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We present a new drift condition which implies rates of convergence to
the stationary distribution of the iterates of aψ-irreducible aperiodic and
positive recurrent transition kernel.This condition, extending a condition
introduced by Jarner and Roberts [Ann. Appl. Probab.12 (2002) 224–247]
for polynomial convergence rates, turns out to be very convenient to
prove subgeometric rates of convergence. Several applications are presented
including nonlinear autoregressive models, stochastic unit root models and
multidimensional random walk Hastings–Metropolis algorithms.

1. Introduction. Let (Φn,n ≥ 0) be a discrete time Markov chain on a general
measurable state space(X,B(X)) with transition kernelP . Assume that it is
ψ-irreducible, aperiodic and positive recurrent. This paper considers the use of
drift conditions to establish the convergence inf -norm of the iteratesP n of the
kernel to the stationary distributionπ at rater := (r(n),n ≥ 0); that is,

lim
n→∞ r(n)‖P n(x, ·) − π‖f = 0, π a.e.(1.1)

wheref : X → [1,∞) satisfiesπ(f ) < ∞ and for any signed measureµ, the
f -norm‖µ‖f is defined as sup|g|≤f |µ(g)|.

For geometric rate functions, that is, functionsr that satisfy

0 < lim inf
logr(n)

n
≤ lim sup

logr(n)

n
< ∞,

it is known that (1.1) holds if and only if the Foster–Lyapunov drift condition holds
that is, there exist an extended real-valued functionV : X → [1,∞] finite at some
x0 ∈ X, a petite setC, λ ∈ (0, 1), b > 0 andc > 0 such thatc−1f ≤ V ≤ cf and

PV ≤ λV + b1C.(1.2)

In that case, the convergence (1.1) holds for allx in the set {V < ∞} which is
of π measure 1. See, for instance, Meyn and Tweedie (1993) (hereafter, MT),
Theorem 16.0.1.
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For rates of convergence slower than geometric, no such definitive result exists.
An important family of such rates is the class of subgeometric rate functions,
defined in Nummelin and Tuominen (1983) as follows. LetΛ0 be the set of positive
nondecreasing functionsr0 such thatr0(0) ≥ 1 and log{r0(n)} /n decreases to 0.
The class of subgeometric rate functions is the setΛ of positive functionsr such
that there exists a sequencer0 ∈ Λ0 that satisfies

0 < lim inf
r(n)

r0(n)
≤ lim sup

r(n)

r0(n)
< ∞.(1.3)

This class includes, for example, polynomial rate functions, that is, rate functionsr

such that (1.3) holds withr0(n) := (1 + n)β for someβ > 0. It also includes rate
functions which increase faster than polynomially, for example, rate functionsr

satisfying (1.3) with

r0(n) := {1 + log(n)} α(n + 1)βecnγ

(1.4)
for α,β ∈ R, γ ∈ (0, 1) andc > 0.

We will refer to these rates as subexponential in order to distinguish them in the
broad class of subgeometric rates.

Tuominen and Tweedie (1994) [see also Nummelin and Tuominen (1983)]
gave a set of equivalent conditions that imply the convergence (1.1) with a
subgeometric rate functionr ∈ Λ. To state this result, we first recall some notation
and definitions.

A measurable setC is ψa-petite (or petite) if there exist a distribution
a := (a(n),n ≥ 0), a constantε > 0 and a nontrivial measureψa on B(X) such
that, for allx ∈ C, B ∈ B(X),

Ka(x,B) := ∑
n≥0

a(n)P n(x,B) ≥ ψa(B).

The return time to a measurable setA is defined asτA := inf{ n ≥ 1,Φn ∈ A}
(with the convention inf∅ = +∞). Let ψ be a maximal irreducibility measure
and letB+(X) be the class of accessible sets, that is, setsB ∈ B(X) such that
ψ(B) > 0. A setA ∈ B(X) is called full if ψ(Ac) = 0, absorbing ifP (x,A) = 1
for all x ∈ A and, for a measurable positive functionf and a rate functionr , A is
said to be(f ,r)-regular if, for everyB ∈ B+(X),

sup
x∈A

Ex

[
τB−1∑
k=0

r(k)f (Φk)

]
< ∞.

A (1, 1)-regular set is simply said to be regular. A finite positive measureλ onB(X)

is said to be(f ,r)-regular ifEλ[∑τB−1
k=0 r(k) f (Φk)] < ∞ for all setsB ∈ B+(X).

If, for somex ∈ X, the Dirak measureδx is (f ,r)-regular, then the pointx is said
to be(f ,r)-regular. The set of all(f ,r)-regular points is denoted byS(f ,r).

We can now recall (part of) Theorem 2.1 of Tuominen and Tweedie (1994).
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THEOREM 1.1 [Tuominen and Tweedie (1994)].Assume thatP is ψ-irre-
ducible and aperiodic. Letf : X → [1,∞] be a measurable function, and letr ∈ Λ
be given. The following conditions are equivalent.

(i) There exists a petite setC ∈ B(X) such that

sup
x∈C

Ex

[
τC−1∑
k=0

r(k)f (Φk)

]
< ∞.

(ii) There exist a sequence of extended real valued functions(Vn,n ≥ 0),
Vn : X → [1,∞], a petite setC ∈ B(X) and a constantb < ∞ such thatV0 is
bounded onC,

V0(x) = +∞ �⇒ V1(x) = +∞
and

PVn+1 + r(n)f ≤ Vn + br(n)1C.(1.5)

(iii) There exists an(f ,r)-regular setA ∈ B+(X).

Any of these conditions implies that, for all x ∈ S(f ,r),

r(n)‖P n(x, ·) − π(·)‖f = 0, n → ∞,

and the setS(f ,r) is full, absorbing and contains the set{V0 < ∞}. Moreover,
for all (f ,r)-regular initial distributionsλ, µ, there exists a constantc such that

∞∑
n=0

r(n)

∫ ∫
λ(dx)µ(dy)‖P n(x, ·) − P n(y, ·)‖f

≤ c
(
λ(V0) + µ(V0)

)
.

This theorem cannot be improved since it provides a necessary and sufficient
condition, but the sequence of drift conditions (1.5) is notoriously difficult to check
in practice and one has very little insight on the way to choose the family of
drift function (Vn,n ≥ 0). This is why these drift conditions, to the best of our
knowledge, have seldom been used directly.

A first step toward finding a more practical drift condition was taken by Jarner
and Roberts (2002), who, simplifying and generalizing an argument in Fort and
Moulines (2000), have shown that if there exist a functionV : X → [1,∞] finite
at somex0 ∈ X, positive constantsb andc, a petite setC andα ∈ [0, 1) such that

PV + cV α ≤ V + b1C ,

then the chain is positive recurrent and, for eachβ ∈ [1, 1/(1 − α)], the
convergence (1.1) holds for allx ∈ {V < ∞} which is of π measure 1, with
r(n) := nβ−1 andf := V 1−β(1−α). It is noteworthy that there is a balance between
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the rate of convergence and the norm: the larger the latter, the slower the former.
In particular, the fastest rate of convergence [r(n) = nα/(1−α)] corresponds to the
total variation norm, and the slowest rate (r ≡ 1) corresponds to theV α norm.

In this paper, we consider the following drift condition which generalizes the
Foster–Lyapunov and the Jarner–Roberts drift conditions.

CONDITION D(φ,V ,C). There exist a functionV : X → [1,∞], a concave
monotone nondecreasing differentiable functionφ : [1,∞] 
→ (0,∞], a measur-
able setC and a finite constantb such that

PV + φ ◦ V ≤ V + b1C.

Hereφ is assumed differentiable for convenience. It can be relaxed since a concave
function has nonincreasing left and right derivatives everywhere. IfD(φ,V ,C)
holds for some petite setC and there existsx0 ∈ X such thatV (x0) < ∞, then the
f -norm ergodic theorem (see MT, Theorem 14.0.1) states that there exists a unique
invariant distributionπ , π(φ ◦ V ) < ∞ and

lim
n

‖P n(x, ·) − π‖φ◦V = 0,

for all x in the set ofπ -measure 1 {V < ∞}. If, in addition, π(V ) < ∞, then there
exists a finite constantB such that, for allx ∈ {V < ∞},

∞∑
n=0

‖P n(x, ·) − π‖φ◦V ≤ B
(
1+ V (x)

)
.

The (φ ◦ V )-norm is the maximal norm for which convergence can be proved
under ConditionD(φ,V ,C) and in that case, the rate of convergence is minimal:
r ≡ 1. This implies that, for any function 1≤ f ≤ φ ◦ V , convergence in the
f -norm also holds. In order to determine the rate of convergence in thef -norm by
means of Theorem 1.1, we should try to find a sequence of functions(Vn,n ≥ 0)

such that (1.5) holds, but this is precisely what we are trying to avoid doing
for all functions f . Instead, having in mind the balance between the rate of
convergence and the norm, we will first determine the rate of convergence in the
total variation norm by using the criterion (1.5) and then interpolate intermediate
rates of convergence in thef -norm.

Thus, this new drift condition not only generalizes former results, but also
yields a very straightforward way of proving subgeometric rates of convergence,
in particular subexponential rates of the form (1.4). The interpolation technique is
a key tool to obtain these rates easily and in practice yields all usual rates.

The rest of the paper is organized as follows. Our main result, Theorem 2.8,
is stated and proved in the next section. Several typical functionsφ are then
considered, leading to a variety of subgeometric rate functions. The flexibility
of the interpolation technique is illustrated by exhibiting new pairs of rates and
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controls functions. Several applications are given in Section 3. We establish
subgeometric rates of convergence (in particular, faster than polynomial rates) in
several models: first-order nonlinear autoregressive models, stochastic unit root
models and the random walk multidimensional Hastings–Metropolis algorithm,
under conditions which do not imply geometric ergodicity. These examples should
illustrate the efficiency of ConditionD(φ,V ,C) and the fact that it is indeed easier
to check than the sequence of drift conditions (1.5).

2. Main result.

2.1. Rate of convergence in the total variation norm.Let φ : [1,∞) → (0,∞)

be a concave nondecreasing differentiable function. Define

Hφ(v) :=
∫ v

1

dx

φ(x)
.(2.1)

ThenHφ is a nondecreasing concave differentiable function on[1,∞). Moreover,
sinceφ is concave,φ′ is nonincreasing. Henceφ(v) ≤ φ(1) + φ′(1)(v − 1) for all
v ≥ 1, which implies thatHφ increases to infinity. We can thus define its inverse
H−1

φ : [0,∞) → [1,∞), which is also an increasing and differentiable function,

with derivative(H−1
φ )′(x) = φ ◦ H−1

φ (x). Fork ∈ N, z ≥ 0 andv ≥ 1, define

rφ(z) := (H−1
φ )′(z) = φ ◦ H−1

φ (z),

Hk(v) :=
∫ Hφ(v)

0
rφ(z + k) dz = H−1

φ

(
Hφ(v) + k

) − H−1
φ (k),(2.2)

Vk := Hk ◦ V.

We will show that, provided ConditionD(φ,C,V ) holds with C petite and
supx∈C V (x) < ∞, the chain(Φk,k ≥ 0) is (1,rφ)-regular; that is,rφ is the rate of
convergence in total variation norm that can be deduced from the drift condition.
To this end, we will use Theorem 1.1(ii); that is, we will show that (1.5) holds with
(Vk,k ≥ 0), f := 1 andr := rφ .

PROPOSITION 2.1. AssumeD(φ,V ,C). Thenrφ is log concave and, for all
k ≥ 0, Hk is concave and

PVk+1 ≤ Vk − rφ(k) +
brφ(k + 1)

rφ(0)
1C.

PROOF. Note first thatr ′
φ(z)/rφ(z) = φ′ ◦ H−1

φ (z) for all z ≥ 0. Sinceφ′ is

nonincreasing andH−1
φ is increasing,φ′ ◦ H−1

φ is nonincreasing and log(rφ) is
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concave. This implies that, for any fixedk ≥ 0, the functionz 
→ rφ(z + k)/rφ(z)

is a decreasing function. The derivative ofHk has the following expression:

H ′
k(v) = rφ

(
Hφ(v) + k

)/
φ(v)

(2.3)
= rφ

(
Hφ(v) + k

)/
rφ

(
Hφ(v)

)
.

SinceHφ is increasing, it follows from the discussion above thatH ′
k is nonin-

creasing; henceHk is concave for allk ≥ 0. Applying (2.3) and the fact thatrφ is
increasing, we obtain

Hk+1(v) − Hk(v)

=
∫ Hφ(v)

0
{ rφ(z + k + 1) − rφ(z + k)} dz

=
∫ Hφ(v)

0

∫ 1

0
r ′
φ(z + k + s) ds dz

=
∫ 1

0

{
rφ

(
Hφ(v) + k + s

) − rφ(k + s)
}
ds

≤ rφ
(
Hφ(v) + k + 1

) − rφ(k)

= φ(v)H ′
k+1(v) − rφ(k).

We have thus shown the following inequality which is the key tool of the proof:

Hk+1(v) − φ(v)H ′
k+1(v) ≤ Hk(v) − rφ(k).(2.4)

Let g be a concave differentiable function on[1,∞). Sinceg′ is decreasing, for all
v ≥ 1 andx ∈ R such thatv + x ≥ 1, it holds that

g(v + x) ≤ g(v) + g′(v)x.(2.5)

Applying this property to the concave functionHk+1, we obtain for allk ≥ 0,
x ∈ {V < ∞},

PVk+1(x) ≤ Hk+1{V (x) − φ ◦ V (x) + b1C(x)}

≤ Hk+1(V (x)) − φ ◦ V (x)H ′
k+1(V (x)) + bH ′

k+1(V (x))1C(x)

≤ Hk+1(V (x)) − φ ◦ V (x)H ′
k+1(V (x)) + bH ′

k+1(1)1C(x).

Applying (2.3) and (2.4), we obtain thatH ′
k+1(1) = rφ(k + 1)/rφ(0) and

PVk+1(x) ≤ Vk(x) − rφ(k) +
brφ(k + 1)

rφ(0)
1C(x).

This inequality still holds forx ∈ {V = ∞}, which concludes the proof.�

The drift condition D(φ,V ,C) and Proposition 2.1 imply the following
bounds for the modulated moments of the return timeτC , by application
of Proposition 11.3.2 in MT.
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PROPOSITION2.2. AssumeD(φ,V ,C). Then, for all x ∈ X,

Ex

[
τC−1∑
k=0

φ ◦ V (Φk)

]
≤ V (x) + b1C(x),

Ex

[
τC−1∑
k=0

rφ(k)

]
≤ V (x) +

brφ(1)

rφ(0)
1C(x).

In order to apply Theorem 1.1, we must also check the following conditions:

(i) the rate sequencerφ := (φ ◦ H−1
φ (k),k ≥ 0) belongs toΛ,

(ii) the drift functionV is bounded onC.

The next lemma gives a simple criterion to check thatrφ ∈ Λ.

LEMMA 2.3. If lim t→∞ φ′(t) = 0, thenrφ ∈ Λ.

PROOF. We have already noted thatr ′
φ(x)/rφ(x) = φ′ ◦ H−1

φ (x) for all x ≥ 0.
Let r be any differentiable function such thatr(0) = 1 and limx→∞ r ′(x)/r(x)= 0.
Then, applying Cesaro’s lemma, we obtain,

log(r(n))

n
=

1

n

∫ n

0

r ′(s)
r(s)

ds → 0.

If, moreover,r ′/r decreases, then log(r(x))/x also decreases. Thusrφ ∈ Λ. �

If the condition supx∈C V (x) < ∞ is not satisfied and if the setC is petite, the
drift conditionD(φ,V ,C) can be slightly modified so that it holds with a new set
C on whichV is bounded. The following lemma, adapted from Theorem 14.2.3 of
MT, states this formally.

LEMMA 2.4. Assume thatD(φ,V ,C) holds for some petite setC and that
limv→∞ φ(v) = ∞. Then, for all M ≥ 1, the sublevel sets{x ∈ X,V (x) ≤ M} are
petite. In addition, for anyβ, 0< β < 1, there exists a sublevel setCβ such that
D(βφ,V ,Cβ ) holds.

PROOF. Sinceφ is positive nondecreasing andV ≥ 1, ConditionD(φ,V,C)
implies the drift conditionPV ≤ V −φ(1)+ b1C. Theorem 11.3.11 of MT shows
that, for all accessible setsB ∈ B+(X), there exists a constantc(B) < ∞ such that,
for all x ∈ X, we haveφ(1)Ex[τB] ≤ V (x)+c(B). Hence, every setA ∈ B(X) such
that supx∈A V (x) < ∞ is (1, 1)-regular, and the sublevel sets are all(1, 1)-regular.
Proposition 11.3.8 of MT shows that if a setA is (1, 1)-regular, then it is petite.
Hence, all the sublevel sets are petite.
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Since limv→∞ φ(v) = ∞ for all β ∈ (0, 1), there existsMβ such that
v > Mβ implies φ(v) ≥ b/(1 − β). For x /∈ Cβ := {V ≤ Mβ}, we thus have
b ≤ (1− β)φ(V (x)) and

PV + βφ(V ) ≤ V + (β − 1)φ(V ) + b1C ≤ V.

Forx ∈ Cβ , sinceβ ∈ (0, 1), it trivially holds that

PV + βφ(V ) ≤ V + b. �

We are now in position to establish the rate of convergence in total variation
distance.

PROPOSITION 2.5. Let P be aψ-irreducible and aperiodic kernel. Assume
that D(φ,V ,C) holds for a functionφ such that lim t→∞ φ′(t) = 0, a petite
setC and a functionV such that{V < ∞} 
= ∅. Then, there exists an invariant
probability measureπ , and for allx in the full and absorbing set{V < ∞},

lim
n

rφ(n)‖P n(x, ·) − π(·)‖T V = 0.

Any probability measureλ such thatλ(V ) < ∞ is (1,rφ)-regular and for two
(1,rφ)-regular distributionsλ,µ, there exists a constantc such that

∞∑
n=0

rφ(n)

∫ ∫
λ(dx)µ(dy)‖P n(x, ·) − P n(y, ·)‖T V

≤ c
(
λ(V ) + µ(V )

)
.

REMARK 1. Since φ′ is nonincreasing, if we do not assume that
limv→∞ φ′(v) = 0, then there existsc ∈ (0, 1) such that limv→∞ φ′(v) = c > 0.
This yieldsv −φ(v) ≤ (1− c)v + c −φ(1). In this case, ConditionD(φ,V ,C) im-
plies the Foster–Lyapunov drift condition, and the chain is geometrically ergodic.

PROOF OF PROPOSITION 2.5. The only statement which requires a proof
is the fact that any probability measure such thatλ(V ) < ∞ is (1,rφ)-regular. This
assertion is established in Proposition 3.1(ii) of Tuominen and Tweedie (1994),
and relies on Lemma 3.1 of Nummelin and Tuominen (1983). We nevertheless
propose a proof that shortens the previous one. The proof is adapted from the
proof of Theorem 14.2.3 of MT. Proposition 2.1 shows that there exist a sequence
of drift functions(Vk,k ≥ 0) and a constantb such thatV0 ≤ V and

PVk+1 ≤ Vk − rφ(k) + bφ(1)−1rφ(k + 1)1C.
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Dynkin’s formula shows that, for all accessible setB,

Ex

[
τB−1∑
k=0

rφ(k)

]

≤ V0(x) + bφ(1)−1
Ex

[
τB−1∑
k=0

rφ(k + 1)1C(Φk)

]
.

From Propositions 5.5.5 and 5.5.6 of MT, we can assume without loss of
generality thatC is ψa-petite, whereψa is equivalent toψ , and that the sampling
distributiona has finite meanma := ∑∞

j=1 jaj < ∞. By the Comparison Theorem

(MT, Theorem 14.2.2), the bound1C(x) ≤ ψa(B)−1Ka(x,B) and the fact that
rφ is nondecreasing, we have

Ex

[
τB−1∑
k=0

rφ(k)

]

≤ V0(x) + bφ(1)−1
Ex

[
τB−1∑
k=0

rφ(k + 1)1C(Φk)

]

≤ V0(x) + bφ(1)−1ψa(B)−1
∑
i≥0

aiEx

[
τB−1∑
k=0

rφ(k + 1)1B(Φk+i)

]

≤ V0(x) + bφ(1)−1ψa(B)−1maEx[rφ(τB)].
For k ≥ 1, defineRφ(k) := ∑k−1

j=0 rφ(j). Sincerφ is subgeometric, it holds that
limk→∞ rφ(k)/Rφ(k) = 0. Hence, for anyδ > 0, there exists a constantc(δ) such
that, for allk ≥ 1, rφ(k) ≤ δRφ(k) + c(δ). This yields

Ex[Rφ(τB)] ≤ V0(x) + bφ(1)−1ψa(B)−1ma

(
δEx[Rφ(τB)] + c(δ)

)
.

Thus for small enoughδ, we obtain

Ex[Rφ(τB)] ≤ V0(x) + bmaψ
−1
a (B)c(δ)φ(1)−1

1− bδmaψ
−1
a (B)φ(1)−1

.(2.6) �

2.2. Rate of convergence inf -norms. As already mentioned in the polynomial
case and discussed in Tuominen and Tweedie (1994), in the subgeometric case
there is a compromise between the rate of convergence and the control function.
In what follows, we will show that it is possible at almost no cost to obtain many
intermediate rates of convergence and control functions. LetY be the set of pairs
of ultimately nondecreasing functionsΨ1 and Ψ2 defined on[1,∞) such that
limx→∞ Ψ1(x) = ∞ or limx→∞ Ψ2(x) = ∞ and, for allx,y ∈ [1,∞),

Ψ1(x)Ψ2(y) ≤ x + y.(2.7)
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The setY includes, for example,Ψ1(x) = x andΨ2(x) = 1, but there are of course
more interesting examples. For example, it is well known that, for anyx,y ≥ 0,
andp andq such that 1/p + 1/q = 1, we have

xy ≤ xp/p + yq/q.

Hence, the pair of functionsΨ1(x) = p1/px1/p, Ψ2(x) = q1/qx1/q satisfies (2.7).
These are precisely the interpolating functions used in Jarner and Roberts
(2002) to derive polynomial rates of convergence. Young functions provide
many useful interpolating functions. We recall their definition. Let�1 : (0,∞) →
(0,∞) be an increasing left-continuous function such that�1(0) = 0 and
limv→+∞ �1(v) = +∞. Let �2 be the left-continuous inverse of�1, which is
increasing and satisfies also�2(0) = 0 and limv→+∞ �2(v) = +∞. Define then
Gi(x) := ∫ x

0 �i(t) dt , i = 1, 2. The well-known Young inequality states that, for
all x,y ≥ 0, we have

xy ≤ G1(x) + G2(y).(2.8)

Let Ψi be the inverse ofGi , i = 1, 2. ThenΨ1 andΨ2 are concave functions and
it follows immediately from (2.8) that the pair(Ψ1,Ψ2) satisfies (2.7).

We use this full scale of interpolating functions in combination with Proposi-
tion 2.2 to derive bounds for the modulated moment of return time to the setC.
More precisely, we have the following.

PROPOSITION2.6. AssumeD(φ,V ,C) and let(Ψ1,Ψ2) ∈ Y. Then

Ex

[
τC−1∑
k=0

Ψ1
(
rφ(k)

)
Ψ2

(
φ ◦ V (Φk)

)]

≤ 2V (x) + b
(
1+ rφ(1)/rφ(0)

)
1C(x).

We need a criterion for a rate functionΨ1 ◦ rφ to be subgeometric. Note that if
the pair(Ψ1,Ψ2) belongs toY, then, for large enoughx, it holds thatΨi(x) ≤ 2x,
i = 1, 2.

LEMMA 2.7. Assume thatlim t→∞ φ′(t) = 0. For any nondecreasing function
Ψ such thatΨ(x) ≤ ax for some constanta, Ψ ◦ rφ ∈ Λ.

The next theorem summarizes all our previous results.

THEOREM 2.8. Let P be aψ-irreducible and aperiodic kernel. Assume that
D(φ,V ,C) holds for a functionφ such thatlim t→∞ φ′(t) = 0 and a petite set
C such thatsupC V < ∞. Let (Ψ1,Ψ2) ∈ Y. Then, there exists an invariant
probability measureπ , and for allx in the full set{V < ∞},

lim
n

Ψ1
(
rφ(n)

)‖P n(x, ·) − π(·)‖Ψ2(φ◦V ) = 0.
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Any probability measureλ such thatλ(V ) < ∞ is (Ψ2(φ ◦ V ),Ψ1(rφ))-regular,
and for two such distributionsλ,µ, there exists a constantc such that

∞∑
n=0

Ψ1
(
rφ(n)

) ∫ ∫
λ(dx)µ(dy)‖P n(x, ·) − P n(y, ·)‖Ψ2(φ◦V )

≤ c
(
λ(V ) + µ(V )

)
.

PROOF. From Proposition 2.6 we have

sup
x∈C

Ex

[
τC−1∑
k=0

Ψ1
(
rφ(k)

)
Ψ2

(
φ ◦ V (Φk)

)]
< ∞.

Theorem 1.1 shows thatΦ is (Ψ2(φ ◦ V ),Ψ1(rφ))-regular. As in the proof of
Proposition 2.5, and using again the comparison theorem, for any setB ∈ B+(X),
there exist constantsc1(B) andc2(B) such that

Ex

[
τB−1∑
k=0

φ ◦ V (Φk)

]
+ Ex

[
τB−1∑
k=0

rφ(k)

]
≤ c1(B)V (x) + c2(B).

Hence, for any(Ψ1,Ψ2) ∈ Y, we have

Ex

[
τB−1∑
k=0

Ψ1
(
rφ(k)

)
Ψ2

(
φ ◦ V (Φk)

)] ≤ c1(B)V (x) + c2(B),

which shows that any probability measure such thatλ(V ) < ∞ is (Ψ2(φ ◦ V ),
Ψ1(rφ))-regular. �

2.3. Some usual rate functions.In this section, we provide examples of rates
of convergence obtained by Theorem 2.8 for several functionsφ. In Section 3, we
will provide examples and explicitly determine the drift functionV and the setC.
For two sequencesun andvn, we writeun � vn, if there exist positive constants
c1 andc2 such that, for largen, c1un ≤ vn ≤ c2un.

We assume throughout this section that ConditionD(φ,V ,C) holds for some
petite setC and supC V < ∞.

Polynomial rates of convergence.Polynomial rates of convergence have
been widely studied recently under various conditions [see Veretennikov (1997,
2000), Tanikawa (2001), Jarner and Roberts (2002) and Fort and Moulines
(2003)]. As already mentioned, polynomial rates of convergence are associated
to the functionsφ(v) := cvα for someα ∈ [0, 1) and c ∈ (0, 1] and the rate
of convergence in total variation distance isrφ(n) ∝ nα/(1−α). Set Ψ1(x) :=
((1 − p)x)(1−p) and Ψ2(x) := (px)p for some p, 0 < p < 1. Applying
Theorem 2.8 yields, forx ∈ {V < ∞},

lim
n

n(1−p)α/(1−α)‖P n(x, ·) − π(·)‖V αp = 0.(2.9)
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This convergence remains valid forp = 0, 1 by Proposition 2.2.
Setκ := 1+ (1− p)α/(1−α) so that 1≤ κ ≤ 1/(1−α). With this notation, (2.9)
reads

lim
n

nκ−1‖P n(x, ·) − π(·)‖V 1−κ(1−α) = 0,

which is Theorem 3.6 of Jarner and Roberts (2002).
It is possible to extend this result by using more general interpolation functions.

We can, for example, obtain nonpolynomial rates of convergence with control
functions which are not simply power of the drift functions. To illustrate this point,
set for b > 0, Ψ1(x) := (1 ∨ log(x))b and Ψ2(x) := x(1 ∨ log(x))−b. It is not
difficult to check that we have

sup
(x,y)∈[1,∞)×[1,∞)

(x + y)−1Ψ1(x)Ψ2(y) < ∞,

so that, for allx ∈ {V < ∞}, we have

lim
n

logb(n)‖P n(x, ·) − π(·)‖V α(1+log(V ))−b = 0,(2.10)

lim
n

nα/(1−α) log−b(n)‖P n(x, ·) − π(·)‖(1+log(V ))b = 0,(2.11)

and for all 0< p < 1,

lim
n

n(1−p)α/(1−α) logb n‖P n(x, ·) − π(·)‖V αp(1+logV )−b = 0.

Logarithmic rates of convergence.We now consider drift conditions which
imply rates of convergence slower than any polynomial. Such rates are obtained
when ConditionD(φ,V ,C) holds with a functionφ that increases to infinity slower
than polynomially. We only consider here the caseφ(v) = c(1+ log(v))α for some
α ≥ 0 andc ∈ (0, 1]. A straightforward calculation shows that

rφ(n) � logα(n).

Proposition 2.5 shows that the chain is(1, logα(n)) and((1 + logV )α, 1)-regular.
Applying Theorem 2.8, intermediate rates can be obtained along the same lines
as above. Choosing, for instance,Ψ1(x) := ((1 − p)x)1−p andΨ2(x) := (px)p

for 0 ≤ p ≤ 1, the chain is((1 + logV )pα, log(n)(1−p)α)-regular and thus, for all
x ∈ {V < ∞},

lim
n→∞

(
1+ log(n)

)(1−p)α‖P n(x, ·) − π(·)‖(1+log(V ))pα = 0.

Subexponential rates of convergence.Subexponential rates [as defined
in (1.4)] have been considered only recently in the literature. An example (in con-
tinuous time) has been studied by Malyshkin (2001); discrete-time examples are
considered in the recent work by Klokov and Veretennikov (2002). These rates,
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which increase to infinity faster than polynomially, are obtained when Condi-
tion D(φ,V ,C) holds withφ such that,v/φ(v) goes to infinity slower than poly-
nomially. More precisely, assume thatφ is concave and differentiable on[1,+∞)

and that for largev, φ(v) = cv/ logα(v) for someα > 0 andc > 0. A simple cal-
culation yields

rφ(n) � n−α/(1+α) exp
(
{ c(1+ α)n} 1/(1+α)

)
,

and thus the chain is(1,n−α/(1+α) exp({ c(1 + α)n} 1/(1+α))) and (V /(1 +
logV )α, 1)-regular. Applying Theorem 2.8 withΨ1(x) := x1−p(1∨ log(x))−b and
Ψ2(x) := xp(1∨ log(x))b for p ∈ (0, 1) andb ∈ R; p = 0 andb > 0; orp = 1 and
b < −α yields, for allx ∈ {V < ∞},

lim
n

n−(α+b)/(1+α) exp
(
(1− p){ c(1+ α)n} 1/(1+α)

)
(2.12) × ‖P n(x, ·) − π(·)‖V p(1+logV )b = 0.

Asymptotically, the termn−(α+b)/(1+α) is not very important and we can
express (2.12) in a simpler way: for alld < (1 − p){ c(1 + α)} 1/(1+α), we have,
for the same values ofp andb,

lim
n

edn1/(1+α)‖P n(x, ·) − π(·)‖V p(1+logV )b = 0.

3. Applications. We now illustrate our findings by applying Theorem 2.8
to several models. In Section 3.1, we exhibit a simple example where the rates
obtained in Theorem 2.8 can be proved optimal. In the next sections we study
several examples where no such optimality results are available.

In this section,〈·, ·〉 and | · | denote, respectively, the scalar product and the
Euclidean norm in any Euclidean space. The transpose of a vectorv is denotedv′.
If u is a twice continuously differentiable real valued function onR

d , ∇u (resp.
∇2u) denotes its gradient (resp. its Hessian matrix).

3.1. Backward recurrence time chain.The backward recurrence time chain
(see MT, Section 3.3.1) is a rich source of simple examples of stable and unstable
behavior. We consider it here to provide examples of chains satisfying Condi-
tion D(φ,V ,C) and for which the rates of convergence implied by it are optimal.

Let (pn,n ≥ 0) be a sequence of positive real numbers such thatp0 = 1,
pn ∈ (0, 1) for all n ≥ 1 and limn→∞

∏n
i=1 pi = 0. Consider the backward

recurrence time chainΦ with transition kernelP defined asP (n,n + 1) =
1 − P (n, 0) = pn, for all n ≥ 0. ThenΦ is irreducible and strongly aperiodic
and {0} is an atom. Letτ0 be the return time to {0}. We have, for alln ≥ 1,

P0(τ0 = n + 1) = (1− pn)

n−1∏
j=0

pj and P0(τ0 > n) =
n−1∏
j=0

pj .
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By Kac’s theorem (MT, Theorem 10.2.2), sinceΦ is ψ-irreducible and aperiodic,
Φ is positive recurrent if and only ifE0[τ0] < ∞, that is,

∞∑
n=1

n∏
j=1

pj < ∞,

and the stationary distributionπ is given, by π(0) = π(1) = 1/E0[τ0] and
for j ≥ 2,

π(j) =
E0[∑τ0

k=1 1{ Φk=j } ]
E0[τ0] =

P0(τ0 ≥ j)

E0[τ0] =
p0 · · ·pj−2∑∞
n=1p1 · · ·pn

.

Because the distribution of the return time to the atom {0} has such a simple
expression in terms of the transition probability(pn,n ≥ 0), we are able to
exhibit the largest possible rate functionr such that the (1,r)-modulated moment
of the return timeE0[∑τ0−1

k=0 r(k)] is finite. We will also prove that the drift
conditionD(φ,V ,C) holds for appropriately chosen functionsV andφ and yields
the optimal rate of convergence. Note also that, for any functionf , it holds that

E0

[
τ0−1∑
k=0

f (Φk)

]
= E0

[
τ0−1∑
k=0

f (k)

]
.

Therefore there is no loss of generality to consider only (1,r)-modulated moments
of the return time to zero.

If supn≥1 pn ≤ λ < 1, then, for allλ < µ < 1, E0[µ−τ0] < ∞ and {0} is
thus a geometrically ergodic atom (MT, Theorem 15.1.5). Subgeometric rates of
convergence in total variation norm are obtained when lim suppn = 1. Depending
on the rate at whichpn approaches 1, different behaviors can be obtained, covering
essentially the three typical rates (polynomial, logarithmic and subexponential)
discussed above.

Polynomial rates. Assume first that, forθ > 0 and largen, pn = 1 −
(1 + θ)n−1. Then

∏n
i=1 pi � n−1−θ . Thus,E0[∑τ0−1

k=0 r(k)] < ∞ if and only if∑∞
k=1 r(k)k−1−θ < ∞. For instance,r(n) := nβ with 0 ≤ β < θ is suitable.

Logarithmic rates. If for θ > 0 and largen, pn = 1−1/n−(1+θ)/(n log(n)),
then

∏n
j=1pj � n−1 log−1−θ (n), which is a summable series. Hence ifr is

nondecreasing and
∑∞

k=1 r(k)
∏n

j=1pj < ∞, thenr(k) = o(logθ (k)). In particular,

r(k) := logβ(k) is suitable for all 0≤ β < θ .

Subgeometric rates.If for large n, pn = 1 − θβnβ−1 for someθ > 0 and

β ∈ (0, 1), then
∏n

i=1 pi � e−θnβ
. Thus, E0[∑τ0−1

k=0 eakβ ] < ∞ if a < θ , and

E0[∑τ0−1
k=0 eakβ ] = ∞ if a ≥ θ .
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Checking ConditionD(φ,V ,C). In order to prove that Proposition 2.5 pro-
vides the optimal rates of convergence, we now compute in each of the previous
examples the rates of convergence it yields.

For the polynomial and subexponential cases, the same technique can be used.
For γ ∈ (0, 1) andx ∈ N

∗, defineV (0) := 1 andV (x) := ∏x−1
j=0p

−γ
j . Then, for

all x ≥ 0, we have,

PV (x) = pxV (x + 1) + (1− px)V (0)

= p1−γ
x V (x) + 1− px

≤ V (x) − (1− p1−γ
x )V (x) + 1− px.

Thus, for 0< δ < 1− γ and large enoughx, it holds that

PV (x) ≤ V (x) − δ(1− px)V (x).(3.1)

1. Casepn = 1− (1+ θ)n−1, θ > 0. ThenV (x) � xγ (1+θ) and(1−px)V (x) �
V (x)1−1/(γ (1+θ). Thus ConditionD(φ,V ,C) holds with φ(v) = cvα for
α = 1 − 1/(γ (1 + θ)) for any γ ∈ (0, 1). Theorem 2.8 yields the rate of
convergencenα/(1−α) = nγ (1+θ)−1, that is,nβ for any 0≤ β < θ .

2. Casepn = 1− θβnβ−1. Then, for large enoughx, (3.1) yields

PV (x) ≤ V (x) − θβδxβ−1V (x)

≤ cV (x){log(V (x))} 1−1/β ,

for c < θ1/ββδ. Definingα := 1/β − 1, Proposition 2.1 yields the following
rate of convergence in total variation norm:

n−α/(1+α) exp
(
{ c(1+ α)n} 1/(1+α)

)
= nβ−1 exp(θδβnβ).

Sinceδ is arbitrarily close to 1, we recover the fact thatE0[∑τ0−1
k=0 eakβ ] < ∞

for anya < θ .
3. Casepn = 1 − n−1 − (1 + θ)n−1 log−1(n), θ > 0. ChooseV (x) :=

(
∏x−1

j=0 pj)/ logε(x) for ε > 0 arbitrarily small. Then, for constantsc < c′ <

c′′ < 1 and largex, we obtain

PV (x) =
logε(x)

logε(x + 1)
V (x) + 1− px

= V (x) − c′′ε V (x)

x log(x)
+ 1− px

≤ V (x) − c′ε logθ−ε(x)

≤ V (x) − cε logθ−ε(V (x)).

Here again Theorem 2.8 yields the optimal rate of convergence.
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3.2. Symmetric random walk Hastings–Metropolis algorithm.We consider
the symmetric random walk Hastings–Metropolis algorithm. The purpose of this
algorithm is to simulate from a probability distributionπ which is known only up
to a scale factor. At each iteration, a move is proposed according to a random
walk whose increment distribution has a symmetric densityq with respect to
the Lebesgue measureµd on R

d . The move is accepted with probabilityα(x,y)

defined by

α(x,y) :=

min

{
π(y)

π(x)
, 1

}
, if π(x) > 0,

1, if π(x) = 0.
(3.2)

The transition kernel of the Metropolis algorithm is then given by

P (x,A) =
∫
A

α(x,x + y)q(y) dµd(y)

+ 1A(x)

∫ (
1− α(x,x + y)

)
q(y) dµd(y).

Mengersen and Tweedie (1996) have shown that a real valued Metropolis chain
is geometrically ergodic when the proposal densityq satisfies moment conditions
and the target densityπ is continuous, positive and log concave in the tails. This
condition is necessary in the sense that if the chain is geometrically ergodic, then∫

exp(s|z|)π(z) dµd(z) < ∞ for somes > 0. These results have been extended
to the multidimensional case by Roberts and Tweedie (1996) and Jarner and
Hansen (2000). Polynomial ergodicity was proved by Fort and Moulines (2000)
for a target density with regularly varying tails. We now state conditions that imply
subexponential rates of convergence.

ASSUMPTION3.1. The target densityπ is continuous and positive onRd and
there existm ∈ (0, 1), r ∈ (0, 1), positive constantsdi ,Di , i = 0, 1, 2 andR0 < ∞
such that, if|x| ≥ R0, x 
→ π(x) is twice continuously differentiable and〈 ∇π(x)

|∇π(x)| ,
x

|x|
〉
≤ −r,(3.3)

d0|x|m ≤ − logπ(x) ≤ D0|x|m,(3.4)

d1|x|m−1 ≤ |∇ logπ(x)| ≤ D1|x|m−1,(3.5)

d2|x|m−2 ≤ |∇2 logπ(x)| ≤ D2|x|m−2.(3.6)

The Weibull distribution onR with density π(x) := βγ xγ−1 exp(−βxγ ),
for x > 0, β > 0 and 0< γ < 1 satisfies Assumption 3.1. Multidimensional
examples are provided in Fort and Moulines (2000). For the sake of simplicity,
we make the following assumption on the proposal densityq.
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ASSUMPTION 3.2. The proposal densityq is symmetric and bounded away
from zero in a neighborhood of zero and is compactly supported; that is, there
existsc(q) such that, for all|y| ≥ c(q), q(y) = 0.

THEOREM 3.1. Under Assumptions3.1 and 3.2, there existz > 0, c > 0,
r > 0 such that D(φ,V ,C) holds with V := π−z and φ(v) := cv(1 +
logv)−2(1−m)/m andC := { |x| ≤ r}.

Under Assumptions 3.1 and 3.2, Theorem 2.2 of Roberts and Tweedie (1996)
shows that the chain isψ-irreducible and aperiodic and nonempty bounded sets
of B+(Rd) are petite. Thus, we obtain the following corollary.

COROLLARY 3.2. There existc > 0 and z > 0 such that, any probability

measureλ on R
d satisfyingλ(V ) < ∞ is (f ,r)-regular with r(n) = ecnm/(2−m)

andf = π−z.

REMARK 2. Our result complements the work of Fort and Moulines (2000)
who show that under Assumptions 3.1 and 3.2, the chainΦ is (f ,r)-ergodic
with f (x) := (1+ |x|µ) andr(n) := (1+ n)ν , for anyµ > 0 andν ≥ 0.

REMARK 3. The compactness Assumption 3.2 can probably be relaxed and
replaced by an appropriate moment condition.

REMARK 4. We do not provide explicit values of the constantsc andz here;
these values can be deduced explicitly from the proof. It should be stressed that
optimal values of these constants are related: the largerc, the smallerz and vice
versa. The same comments apply to Corollaries 3.4 and 3.6.

PROOF OFTHEOREM 3.1. DefineR(x) := {y ∈ R
d ,π(x + y) ≤ π(x)} the

potential rejection region. Using the definition of the transition kernelP , we have

PV (x) − V (x)

=
∫ (

V (x + y) − V (x)
)
q(y) dµd(y)

+
∫
R(x)

(
V (x + y) − V (x)

)(π(x + y)

π(x)
− 1

)
q(y) dµd(y).

Set l(x) := − logπ(x), R(V ,x,y) := V (x + y) − V (x) + zV (x)〈∇l(x),y〉 and
R(π ,x,y) := π(x + y)/π(x) − 1+ 〈∇l(x),y〉. It is proved in Lemma B.4 of Fort
and Moulines (2000) that there exists a constantc such that, for large|x|,

sup
|y|≤c(q)

|R(π ,x,y)||y|−2 ≤ c|x|2(m−1).(3.7)
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Using a Taylor expansion with integral remainder term of the functionx 
→ V (x),
it is easily shown that there exists a constantc such that, for allz ∈ (0,z0) and
large|x|,

sup
|y|≤c(q)

|R(V ,x,y)||y|−2 ≤ cz2V (x)|x|2(m−1).(3.8)

Sinceq is symmetric, we have

PV (x) − V (x)

= −zV (x)

∫
R(x)

〈∇l(x),y〉2q(y) dµd(y)

+
∫

R(V ,x,y)q(y) dµd(y)

−
∫
R(x)

R(V ,x,y)〈∇l(x),y〉q(y) dµd(y)

+ zV (x)

∫
R(x)

〈∇l(x),y〉R(π ,x,y)q(y) dµd(y)

+
∫
R(x)

R(V ,x,y)R(π ,x,y)q(y) dµd(y).

Thus, for large|x|, we deduce from (3.7) and (3.8) that

PV (x) − V (x)

V (x)

≤ −z

∫
R(x)

〈∇l(x),y〉2q(y) dµd(y) + cz2|x|2(m−1),

for some positive constantc that does not depend onz. It is shown in Lemma B.3
of Fort and Moulines (2000) that there existsη > 0 such that, for large|x|,∫

R(x)
〈∇l(x),y〉2q(y) dµd(y) > η|∇l(x)|2 > ηd2

1|x|2(m−1).(3.9)

Hence, upon noting thatzd0|x|m ≤ logV (x), there exists a constantκ which is
positive forz small enough, such that, for large|x|,

PV (x) − V (x) ≤ −κ[logV (x)]−2(1−m)/m V (x).

Sinceπ is bounded on compact sets, sup|x|≤M PV (x) + V (x) < ∞ and the proof
is concluded. �

3.3. Nonlinear autoregressive model.Consider a process(Φn,n ≥ 0) that
satisfies the following nonlinear autoregressive equation of order 1:

Φn+1 = g(Φn) + εn+1,(3.10)

where the sequence(εn,n ≤ 0) and the functiong satisfy the following assump-
tions.
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ASSUMPTION 3.3. (εn,n ≥ 0) is a sequence of i.i.d. zero mean,d-dimen-
sional random vectors, independent ofΦ0, that satisfy

E

[
ez0|ε0|γ0

]
< ∞,(3.11)

for somez0 > 0 andγ0 ∈ (0, 1] and the distribution ofε0 has a nontrivial absolutely
continuous component which is bounded away from zero in a neighborhood of the
origin.

ASSUMPTION 3.4. g :Rd → R
d is continuous, and there existr,R0 > 0 and

ρ ∈ [0, 2) such that

|g(x)| ≤ |x|(1− r|x|−ρ) if |x| ≥ R0.(3.12)

There already exists a wide literature on conditions implying a geometric rate
of convergence for nonlinear autoregressive models [see, e.g., Duflo (1997) and
Grunwald, Hyndman, Tedesco and Tweedie (2000) and the references therein].
Conditions implying a polynomial rate of convergence have been obtained by
Tuominen and Tweedie (1994) and AngoNze (1994) and have been refined by
Veretennikov (1997, 2000), AngoNze (2000) and Fort and Moulines (2003).
Conditions implying a truly subexponential rate of convergence are considered
in Klokov and Veretennikov (2002) [see also Malyshkin (2001) for diffusion
processes].

THEOREM 3.3. Assume that Assumptions3.3and3.4hold.

(i) If ρ > γ0, the drift condition D(φ,V ,C) holds with φ(v) := cv(1 +
log(v))1−ρ/(γ0∧(2−ρ)), V (x) := ez|x|γ0∧(2−ρ)

andC := {x ∈ R
d , |x| ≤ M} for some

z ∈ (0,z0), c > 0 andM ≥ R0.
(ii) If ρ ≤ γ0, then the Foster–Lyapunov condition(1.2) holds withC = {x ∈

R
d , |x| ≤ M} for someM ≥ R0 and V (x) = ez|x|γ0 with z = z0 if ρ < γ0 and

z ∈ (0,z0) if ρ = γ0.

COROLLARY 3.4. Assume in addition that, for all x ∈ R
d , |g(x)| ≤ |x|. Then

the chain isψ-irreducible and aperiodic and compact sets ofB+(Rd) are petite.
If ρ > γ0, then there existsc > 0 and z ∈ (0,z0) such that any probability

measureλ on R
d satisfyingλ(V ) < ∞ is (f ,r)-regular withr(n) = ecn{γ0∧(2−ρ)}/ρ

andf (x) = ez|x|γ0∧(2−ρ)
.

PROOF OF THEOREM 3.3. Throughout the proof,c is a generic constant
that can change upon each appearance. Applying the inequalityV (u + w) ≤
V (u)V (w), we obtain that in all cases,PV is bounded on compact sets ofR

d .
Thus the proof consists in boundingPV − V outside balls.
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(i) We start by examining the caseρ > γ0. Setβ = γ0 ∧ (2− ρ). We write

PV (x)

V (x)
− 1=

PV (x) − V (g(x))

V (x)
+

V (g(x))

V (x)
− 1.(3.13)

Using the inequality(1− u)γ0 ≤ 1 − γ0u for all 0 ≤ u ≤ 1, we have for|x| ≥ R0,
|g(x)|β ≤ |x|β − βr|x|β−ρ , and sinceex − 1 ≤ x + x2/2 for all x ≤ 0,

V (g(x))

V (x)
− 1 = ez|g(x)|β−z|x|β − 1

(3.14)
≤ −zrβ|x|β−ρ +

1

2
z2r2β2|x|2(β−ρ).

Let 0< η < 1. We establish that, for smallz, large|x| and large|g(x)|,
PV (x) − V (g(x)) ≤ 1

2z2β2
E[|ε0|2V (ε0)]|x|2β−2V (x).(3.15)

SetR(u,w) = V (u + w) − V (u) − 〈∇V (u),w〉. SinceE[ε0] = 0, this yields

PV (x) − V (g(x)) = E
[
V

(
g(x) + ε0

)] − V (g(x))
(3.16)

= E
[
R

(
g(x),ε0

)]
,

and we have to upper bound the remainder termE[R(g(x),ε0)]. If |w| ≤ η|u|, then
by using a Taylor expansion with integral remainder term, one has

|R(u,w)| ≤
∫ 1

0
(1− t)|w′∇2V (u + tw)w|dt

≤ 1
2|w|2zβ sup

t∈[0,1]
{
(1+ zβ|u + tw|β)|u + tw|β−2V (u + tw)

}
.

Sincey 
→ |y|2β−2ez|y|β andy 
→ |y|β−2ez|y|β are ultimately nondecreasing, for
large|u| and|w| ≤ η|u|, we have

|R(u,w)| ≤ 1
2|w|2zβ(

1+ zβ(|u| + |w|)β)
(|u| + |w|)β−2V (u)V (w)

(3.17) ≤ 1
2z2β2|w|2V (w)|u|2β−2V (u) + c|w|2V (w)|u|β−2V (u).

If |w| ≥ η|u|, using again the inequalityV (u + w) ≤ V (u)V (w),

|R(u,w)| ≤ V (u + w) + V (u) + |∇V (u)||w|
≤ c|w|V (w)|u|β−1V (u)(3.18)

≤ c|w|2V (w)|u|β−2V (u).

We now apply (3.17) and (3.18) withu = g(x) and w = ε0. Since y 
→
|y|2β−2ez|y|β andy 
→ |y|β−2ez|y|β are ultimately nondecreasing, for large|g(x)|,
we have

|R(g(x),ε0)|
(3.19) ≤ 1

2z2β2|ε0|2V (ε0)|x|2β−2V (x) + c|ε0|2V (ε0)|x|β−2V (x).
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Equation (3.15) now follows from (3.19). Gathering (3.14) and (3.15), asβ ≤
2 − ρ, we obtain that we can choosez < z0, M1 andM2 such that, for|x| ≥ M1
and|g(x)| ≥ M2, it holds that

PV (x) − V (x) ≤ φ(V (x))

with φ(v) = −κβzρ/β{1 + log(v)} 1−ρ/βv and

κ =

{
r, if β < 2− ρ, that is,γ0 < 2− ρ,

r − 1/2βzE

[
ε2

0e
z|ε0|β

]
, if β = 2− ρ, that is,γ0 ≥ 2− ρ,

andz is chosen small enough such thatκ > 0. To conclude, note that if|g(x)| ≤
M2, then PV (x) ≤ V (M1)E[V (ε0)]. ChooseM1 such that if |x| ≥ M1, then
φ(V (x)) ≥ V (M1)E[V (ε0)]. Then, definingC = { |x| > M1}, we have that, for
all x /∈ C, PV (x) − V (x) ≤ φ(V (x)).

(ii) We now consider the caseρ = γ0 [observe thatβ := γ0 ∧ (2 − ρ) = γ0
and that many results above remain valid]. By (3.13), (3.14), (3.16) and (3.19), we
have for large|x| and large|g(x)|,

PV (x) − V (x)

V (x)
≤ −zrγ0 +

1

2
z2r2γ0

2

+
1

2
z2γ0

2|x|2γ0−2
E[ε2

0V (ε0)](1+ o(1)
)
.

For z small enough, the term on the right-hand side is in the interval(−1, 0) and
this shows that the Foster–Lyapunov drift condition (1.2) holds withC of the form
{x, |g(x)| ≤ M1} ∪ {x, |x| ≤ M2} for large enoughM1, M2.

(iii) We finally consider the caseρ < γ0. Using the inequality(1 − u)γ0 ≤
1 − γ0u for all 0 ≤ u ≤ 1, we have for|x| ≥ R0, |g(x)|γ0 ≤ |x|γ0 − γ0r|x|γ0−ρ .
Hence, sinceV (u + w) ≤ V (u)V (w), this yields, for|x| ≥ R0,

PV (x) = E
[
V

(
g(x) + ε0

)]
≤ V (g(x))E[V (ε0)]
≤ e−rγ0z0|x|γ0−ρ

E

[
ez0|ε0|γ0

]
V (x).

Hence lim|x|→∞ PV (x)/V (x) = 0, which implies that the Foster–Lyapunov drift
condition (1.2) holds withC := { |x| ≤ M} for large enoughM . �

3.4. Stochastic unit root. We now consider a process which belongs to the
wide family of stochastic unit root models. See, for example, Granger and Sawnson
(1997) for many examples. The model we consider is one of the simplest. It has
been considered in Gourieroux and Robert (2001) with main focus on its extremal
behavior:

Φn+1 = 1{Un+1≤g(Φn)} Φn + εn+1,(3.20)
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where(εn,n ∈ N) is a sequence of i.i.d. random variables that satisfies (3.11) and
(Un,n ≥ 1) is a sequence of i.i.d. random variables, uniformly distributed on[0, 1]
and independent from the sequence(εn,n ∈ N). Moreover, we make the following
assumption ong.

ASSUMPTION 3.5. g is a continuous function with values in[0, 1) and there
existκ ∈ (0, 1), c+(g) > 0, c−(g) < 1 andR0 > 0 such that

∀x ≥ R0 1− g(x) ≥ c+(g)x−κ ,(3.21)

∀x ≤ R0 g(x) ≤ c−(g).(3.22)

Let P be the transition kernel of the chain. For allx ∈ R and all Borel setsA,
it can be expressed as

P (x,A) = g(x)P(x + ε0 ∈ A) +
(
1− g(x)

)
P(ε0 ∈ A).(3.23)

Under Assumption 3.5, for allM > 0, there exists a constantη(M) such that,
for all x ≤ M and all Borel setsA,

P (x,A) ≥ η(M)P(ε0 ∈ A).(3.24)

This means that every set of the form(−∞,M] is petite. Definex+ = max(x, 0).

THEOREM 3.5. Under Assumption3.5 and if ε0 satisfies(3.11), there exist
z ∈ (0,z0], δ > 0 andM ≥ R0 such that the drift conditionD(φ,V ,C) holds with

V (x) = ezx
β
+ , φ(v) = δzτ/βv{1 ∨ log(v)} −τ/β , C = (−∞,M] and β and τ are

given according to the value ofE[ε0] by:

(i) β = γ0 ∧ (1− κ) andτ = κ , if E[ε0] > 0;
(ii) β = γ0 ∧ (1− κ/2) τ = κ , if E[ε0] = 0;
(iii) β = γ0 andτ = (1− γ0) ∧ κ , if E[ε0] < 0.

COROLLARY 3.6. Under the same assumptions, the chain isψ-irreducible
and(strongly) aperiodic and there existc > 0 andz > 0 such that any probability
measureλ onR

d satisfyingλ(V ) < ∞ is (f ,r)-regular with:

(i) r(n) = ecn(γ0∧(1−κ))/(γ0∧(1−κ)+κ)
andf (x) = ezx

γ0∧(1−κ)

+ , if E[ε0] > 0;

(ii) r(n) = ecn(γ0∧(1−κ/2))/(γ0∧(1−κ/2)+κ)
andf (x) = ezx

γ0∧(1−κ/2)

+ , if E[ε0] = 0;

(iii) r(n) = ecnγ0/(κ∧(1−γ0)+γ0)
andf (x) = ezx

γ0
+ , if E[ε0] < 0.

PROOF OFTHEOREM 3.5. Letz < z0 andx > 0. Using the definition of the
transition kernelP , we have

PV (x) − V (x) = g(x)E[V (x + ε0)] +
(
1− g(x)

)
E[V (ε0)] − V (x)

= g(x)
(
E[V (x + ε0)] − V (x)

) − (
1− g(x)

)(
V (x) − E[V (ε0)])

≤ E[V (x + ε0)] − V (x) − (
1− g(x)

)(
V (x) − E[V (ε0)]).
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DefineR(x,ε0) = V (x + ε0)− V (x) − ε0βzxβ−1V (x). For anyη ∈ (0, 1), we can
write

E[V (x + ε0)] − V (x) − βzE[ε0]xβ−1V (x)

= E
[
R(x,ε0)1{ |ε0|≤ηx}

]
+ E

[
R(x,ε0)1{ |ε0|>ηx}

]
.

By the same arguments as in the proof of Theorem 3.3, we have

E
[
R(x,ε0)1{ |ε0|>ηx}

]
(3.25) ≤ E

[
V

(
(1+ η−1)|ε0|) + V (|ε0|) + βzη1−β |ε0|βV (|ε0|)].

Thus this term is bounded provided thatη and z are chosen such that
(1 + η−1)βz ≤ z0. To bound the second term, note that for large enoughx, the
functionx 
→ x2β−2V (x) is increasing. Thus, forx ≥ M , for someM depending
onη, and|ε0| ≤ ηx, there existst ∈ (0, 1) such that

V (x + ε0) − V (x) − βzε0x
β−1V (x)

= 1
2β(β − 1)z(x + tε0)

β−2ε2
0V (x + tε0)

+ 1
2

(
βz(x + tε0)

β−1)2
ε2

0V (x + tε0)

≤ 1
2β2z2(1+ η)2β−2x2β−2ε2

0V (x)V (|ε0|)
≤ 1

2β2z2x2β−2ε2
0V (x)V (|ε0|).

For c < c+(g) andx large enough, sayx ≥ M for someM ≥ R0, we have(
1− g(x)

)(
V (x) − E[V (ε0)]) ≥ cx−κV (x).

Hence, taking (3.25) into account, there exists a positive real numberM such that,
if x ≥ M , then

PV (x) − V (x)

≤ (
zβxβ−1

E[ε0] + 1
2β2z2x2β−2

E[ε2
0V (|ε0|)] − cx−κ)

V (x).

If E[ε0] > 0, setβ = γ0 ∧ (1− κ). Then, for large enoughx, we obtain

PV (x) − V (x) ≤ −δx−κV (x)

= −δzκ/βV (x){log(V (x))} −κ/β ,

with δ = c < c+(g) if γ0 < 1 − κ or δ = c − βzE[ε0], c < c+(g) andz such that
δ > 0 if γ0 ≥ 1 − κ . If E[ε0] < 0, setβ = γ0 andτ = (1 − γ0) ∧ κ . Then, forx
large enough,

PV (x) − V (x) ≤ −δx−τ V (x)

= −δzτ/γ0V (x){log(V (x))} −τ/γ0,
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with δ = c < c+(g) if γ0 < 1− κ andδ = c − zβE[ε0], c < c+(g) andz such that
δ > 0 if γ0 ≥ 1 − κ . If E[ε0] = 0, thenβ must satisfy 2β − 2 ≤ −κ ; thus we set
β = (1− κ/2) ∧ γ0, and we obtain

PV (x) − V (x) ≤ −δx−κV (x)

= −δzκ/βV (x){log(V (x))} −κ/β ,

with δ = c < c+(g) if 1 − κ/2 > γ0 and δ = c − 1
2β2z2

E[ε2
0V (|ε0|)], with

c < c+(g) andz such thatδ > 0 if 1 − κ/2 ≤ γ0. �
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