of recommending and allocating patients to 

acceptable MTDC's diminishes in these scenarios. For instance, in Scenario 2, the 

recommendation percentage of true acceptable MTDC's is 56.2% and 53.9% for the BOIN 

method and POCRM, respectively, where as this percentage is 34.1% for the CDP method. 

Scenarios 5 and 9 contain similar results, and these findings are also reflected in the 

accuracy index. In scenarios other than 2, 5, and 9, the CDP method performs very well, and 

is the best performing method, in terms of the evaluation metrics used, in five of the nine 

remaining scenarios (1, 3, 6, 8, and 11). This highlights the importance of average 

performance. The CDP method offers a higher risk-reward approach than the other two 

methods in terms of performance. If the true acceptable MTDC(s) are in the interior of the 

drug combination space, then the CDP method appears to be the best method, yielding the 
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highest performance in many scenarios. However, its drop-off in performance in the 

scenarios in which the true MTDC is at the top of the matrix makes the alternative methods 

more attractive options in these cases, and the overall average performance reflect the more 

consistent results of POCRM and the BOIN method. Overall, the results of these two 

methods are comparable, on average, across the scenarios considered.

7 Concluding remarks

Motivated by real life examples in phase I trial settings, we studied the operating 

characteristics of three simple dose-finding methods for combinations under various 

practical scenarios. We considered several scenarios in which there was no “perfect” 

MTDC; i.e. there are no combinations with true DLT rate exactly equal to the target toxicity 

rate. All three methods would be useful in the practical setting of phase I combination trials 

over designs employing a more complex model, because the design specifications are 

considerably less in the approaches considered here. Additionally, simulation studies in 

Wages (2015), Hirakawa et al. (2015), and Lin and Yin (2015) indicate that the performance 

in terms of recommending true MTDCs may diminish as the mathematical complexity of the 

method increases, given the small sample size constraints of phase I studies. As for 

implementation in practice, there is no available software for the CDP method, and its 

escalation algorithm can be difficult and time-consuming to program. POCRM has the 

advantage of directly building off of the well-known CRM and is likely to be more easily 

understood by clinicians and review boards. The POCRM has recently been extended to 

handle time-to-event outcomes (Wages, Conaway, and O'Quigley, 2013). In addition to the 

trial examples described in this work, The POCRM was implemented as part of a multi-site, 

phase I/II trial of combination immunotherapies that is currently open to enrollment at UVA 

and M.D. Anderson Cancer Center (NCT02126579; Wages, Slingluff, and Petroni, 2015). 

The estimation procedure employed by POCRM is used in this trial to adaptively monitor 

safety and to identify an acceptable set of regimens in high-risk melanoma patients. After 

each patient inclusion, POCRM updates the acceptable set of safe regimens, and the next 

patient is allocated to the acceptable regimen exhibiting the highest immunogenicity. Most 

recently, a bivariate extension of POCRM (Wages and Conaway, 2014) was implemented in 

a phase I/II design for a trial combining two small molecule inhibitors in relapsed/refractory 

mantle cell lymphoma. This pharmaceutical industry-sponsored trial has FDA approval, and 

is slated to open in mid-2015. Currently, POCRM is the only method described in this work 

that has available software on the web that can be used for design implementation (i.e. 

obtaining a combination recommendation for the next entered cohort, given the data to that 

point in the trial), as well as simulating design operating characteristics. R code for 

simulating the BOIN method is available upon request from the first author of their paper. 

The R code for the BOIN method provided the fastest simulation time among the three 

methods, but results for each method were able to be generated in a reasonable amount of 

time, making them all feasible for practical use.
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Figure 1. 
Illustration of a partial order between π11, π12 and π21 in a drug combination matrix. If d11 

is well tolerated, the set of possible escalation combinations is ℰ={d12, d21}. Two possible 

simple orders satisfy this partial order.
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Figure 2. 
Summary of the operating characteristics of the 3 methods in all scenarios.
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Figure 3. 
Summary of the operating characteristics of the 3 methods in all scenarios.
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