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INTRODUCTION 
 

A second-generation performance-based earthquake engineering (PBEE-2) procedure has 

been developed by the Pacific Earthquake Engineering Research (PEER) Center and 

others that estimates the probabilistic future seismic performance of buildings and 

bridges in terms of system-level decision variables such as repair cost, casualties, and 

loss of use (dollars, deaths and downtime). The Applied Technology Council has 

undertaken to transfer the methodology to professional practice [ATC 2005]. The 

methodology involves four stages: hazard analysis, structural analysis, damage analysis, 

and loss analysis. This paper addresses the damage analysis, whose inputs are demand 

parameters calculated in a suite of multiple-degree-of-freedom nonlinear dynamic 

analyses, and whose output is the damage state of each damageable structural and 

nonstructural component in the facility. The analysis uses fragility functions, which in 

this context give the probability that a component, element or system will be damaged to 

a given or more severe damage state as a function of a single predictive demand 

parameter such as story drift or floor acceleration. One such fragility function is required 

for each component type and damage state. Many building-component fragility functions 

have been created in the past, but no comprehensive set of procedures exists on how to 

create them. This paper summarizes such a standard developed for ATC-58. See Porter et 

al. [2006] for more detail, examples, commentary, and alternative approaches.  

 

FRAGILITY FUNCTION DEFINITION 
 

Fragility functions are probability distributions that are used to indicate the probability 

that a component, element or system will be damaged to a given or more severe damage 

state as a function of a single predictive demand parameter such as story drift or floor 

acceleration. Here, fragility functions take the form of lognormal cumulative distribution 

functions, having a median value θ and logarithmic standard deviation, β. The 

mathematical form for such a fragility function is: 
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where:  Fi(D) is the conditional probability that the component will be damaged to 

damage state “i” or a more severe damage state as a function of demand parameter, D; Φ 

denotes the standard normal (Gaussian) cumulative distribution function, θi denotes the 



median value of the probability distribution, and βi denotes the logarithmic standard 

deviation. Both θ and β are established for each component type and damage state using 

one of the methods presented later. The probability that a component will be damaged to 

damage state “i” and not to a more or less severe level given that it experiences demand, 

D is given by: 

( ) ( )1i iP i D F D F D+⎡ ⎤ = −⎣ ⎦  (2) 

where Fi+1(D) is the conditional probability that the component will be damaged to 

damage state “i+1” or a more severe state and Fi(D) is as previously defined. Note that, 

when βi+1 is unequal to βi, (2) can produce a meaningless negative probability at some 

levels of D. This case is addressed later. 

The lognormal is used here because it fits a variety of structural component failure 

data well (e.g., [Beck et al. 2002], [Aslani 2005], [Pagni and Lowes 2006]), as well as 

nonstructural failure data ([Badillo-Almaraz et al. 2006], [Porter and Kiremidjian 2001], 

[Reed et al. 1991 Appendix J]), and building collapse by incremental dynamic analysis 

(e.g., [Cornell et al. 2005]). It has strong precedent in seismic risk analysis (e.g., 

[Kennedy and Short 1994]; [Kircher et al. 1997]). Finally, there is a strong theoretical 

reason to use the lognormal: it has zero probability density at and below zero EDP, is 

fully defined by measures of the first and second moments—ln(xm) and β—and imposes 

the minimum information given these constraints, in the information-theory sense 

(Goodman 1985). 

Figure 1(a) shows the form of a typical fragility function when plotted in the form of 

a cumulative distribution function; and (b), the calculation of the probability that a 

component will be in damage state “i” at a particular level of demand, d.  
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FIGURE 1 
(A) EXAMPLE FRAGILITY FUNCTION, AND (B) EVALUATING INDIVIDUAL DAMAGE-STATE PROBABILITIES 

 

The logarithmic standard deviation, β, represents uncertainty in the actual value of 

demand, D, at which a damage state is likely to initiate in a component. This uncertainty 

is a result of variability in the quality of construction and installation of the components 

in a building, as well as variability in the loading history that the component may 



experience before it fails. When fragility parameters are determined on the basis of a 

limited set of laboratory test data, two components of the variance should be considered. 

The first of these, termed herein βr, represents the random variability that is observed in 

the available data from which the fragility parameters are determined. The second 

portion, βu, represents uncertainty that the tests represent the actual conditions of 

installation and loading that a real component in a building will experience. The 

logarithmic standard deviation parameter β, is computed as: 
22

ur βββ +=  (3) 

The ATC-58 guidelines recommend the following minimum values of the uncertainty 

parameter βu. A minimum value of 0.25 should be used if any of the following apply: 

• Test data are available for five (5) or fewer specimens. 

• In an actual building, the component can be installed in a number of different 

configurations, however, all specimens examined for the fragility function had the 

same configuration. 

• All test specimens were subjected to the same loading protocol. 

• Actual behavior of the component is expected to be dependent on two or more 

demand parameters, e.g. simultaneous drift in two orthogonal directions, however, 

specimens were loaded with only one of these parameters. 

If none of the above conditions apply, a value of βu of 0.10 may be used. 

 

DERIVATION METHODS 
 

Fragility functions can best be derived when there is a large quantity of appropriate test 

data available on the behavior of the component of interest at varying levels of demand. 

FEMA 461 provides recommended protocols for performing such tests and recording the 

data obtained. Since testing is expensive and time consuming, there is not a great body of 

test data presently available to serve as the basis for determining fragility functions for 

many building components. Therefore, these guidelines provide procedures for 

developing the median (θ) and logarithmic standard deviation (β) values for a fragility 

under five different conditions of data. These are: 

A. Actual demand data: When test data is available from M number of specimens and 

each tested component actually experienced the damage state of interest at a known 

value of demand, D. 

B. Bounding demand data: When test data or earthquake experience data are available 

from M number of specimens, however, the damage state of interest only occurred in 

some specimens. For the other specimens, testing was terminated before the damage 

state occurred or the earthquake did not damage the specimens. The value of the 

demand, Di, to which each specimen was subjected is known for each specimen. 

(Need not be the demand at which the damage state initiated.) 

C. Capable demand data: When test data or earthquake experience data are available 

from M number of specimens, however, the damage state of interest did not occur in 

any of the specimens. The maximum value of demand, Di, to which each specimen 

was subjected is known. 



D. Derivation (analysis): When no laboratory or earthquake experience data are 

available, however, it is possible to model the behavior and estimate the level of 

demand at which the damage state of interest will occur. 

E. Expert opinion: When no data are available and analysis of the behavior is not 

feasible, however, one or more knowledgeable individuals can offer an opinion as to 

level of demand at which damage is likely to occur, based either on experience or 

judgment. 

U. Updating: Where an existing fragility function and new bounding data are available. 

Updating revises the existing fragility function using the new data.  

 

Before providing guidelines for each condition, this section provides recommendations 

for documenting the basis for fragility function. 

 

1. Description of applicability. Describe the type of component that the fragility 

function addresses including any limitations on the type of installation to which the 

fragility applies.  

2. Description of specimens. Describe the specimens used to establish the fragility 

including identifying the number of specimens examined, their locations, and the 

specific details of the specimen fabrication/construction, mounting and installation. 

3. Demands and load application. Detail the loading protocol or characteristics of 

earthquake motion applied to each specimen. Identify the demand parameters examined 

that might be most closely related to failure probability and define how demand is calculated 

or inferred from the loading protocol or excitation. Indicate whether the reported 

demand quantities are the value at which damage occurred (Method A data) or the 

maximum to which each specimen was subjected. 

4. Damage state. Fully describe each damage state for which fragilities are developed 

including the kinds of physical damage observed and any force-deformation 

quantities recorded. Define damage states quantitatively in terms of the repairs required or 

potential downtime or casualty consequences.  
5. Observation summary, analysis method, and results. Present a tabular or graphical 

listing of specimens, demand parameters, and damage states. Identify the method(s) 

used to derive the fragility parameters. Present resulting fragility function parameters θ 

and β and results of tests to establish fragility function quality (discussed below). Provide 

sample calculations.  



FRAGILITY PARAMETER DERIVATION 
 

Method A. Actual Demand Data 

 

This section defines the procedures for deriving fragility parameters (θ, β) when data are 

available from a suitable series of tests and in each specimen, the damage state of interest 

was initiated at a known value of the demand. In this case, the median value of the 

demand at which the damage state is likely to initiate, θ, is given by the equation: 
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Where: 

M = total number of specimens tested to at least the initiation of the damage state 

di = demand in test “i” at which the damage state was first observed to occur. 

The value of the random logarithmic standard deviation, βr, is given by: 
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where M, ri and θ are as defined above.  

If one or more of the ri data appear to lie far from the bulk of the data, either above or 

below, apply the Pierce’s Criterion for dealing with outliers (detailed later). Finally, test 

the resulting fragility parameters using the Lilliefors goodness-of-fit test (detailed later). 

If it passes at the 5% significance level, the fragility function may be deemed acceptable.  

 

Example: Determine the parameters θ and β, from a series of 10 tests, all of which 

produced the damage state of interest. Demands at which the damage state initiated are 

respectively story drifts of: 0.9, 0.9, 1.0, 1.1, 1.1, 1.2, 1.3, 1.4, 1.7, and 2 percent. 
Test # Demand di ln(di) ln(di/θi) ln(di/θi)^2

1 0.9 -0.10536 -0.30384 0.092321

2 0.9 -0.10536 -0.30384 0.092321

3 1 0 -0.19848 0.039396

4 1.1 0.09531 -0.10317 0.010645

5 1.1 0.09531 -0.10317 0.010645

6 1.2 0.182322 -0.01616 0.000261

7 1.3 0.262364 0.063881 0.004081

8 1.4 0.336472 0.137989 0.019041

9 1.7 0.530628 0.332145 0.11032

10 2 0.693147 0.494664 0.244692

Σ 1.984833 0.623723
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Method B. Bounding Demand Data 

 

This section defines the procedures for deriving fragility parameters (θ, β) when data are 

available from a suitable series of tests or earthquake experience, however, the damage 

state of interest was initiated in only some of the specimens. For the other specimens, 



testing or the earthquake ended before the damage state of interest occurred. For each 

specimen “i”, it is necessary to know the value of the demand, di to which the specimen 

was subjected, and whether or not the damage state did occur in the specimen. 

Divide the data into a series of N bins, where N is taken as the largest integer that is 

less than or equal to the square root of M, and M is the total number of specimens 

available.  

In order to divide the specimens into the several bins, sort the specimen data in order 

of ascending maximum demand value, di, for each test, then divide the list into N groups 

of approximately equal size. Each group “j” will have Mj specimens, where: 

 MM
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Next, determine the average value of the maximum demand for each bin of specimens: 
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and xj, the natural logarithm of dj (i.e., ln(dj)). Also determine the number of specimens 

within each bin, mj, in which the damage state of interest was achieved and the inverse 

standard normal distribution, yj, of the failed fraction specimens in the bin:  
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That is, determine the number of standard deviations, above the mean that the stated 

fraction lies, assuming a mean value, µ=0 and a standard deviation, σ=1. This can be 

determined using the “normsinv” function on a Microsoft Excel spreadsheet or by 

referring to standard tables of the normal distribution. Next, fit a straight line to the data 

points, xj, yj, using a least-squares approach. The straight line will have the form: 

cbxy +=  (9) 

where b is the slope of the line and c is the y intercept. The slope b is given by: 
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 Determine the value of the random logarithmic standard deviation, βr as: 
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The value of the median, θ, is taken as: 
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Example: Consider the damage statistics shown in Figure 2. The figure depicts the 

hypothetical performance of motor control centers (MCCs) observed after various 

earthquakes in 45 facilities. Each box represents one specimen. Several damage states are 

represented. Crosshatched boxes represent MCCs that experienced a noticeable 

earthquake effect such as shifting but that remained operable. Black boxes represent 

those that were found to be inoperable following the earthquake. Each stack of boxes 

represents one facility. Calculate the fragility function using PGA as the demand 

parameter, binning between halfway points between PGA values shown in the figure.  
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FIGURE 2 
HYPOTHETICAL OBSERVED EARTHQUAKE DAMAGE DATA FOR MOTOR CONTROL CENTERS 

 

The number of bins, N, and the lower demand bounds aj, are dictated by the available 

data: N is taken as 5 with lower bounds, aj of 0.15g, 0.25g, 0.35g, 0.45g, and 0.55g 

respectively. The damage state of interest is loss of post-earthquake functionality (black 

boxes in figure). The values of Mj and mj are found by counting all boxes and black 

boxes, respectively, in the figure in each bin, and are shown in Table 1. The value of M is 

found by summing: M = ΣMj = 260. Values xj and yj are calculated as xj = ln( jr ), and yj = 

Φ-1
((mj+1)/(Mj+1)). Average values are calculated as shown: x = –0.99, y = –1.05, 

according to (11) and (12). For each bin, the values of jx x−  and jy y− are calculated as 

shown.  

 
j a j  (g ) d j  (g ) M j m j x j y j

1 0.15 0.2 52 0 -1.61 -2.08 -0.623 -1.031 0.388 0.642

2 0.25 0.3 48 4 -1.20 -1.27 -0.217 -0.223 0.047 0.049

3 0.35 0.4 84 8 -0.92 -1.25 0.070 -0.202 0.005 -0.014

4 0.45 0.5 35 15 -0.69 -0.14 0.294 0.907 0.086 0.266

5 0.55 0.6 41 12 -0.51 -0.50 0.476 0.549 0.226 0.261

Σ = 260 -4.93 -5.23 0.753 1.204

Average = -0.99 -1.05

jx x− jy y− ( )
2

jx x− ( )( )j jx x y y− −

 
TABLE 1 
EXAMPLE SOLUTION DATA 

 

Then, β and θ are calculated as:  
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Method C. Capable Demand Data 

 

This section defines the procedures for deriving fragility parameters (θ, β) when data are 

available from a suitable series of specimens, however, the damage state of interest was 

not initiated in any of the specimens. For each available specimen, “i,” the maximum 

demand at which the specimen was loaded, “di”, and whether or not the specimen 

experienced any distress or damage must be known. 

From the data for M specimens, determine the maximum demand experienced by 

each specimen, dmax, and the minimum demand for any of the specimens that exhibited 

any distress or damage, dmin. Determine da as the smaller of dmin or 0.7dmax. Determine MA 

as the number of specimens that did not exhibit distress or damage, but that were loaded 

with demands, di > da; MB as the number of specimens that exhibited distress or damage, 

but which did not appear to be initiating or on the verge of initiating the damage state of 

interest; and MC as the number of specimens appeared to be on the verge of initiating the 

damage state of interest. 

If none of the specimens in any of the tests exhibited any sign of distress or damage, 

take the value of dm as dmax. If one or more of the specimens exhibited distress or damage 

of some type, take dm as: 

2
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Determine the subjective failure probability S at dm as: 
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Take the logarithmic standard deviation, β, as having a value of 0.4. Determine the 

median, θ, as: 
z

med 4.0−=θ  (17) 

where z is determined from Table 2 based on the value of MA and S. 

 

Conditions Z 

MA ≥ 3 and S = 0 -2.326 

MA < 3 and S ≤ 0.075 -1.645 

0.075 < S ≤ 0.15 -1.282 

0.15 < S ≤ 0.3 -0.842 

S > 0.3 -0.253 

TABLE 2 
VALUES OF Z 

 



Example: Determine the parameters θ and β from tests of 10 specimens. Five of the 

specimens had maximum imposed drift demands of 1% with no observable signs of 

distress. Three of the specimens had maximum imposed drift demands of 1.5% and 

exhibited minor distress, but did not appear to be at or near the initiation of the damage 

state of interest. Two of the specimens had maximum imposed drift demands of 2%, did 

not enter the damage state of interest during the test, but appeared to be about to sustain 

such damage. From the given data determine: dmax = 2%, dmin = 1.5%. da is the smaller of 

0.7dmax or dmin and therefore, is 0.7(2%) = 1.4%. MA = 0, MB=3, and MC=2.  
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From Table 2, z is taken as -0.842. Therefore,  

θ = dme
-0.4z

 = 0.017e
-0.4(-0.842)

 = 0.024 or 2.4% drift 

and β is taken as 0.4. 

 

Method D. Derivation (Analysis) 

 

There are two methods available for analytical derivation of fragility parameters. The 

first of these uses a single calculation of the probable capacity and a default value of the 

logarithmic standard deviation. The second method uses Monte Carlo analysis to explore 

the effect of variation in material strength, construction quality and other random 

variables.  

Single calculation. Calculate the capacity of the component, Q in terms of a demand 

parameter, d, using average material properties and dimensions and estimates of 

workmanship. Resistance factors should be taken as unity and any conservative bias in 

code equations, if such equations are used, should be removed. The logarithmic standard 

deviation, β, is taken as having a value of 0.4. The median capacity θ is taken as: 

Q92.0=θ  (18) 

Monte Carlo simulation. Identify all those factors, important to predicting the 

capacity that are uncertain including material strength, cross section dimensions, member 

straightness, workmanship. Estimate a median value and variance for each of these 

random variables. Conduct sufficient analyses, randomly selecting the values of each of 

these random variables in accordance with their estimated distribution properties, each 

time calculating the capacity. Determine the median value of the capacity as that capacity 

exceeded in 50% of the calculations. Determine the random logarithmic standard 

deviation, βr, as the standard deviation of the natural logarithm of the calculated capacity 

values. Use (3) to determine the total logarithmic standard deviation, β, assuming a value 

of βu of 0.25. 

 

Method E. Expert Opinion 

 

Select one or more experts with professional experience in the design or post-earthquake 

damage observation of the component of interest. Solicit their advice using the format 

shown in Figure 3. Note the suggested inclusion of representative images, which should 



be recorded with the responses. If an expert refuses to provide estimates or limits them to 

certain conditions, either narrow the component definition accordingly and iterate, or 

ignore that expert’s response and analyze the remaining ones. Calculate the median value, 

θ, as: 
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where N is the number of experts providing an opinion; θi is the opinion of expert i 

opinion as to the median value, and wi is expert i’s level of expertise, on a 1-5 scale. 

Calculate the lower bound value for the capacity as: 
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where dli is expert i’s opinion as to the lower bound value and other terms are as 

previously defined. The value of the logarithmic standard deviation, β, is taken as: 

( )
28.1

/ln ldθ
β =  (21) 

If this calculation produces an estimate of β that is less than 0.4, either justify the β, or 

take β as having a value of 0.4 and recalculate θ as: 

ld67.1=θ  (22) 

 
Objective. This form solicits your judgment about the values of a demand parameter (D) at which a 

particular damage state occurs to a particular building component. Judgment is needed because the 

component may contribute significantly to the future earthquake repair cost, fatality risk, or post-

earthquake operability of a building, and because relevant empirical and analytical data are currently 

impractical to acquire. Your judgment is solicited because you have professional experience in the design 

or post-earthquake damage observation of the component of interest.  

 

Definitions. Please provide judgment on the damageability of the following component and damage state. 

Images of a representative sample of the component and damage state may be attached. It is recognized that 

other demand parameters may correlate better with damage, but please consider only the one specified here. 

 

Component name:    

Component definition:   

Damage state name:    

Damage state definition:    

   

Demand parameter:   

Definition of demand parameter:  

   

 
Uncertainty; no personal stake. Please provide judgment about this general class of components, not any 

particular instance, and not one that you personally designed, constructed, checked, or otherwise have any 

stake in. There is probably no precise threshold level of demand that causes damage, because of variability 

in design, construction, installation, inspection, age, maintenance, interaction with nearby components, etc. 

Even if there were such a precise level, nobody might know it with certainty. To account for these 



uncertainties, please provide two values of demand at which damage occurs: median and lower 

bound.  

 

Estimated median capacity   Definition. Damage would occur at this level of 

demand in 5 cases out of 10, or in a single instance, you judge there to be an equal chance that your median 

estimate is too low or too high. 

 

Estimated lower-bound capacity    Definition. Damage would occur at this level of 

demand in 1 case in 10. In a single case, you judge there to be a 10% chance that your estimate is too high. 

Judge the lower bound carefully. Make an initial guess, then imagine all the conditions that might make the 

actual threshold demand lower, such as errors in design, construction or installation, substantial 

deterioration, poor maintenance, more interaction with nearby components, etc. Revise accordingly and 

record your revised estimate. Research shows that without careful thought, expert judgment of the lower 

bound tends to be too close to the median estimate, so think twice and do not be afraid of showing 

uncertainty. 

 

On a 1-to-5 scale, please judge your expertise with this component and damage state, where 1 means “no 

experience or expertise” and 5 means “very familiar or highly experienced.” 

 

Your level of expertise:  

 

Your name:  Date:   

FIGURE 3 
FORM FOR SOLICITING EXPERT JUDGMENT ON COMPONENT FRAGILITY 

 

Method U. Updating 

 

This section addresses procedures for re-evaluating fragility parameters for a building 

component as additional data become available. The pre-existing and updated fragility 

parameters are respectively termed θ, β, θ΄, and β΄. The additional data are assumed to be 

a set of M specimens with known maximum demand and damage states. It is not 

necessary that any of the specimens experienced damage. 

Calculate the revised median, θ΄ and logarithmic standard deviation β’ as follows: 
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where Π denotes the product of the terms that come after it, and 
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ASSESSING FRAGILITY FUNCTION QUALITY  
 

The previous section provided mathematical procedures for developing fragility 

parameters. This section provides procedures to assess the quality of those parameters.  

 

Competing Demand Parameters 

 

The behavior of some components may be dependent on several types of demands, for 

example in-plane and out-of-plane drift, or both drift and acceleration. It may not be clear 

which demand is the best single predictor of component damage. Assuming that data are 

available to create fragility functions for each possibly relevant demand, do so. Choose 

the fragility function that has the lowest β.  
 

Dealing with Outliers using Peirce’s Criterion 

 

When fragilities are determine on the basis of actual demand data (i.e., Method A), it is 

possible that one or more tests reported spurious values of demand, di, and reflect 

experimental errors rather than the true demands at which the specimens failed. In cases 

where one or more di values in the data set are obvious outliers from the bulk of the data, 

investigate whether the data reflects real issues in the damage process that may recur, 

especially where di << θ for these outliers. If there is no indication that these data reflect 

a real recurring issue in the damage process, apply the following procedure (Peirce’s 

criterion) to test and eliminate doubtful observations of di.  

1. Calculate ln(θ) and β of the complete data set. 

2. Let D denote the number of doubtful observations, and let R denote the maximum 

distance of an observation from the body of the data, defined as:  

β

θln)ln( −
=

d
R  (26) 

where θ, β, and M are as previously defined, d is a measured demand value, and R is as 

shown in Table 3. Assume D = 1 first, even if there appears to be more than one doubtful 

observation. 

3. Calculate the maximum allowable deviation: | ln(d) – ln(θ) |max. Note that this can 

include d >>θ and d << θ.  

4. For any suspicious measurement di, obtain | ln(di) – ln(θ) |. 

5. Eliminate the suspicious measurements if: 
max

ln( ) ln( ) ln( ) ln( )id dθ θ− > −  



6. If this results in the rejection of one measurement, assume D=2, keeping the original 

values of θ and β, and go to step 8. 

7. If more than one measurement is rejected in the above test, assume the next 

highest value of doubtful observations. For example, if two measurements are 

rejected in step 5, assume the case of D = 3, keeping the original values of θ, and β, as 

the process is continued. 

8. Repeat steps 2 – 5, sequentially increasing D until no more data measurements are 

eliminated. 

9. Obtain θ and β of the reduced data set as for the original data. 

 
M D=1 D=2 D=3 D=4 D=5 D=6 D=7 D=8 D=9 

3 1.1960         

4 1.3830 1.0780        

5 1.5090 1.2000        

6 1.6100 1.2990 1.0990       

7 1.6930 1.3820 1.1870 1.0220      

8 1.7630 1.4530 1.2610 1.1090      

9 1.8240 1.5150 1.3240 1.1780 1.0450     

10 1.8780 1.5700 1.3800 1.2370 1.1140     

11 1.9250 1.6190 1.4300 1.2890 1.1720 1.0590    

12 1.9690 1.6630 1.4750 1.3360 1.2210 1.1180 1.0090   

13 2.0070 1.7040 1.5160 1.3790 1.2660 1.1670 1.0700   

14 2.0430 1.7410 1.5540 1.4170 1.3070 1.2100 1.1200 1.0260  

15 2.0760 1.7750 1.5890 1.4530 1.3440 1.2490 1.1640 1.0780  

16 2.1060 1.8070 1.6220 1.4860 1.3780 1.2850 1.2020 1.1220 1.0390 

17 2.1340 1.8360 1.6520 1.5170 1.4090 1.3180 1.2370 1.1610 1.0840 

18 2.1610 1.8640 1.6800 1.5460 1.4380 1.3480 1.2680 1.1950 1.1230 

19 2.1850 1.8900 1.7070 1.5730 1.4660 1.3770 1.2980 1.2260 1.1580 

20 2.2090 1.9140 1.7320 1.5990 1.4920 1.4040 1.3260 1.2550 1.1900 

>20 alnM + b 

a 0.4094 0.4393 0.4565 0.4680 0.4770 0.4842 0.4905 0.4973 0.5046 

b 0.9910 0.6069 0.3725 0.2036 0.0701 -0.0401 -0.1358 -0.2242 -0.3079 

TABLE 3 
PARAMETERS FOR APPLYING PEIRCE'S CRITERION 

 

Goodness of Fit Testing  

 

Fragility parameters that are developed based on actual demand data (Section 2.1) should 

be tested for goodness of fit in accordance with this Section. Calculate 

)()(max dSdFD Mix −=  (27) 

where SM(d) denotes the sample cumulative distribution function  

( )
1

1
( )

M

M i

i

S d H d d
M =

= −∑  (28) 

and H is taken as: 

1.0 if di – d is positive 

½ if di – d is zero 

0 if di – d is negative. 



If D > Dcrit from Table 4, the fragility function fails the goodness of fit test. This result is 

used in assigning a quality level to the fragility function. Use α = 0.05.  

 

Significance Level Dcrit 

α = 0.15 0.775 / (M
0.5

 – 0.01 + 0.85M
–0.5

) 

α = 0.10 0.819 / (M
0.5

 – 0.01 + 0.85M
–0.5

) 

α = 0.05 0.895 / (M
0.5

 – 0.01 + 0.85M
–0.5

) 

α = 0.025 0.995 / (M
0.5

 – 0.01 + 0.85M
–0.5

) 

TABLE 4 
CRITICAL VALUES FOR THE LILLIEFORS TEST 

 

Fragility Functions that Cross 

 

Some components will have two or more possible damage states, with a defined fragility 

function for each. For any two (cumulative lognormal) fragility functions i and j with 

medians θj > θi and logarithmic standard deviations βi ≠ βj, the fragility functions will 

cross at extreme values. In such a case, adjust the fragility functions by one of the 

following two methods.  

Method 1: adjust the fragility functions such that 
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θln
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This has the effect that for the damage state with the higher median value, the probability 

of failure, Fi(D) is never taken as less than the probability of failure for a damage state 

with a lower median value. 

Method 2: First establish θ and β values for the various damage states independently. 

Next calculate the average of the variance values for each of the damage states with 

crossing fragility curves as:  

∑
=

=′
N

i

ii
N 1

1
ββ  (30) 

This average logarithmic standard deviation is used as a replacement for the 

independently calculated values. An adjusted median value must be calculated for each of 

the crossing fragilities as: 
( )( )iiei

θββθ ln28.1 +−′=′  (31) 

 

Assigning a Single Quality Level to a Fragility Function 

 

Assign each fragility function a quality level of high, medium, or low, per Table 5. 



Quality Method Peer 

reviewed* 

Number of 

specimens 

Other 

A Yes ≥ 5 Passes Lilliefors test at 5% 

significance level. Examine and 

justify (a) differences of greater than 

20% in θ or β, compared with past 

estimates, and (b) any case of β < 0.2 

or β > 0.6.  

B Yes ≥ 20 Examine and justify (a) differences of 

greater than 20% in θ or β, compared 

with past estimates, and (b) any case 

of β < 0.2 or β > 0.6. 

High 

U Yes ≥ 6 Prior was at least moderate quality 

A  ≥ 3 Examine and justify any case of β < 

0.2 or β > 0.6. 

B  ≥ 16 Examine and justify any case of β < 

0.2 or β > 0.6. 

C Yes ≥ 6  

D Yes   

E Yes  At least 3 experts with w ≥ 3 

Moderate 

U  ≥ 6 or prior was moderate quality 

Low    All other cases 

* Data and derivation published in a peer-reviewed archival journal. 

TABLE 5 
FRAGILITY FUNCTION QUALITY LEVEL 

 

CONCLUSIONS 
 

Six methods for creating fragility functions were presented, including three new ones: 

one for dealing with cases where no failure has been observed, another for situations 

where one must rely on expert opinion, and a third for updating an existing fragility 

function with new damage observations. The procedures have been adopted for ATC-58, 

a technology-transfer project by the Applied Technology Council to bring a second-

generation performance-based earthquake engineering methodology to practice. The 

procedures are intended for engineering professionals who will eventually use PBEE. 

Little unfamiliar math is involved, and no calculus. A larger document, [Porter et al. 

2006], presents these procedures with more commentary, some alternative approaches, 

and more sample problems. 
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