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We present a new drift condition which implies rates of convergence to
the stationary distribution of the iterates ofyairreducible aperiodic and
positive recurrent transition kerneThis condition, extending a condition
introduced by Jarner and Robersnn. Appl. Probabl2 (2002) 224-247]
for polynomial convergence rates, turns out to be very convenient to
prove subgeometric rates of convergence. Several applications are presented
including nonlinear autoregressive models, stochastic unit root models and
multidimensional random walk Hésgs—Metropolis algorithms.

1. Introduction. Let(®,,n > 0) be adiscrete time Markov chain on a general
measurable state spac¢g, B8(X)) with transition kernelP. Assume that it is
y-irreducible, aperiodic and positive recurrent. This paper considers the use of
drift conditions to establish the convergencefimorm of the iterates” of the
kernel to the stationary distribution at rater := (r(n),n > 0); that is,

(1.1) lim r()|P"x,) — 7|y =0, wae.

where f:X — [1,00) satisfies7(f) < oo and for any signed measuye, the
f-norm|iu| s is defined as syp_  [1(g)].

For geometric rate functions, that is, functionthat satisfy

logr(n) -

0 < liminf 29" _ i
n

sup

itis known that (1.1) holds if and only if the Foster—Lyapunov drift condition holds
that is, there exist an extended real-valued functiarX — [1,00] finite at some
xo € X, a petite seC, » € (0,1), b > 0 andc > 0 such that~1f <V <¢f and

(1.2) PV <AV +blc.

In that case, the convergence (1.1) holds forxalh the set {/ < oo} which is
of m measure 1. See, for instance, Meyn and Tweedie (1993) (hereafter, MT),
Theorem 16.0.1.
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For rates of convergence slower than geometric, no such definitive result exists.
An important family of such rates is the class of subgeometric rate functions,
defined in Nummelin and Tuominen (1983) as follows. Agbe the set of positive
nondecreasing functiong such thato(0) > 1 and logfo(n)} /n decreases to O.

The class of subgeometric rate functions is the/sef positive functions- such
that there exists a sequengges /\g that satisfies
r(n) r(n)

<limsup <
ro(n) ro(n)

(1.3) 0 < liminf

This class includes, for example, polynomial rate functions, that s, rate funetions
such that (1.3) holds withg(n) := (1 + n)? for someg > 0. It also includes rate
functions which increase faster than polynomially, for example, rate functions
satisfying (1.3) with

ro(n) :={1 + log(n)}*(n + 1)# "

1.4
(1.4 fora,B eR, y € (0,1 andc > 0.

We will refer to these rates as subexponential in order to distinguish them in the
broad class of subgeometric rates.

Tuominen and Tweedie (1994) [see also Nummelin and Tuominen (1983)]
gave a set of equivalent conditions that imply the convergence (1.1) with a
subgeometric rate functione A. To state this result, we first recall some notation
and definitions.

A measurable setC is y,-petite (or petite) if there exist a distribution
a:=(a(n),n > 0), a constant > 0 and a nontrivial measung, on B(X) such
that, for allx € C, B € B8(X),

Kq(x,B):=) a(n)P"(x,B) > ¥a(B).
n>0

The return time to a measurable setis defined asts ;= inf{n > 1,9, € A}
(with the convention inP = +00). Let ¥ be a maximal irreducibility measure
and let BT (X) be the class of accessible sets, that is, #ts 8(X) such that
Y (B) > 0. A setA € B(X) is called full if y(A°) =0, absorbing ifP(x,A) =1
for all x € A and, for a measurable positive functigrand a rate function, A is
said to be(f,r)-regular if, for everyB € 87 (X),

3—1
supEx|: > r(k)f(GDk)} < 00.
xeA k=0
A (1, 1)-regular setis simply said to be regular. A finite positive measores (X)
is said to be f,r)-regular ifEA[Z,iiglr(k) f(®)] < oo for all setsB € B+ (X).
If, for somex € X, the Dirak measuré, is (f,r)-regular, then the point is said
to be(f,r)-regular. The set of allf, r)-regular points is denoted 8/ f,r).

We can now recall (part of) Theorem 2.1 of Tuominen and Tweedie (1994).
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THEOREM 1.1 [Tuominen and Tweedie (1994)]Assume thatP is vy -irre-
ducible and aperiodid_et f : X — [1,00] be a measurable functipand letr € A
be givenThe following conditions are equivalent

(i) There exists a petite s€te B(X) such that

c—1
supIEx[ > r(k)f(CDk)} < 00.
xeC k=0

(i) There exist a sequence of extended real valued funciighs: > 0),
V. X = [1,00], a petite setC € B8(X) and a constanb < oo such thatVy is
bounded orC,

Vo(x) =400 — Vi(x)=+400
and
(1.5) PVyp1+r(mn)f <V,+br(n)lc.
(i) There exists alf,r)-regular setA € 87 (X).
Any of these conditions implies thé&r all x € S(f,r),
rm|P"(x,) —w()llf =0, n— 00,

and the setS(f,r) is full, absorbing and contains the sgVy < co}. Moreover
for all (f,r)-regular initial distributionsa, ., there exists a constantsuch that

> 1) [ [ aadnr@niP e - Pl

n=0
< c(x(Vo) + n(Vo)).

This theorem cannot be improved since it provides a necessary and sufficient
condition, but the sequence of drift conditions (1.5) is notoriously difficult to check
in practice and one has very little insight on the way to choose the family of
drift function (V,,,n > 0). This is why these drift conditions, to the best of our
knowledge, have seldom been used directly.

A first step toward finding a more practical drift condition was taken by Jarner
and Roberts (2002), who, simplifying and generalizing an argument in Fort and
Moulines (2000), have shown that if there exist a functionX — [1,00] finite
at somexg € X, positive constants andc, a petite seC anda € [0, 1) such that

PV +cV* <V +Dblc,

then the chain is positive recurrent and, for eaghs [1,1/(1 — «)], the
convergence (1.1) holds for all e {V < oo} which is of = measure 1, with
r(n) :=nPlandf := v1-F1-9 |tis noteworthy that there is a balance between
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the rate of convergence and the norm: the larger the latter, the slower the former.
In particular, the fastest rate of convergencg:] = n%/1-®)] corresponds to the
total variation norm, and the slowest ratet 1) corresponds to th&* norm.

In this paper, we consider the following drift condition which generalizes the
Foster—Lyapunov and the Jarner—Roberts drift conditions.

CONDITION D(¢,V,C). There exist a functior?V : X — [1,00], a concave
monotone nondecreasing differentiable functipnl,oc0] — (0,00], a measur-
able setC and a finite constarit such that

PV+¢oV<V+blc.

Here¢ is assumed differentiable for convenience. It can be relaxed since a concave
function has nonincreasing left and right derivatives everywher®(¢f, V, C)

holds for some petite s&t and there existsg € X such thatV (xg) < oo, then the
f-norm ergodic theorem (see MT, Theorem 14.0.1) states that there exists a unique
invariant distributionr, 7 (¢ o V) < oo and

lim | P (x,) = 7 llgov =0,

for all x in the set ofr-measure 1 ¥ < oc}. If, in addition, 7 (V) < oo, then there
exists a finite constar® such that, for alk € {V < o},

o0

Y NIP (x,) = llgov < B(L+ V(x)).

n=0
The @ o V)-norm is the maximal norm for which convergence can be proved
under ConditiorD(¢, V,C) and in that case, the rate of convergence is minimal:
r = 1. This implies that, for any function £ f < ¢ o V, convergence in the
f-norm also holds. In order to determine the rate of convergence ifi-th@m by
means of Theorem 1.1, we should try to find a sequence of functigna > 0)
such that (1.5) holds, but this is precisely what we are trying to avoid doing
for all functions f. Instead, having in mind the balance between the rate of
convergence and the norm, we will first determine the rate of convergence in the
total variation norm by using the criterion (1.5) and then interpolate intermediate
rates of convergence in th&norm.

Thus, this new drift condition not only generalizes former results, but also
yields a very straightforward way of proving subgeometric rates of convergence,
in particular subexponential rates of the form (1.4). The interpolation technique is
a key tool to obtain these rates easily and in practice yields all usual rates.

The rest of the paper is organized as follows. Our main result, Theorem 2.8,
is stated and proved in the next section. Several typical funcijorse then
considered, leading to a variety of subgeometric rate functions. The flexibility
of the interpolation technique is illustrated by exhibiting new pairs of rates and
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controls functions. Several applications are given in Section 3. We establish
subgeometric rates of convergence (in particular, faster than polynomial rates) in
several models: first-order nonlinear autoregressive models, stochastic unit root
models and the random walk multidimeoisal Hastings—Metpolis algorithm,
under conditions which do not imply geometric ergodicity. These examples should
illustrate the efficiency of ConditioB(¢, V, C) and the fact that it is indeed easier

to check than the sequence of drift conditions (1.5).

2. Main result.

2.1. Rate of convergence in the total variation norni.et ¢ : [1,00) — (0,00)
be a concave nondecreasing differentiable function. Define

vV odx

1 ¢(x)

ThenHy is a nondecreasing concave differentiable functiolgno). Moreover,
sinceg is concaveg’ is nonincreasing. Henag(v) < ¢ (1) + ¢’(1)(v — 1) for all

v > 1, which implies thatH, increases to infinity. We can thus define its inverse
qul:[o,oo) — [1,00), which is also an increasing and differentiable function,

with derivative(H, ) (x) = ¢ o H; *(x). Fork € N, z > 0 andv > 1, define

(2.1) Hy(v) =

re(2) = (Hy ' (2) =¢ o Hy ' (2),

Hy ) -1 -1
@2)  H:= [ r R dz =y (Hy W)+ ) — Hy 0,
Vii=HoV.

We will show that, provided ConditioD(¢,C,V) holds with C petite and
Supcc V(x) < oo, the chain(®y, k > 0) is (1,ry)-regular; that isy is the rate of
convergence in total variation norm that can be deduced from the drift condition.
To this end, we will use Theorem 1.1(ii); that is, we will show that (1.5) holds with
(Viok = 0), f:=1andr :=rg.

PROPOSITION2.1. AssumeD(¢,V,C). Thenry is log concave andfor all
k > 0, Hy is concave and
brg(k +1)

PVii1 <V —rypk) +
k+ k [} }"¢(0)

1c.

PROOF  Note first thatr} (z)/rs(z) = ¢’ o Hy (z) for all z > 0. Sinceg’ is
nonincreasing and{qjl is increasingg’ o del is nonincreasing and l@g) is
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concave. This implies that, for any fixéd> 0, the functiornz > ry(z + k) /ry(z)
is a decreasing function. The derivativekf has the following expression:

H,g(v) = I’¢(H¢(U) + k)/¢(v)

=rg(Hp(v) + k) /re(Hp(v)).

Since Hy is increasing, it follows from the discussion above it is nonin-
creasing; hencél; is concave for alk > 0. Applying (2.3) and the fact thay, is
increasing, we obtain

Hi1(v) — Hi(v)

(2.3)

Hy (v)

:fo {rpG@+k+1) —rg(z+h)} dz
Hy(v) pl

:/ / ri(z+k+s)dsdz
0 0 ¢

1
:/O (ro(Hy(v) +k +5) — ro(k +5)) ds

<rp(Hp(v) + k + 1) — ry (k)

= ¢ (V) Hy 1 (v) —ry(k).
We have thus shown the following inequality which is the key tool of the proof:
(2.4) Hiy1(v) — ¢ () HY 11 (v) < Hi(v) — rg (k).

Let g be a concave differentiable function filhco). Sinceg’ is decreasing, for all
v > 1 andx € R such that + x > 1, it holds that

(2.5) g +x)<g) + g (vx.

Applying this property to the concave functidd 1, we obtain for allt > 0O,
x e{V < o0},

PVii1(x) < Hipa{ V(x) — ¢ o V(x) + blc(x)}
< Hip1(V(x)) — ¢ o V(x) Hy 1 (V () + b Hy1(V (%)) 1c (x)
< Hi1(V(x)) — ¢ o V() H 1 (V (X)) + bH; 1(1)1c(x).
Applying (2.3) and (2.4), we obtain tha , (1) = ry(k +1)/r4(0) and
bry(k +1)
r$(0)
This inequality still holds forx € { V = oo}, which concludes the proof.[]

PVip1(x) < Vie(x) —rg(k) + 1c(x).

The drift condition D(¢,V,C) and Proposition 2.1 imply the following
bounds for the modulated moments of the return time by application
of Propositin 11.3.2 in MT.
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PROPOSITION2.2. Assumé(¢,V,C). Thenforall x € X,

tc—1
Ex[ S o vmnk)} < V() + blew),

k=0

bry(1)
r$(0)

c—1
Ex[ > r¢(k)} <V)+ 1c(x).

k=0

In order to apply Theorem 1.1, we must also check the following conditions:

(i) the rate sequenag := (¢ o del(k),k > 0) belongs to\,
(i) the drift functionV is bounded orC.

The next lemma gives a simple criterion to check ihat A.

LEMMA 2.3. Iflim,_ o ¢'(r) =0, thenry € A.

PrROOF We have already noted thdbt(x)/rd)(x) =¢'o ¢_1(x) forallx > 0.
Letr be any differentiable function such thad) = 1 and lim,_, o ' (x) /7 (x) = 0.
Then, applying Cesaro’s lemma, we obtain,

log(r(m) _ 1 [ r(s)

n nJo r(s)

ds — 0.
If, moreover;’/r decreases, then lagx))/x also decreases. Thuge A. O

If the condition sup.- V (x) < oo is not satisfied and if the sé€t is petite, the
drift conditionD(¢, V, C) can be slightly modified so that it holds with a new set
C on whichV is bounded. The following lemma, adapted from Theorem 14.2.3 of
MT, states this formally.

LEMMA 2.4. Assume thaD(¢, V,C) holds for some petite s& and that
lim,_ ¢ (v) = co. Thenfor all M > 1, the sublevel setsx € X, V(x) < M} are
petite In addition, for any 8, 0 < 8 < 1, there exists a sublevel s€} such that
D(B¢,V,Cg) holds

PROOF Since¢ is positive nondecreasing ar\d> 1, ConditionD(¢, V, C)
implies the drift conditionPV <V — ¢ (1) + b1lc. Theorem 11.3.11 of MT shows
that, for all accessible seBe 81 (X), there exists a constantB) < oo such that,
forall x € X, we havep (1)E,[t] < V(x)+c(B). Hence, every set € B(X) such
that sup.,4 V(x) < oo is (1, 1)-regular, and the sublevel sets are(all1)-regular.
Proposition 11.3.8 of MT shows that if a s&tis (1, 1)-regular, then it is petite.
Hence, all the sublevel sets are petite.
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Since lim_.¢() = oo for all g € (0,1), there existsMg such that
v> Mg implies ¢(v) > b/(1 — B). Forx ¢ Cg :={V < Mg}, we thus have
b<(1-pB)¢(V(x)) and

PV+Bp(V)<V4+(B—-Do(V)+blc<V.
Forx € Cg, sincep € (0, 1), it trivially holds that

PV +Bp(V)<V +b. O

We are now in position to establish the rate of convergence in total variation
distance.

PROPOSITION2.5. Let P be avy-irreducible and aperiodic kerneAssume
that D(¢,V,C) holds for a functiong such thatlim,_. ., ¢'(t) = 0, a petite
setC and a functionV such that{ V < oo} # @. Then there exists an invariant
probability measurer, and for all x in the full and absorbing stV < oo},

lim ry (m)|| P" (x,) =7 ()I7v = 0.

Any probability measure. such thati(V) < oo is (1,rg)-regular and for two
(1,r¢)-regular distributions), .., there exists a constantsuch that

> 1) [ [ Ador@nlP ) = Py

n=0
<c(A(V) 4+ n(V)).

REMARK 1. Since ¢’ is nonincreasing, if we do not assume that
lim,_ ¢'(v) = 0, then there exists € (0,1) such that lim_,» ¢'(v) = ¢ > 0.
This yieldsv — ¢ (v) < (L—c)v+c—¢(1). Inthis case, ConditioB(¢, V, C) im-
plies the Foster—Lyapunov drift condition, and the chain is geometrically ergodic.

PROOF OF PROPOSITION 2.5. The only statement which requires a proof
is the fact that any probability measure such th@t) < oo is (1,r4)-regular. This
assertion is established in Proposition 3.1(ii) of Tuominen and Tweedie (1994),
and relies on Lemma 3.1 of Nummelin and Tuominen (1983). We nevertheless
propose a proof that shortens the previous one. The proof is adapted from the
proof of Theorem 14.2.3 of MT. Proposition 2.1 shows that there exist a sequence
of drift functions(Vy, k > 0) and a constarit such thatVy < V and

PVig1 < Vi —rg(k) +bp (D) ry(k + Dlc.
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Dynkin’s formula shows that, for all accessible #&t

‘EB—l
Ex[ > r¢(k)}

k=0

3—1
< Vo(x) + b¢<1)—1Ex[ > rplk+ 1)1c(¢>k)}.
k=0

From Propositions 5.5.5 and 5.5.6 BT, we can assume without loss of
generality thalC is y,-petite, where/, is equivalent to/s, and that the sampling
distributiona has finite meawm,, := Z;’-';l jaj < oo. By the Comparison Theorem

(MT, Theorem 14.2.2), the bount{-(x) < ¥,(B)"1K,(x, B) and the fact that
r¢ is nondecreasing, we have

3—1
Ex[ > r¢(k)}

k=0

3—1
< Vo(x) +b¢<1>—1Ex[ 3 ratk+ 1>1c<¢k>}
k=0

p—1
< Vox) + b (1) M (B) ! ZaiEx[ > rglk+ 1>13<<Dk+l->}

i>0 k=0
< Vo(x) +bp (1) Mu(B) tmyExlrg (vs)).
Fork > 1, defineRy (k) := Z’j;ér(,)(j). Sincery is subgeometric, it holds that
limy— o0 74 (k) /Ry (k) = 0. Hence, for any > 0, there exists a constants) such
that, for allk > 1, r4 (k) < §Rs(k) + c(8). This yields
E[Rp(18)] < Vox) + bp (1) M0 (B) " Tma (SEx[Ry ()] + c(8)).
Thus for small enough, we obtain
Vo(x) + bmayr H(B)c(§)p (D)~
1—bdmaya M(B)p(H~L O

(2.6) E,[Rg(tp)] <

2.2. Rate of convergence ifi-norms. As already mentioned in the polynomial
case and discussed in Tuominen and Tweedie (1994), in the subgeometric case
there is a compromise between the rate of convergence and the control function.
In what follows, we will show that it is possible at almost no cost to obtain many
intermediate rates of convergence and control functionsylie¢ the set of pairs
of ultimately nondecreasing function&; and W, defined on[1,00) such that
liMy oo W1(x) = 00 Or lim,_, oo W2(x) = o0 and, for allx, y € [1,00),

(2.7) Wi)Wa(y) =x +y.
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The sety includes, for exampléP1(x) = x andW2(x) = 1, but there are of course
more interesting examples. For example, it is well known that, foraany> 0,
andp andq suchthat Yp +1/q =1, we have

xy<xP/p+y?/q.

Hence, the pair of functiond (x) = pY/?x1/7, W, (x) = ¢¥/9x/4 satisfies (2.7).
These are precisely the interpolating functions used in Jarner and Roberts
(2002) to derive polynomial rates of convergence. Young functions provide
many useful interpolating functions. We recall their definition. ket (0,00) —

(0,00) be an increasing left-continuous function such that0) = 0 and
limy,— 100 01(v) = 400. Let g2 be the left-continuous inverse @f;, which is
increasing and satisfies algg(0) = 0 and lim,_, 1 02(v) = +00. Define then
Gi(x) = [y 0i(t)dt, i =1,2. The well-known Young inequality states that, for

all x,y >0, we have

(2.8) xy < G1(x) + Ga(y).

Let W; be the inverse o6;, i = 1,2. Then¥; andW¥, are concave functions and
it follows immediately from (2.8) that the paik/1, W2) satisfies (2.7).

We use this full scale of interpolating functions in combination with Proposi-
tion 2.2 to derive bounds for the modulated moment of return time to th€ .set
More precisely, we have the following.

PROPOSITION2.6. Assumé(¢,V,C) and let(W1,W2) € Y. Then

c—1
Ex[ D Wi(rpk))Wa(g o V(cvk))}

k=0
<2V(x) +b(1+7rp(1)/ry(0))1c(x).

We need a criterion for a rate functid#y o ry to be subgeometric. Note that if
the pair(W1, W2) belongs toy, then, for large enough, it holds that¥; (x) < 2x,
i=1,2.

LEMMA 2.7. Assume thaim;,_, o, ¢'(z) = 0. For any nondecreasing function
W such that¥(x) < ax for some constant, W o ry € A.

The next theorem summarizes all our previous results.

THEOREM 2.8. Let P be ay-irreducible and aperiodic kerneAssume that
D(¢,V,C) holds for a functiong such thatlim,_.,, ¢’(r) = 0 and a petite set
C such thatsup-V < oo. Let (W1,%2) € Y. Then there exists an invariant
probability measurer, and for all x in the full se{ V < oo},

lim Wy (rg M) P*(x,) = () llwygov) =0.
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Any pobability mesurei such thati(V) < oo is (Wa(¢ o V), W1(ry))-regular,
and for two such distributions, 1, there exists a constantsuch that

Y Wilrg(m) //k(dx)u(dy)llP”(x, D)= P, ) lwypov)

n=0
<c(A(V) + (V).

PROOF  From Proposition 2.6 we have

‘Ec—l
SUpE, |: Z Wl(r¢(k))LIJ2(¢ o V(‘Dk))i| < 00.
xeC k=0

Theorem 1.1 shows thab is (W2(¢ o V), W1(ry))-regular. As in the proof of
Proposition 2.5, and using again the comparison theorem, for aB/seg ™ (X),
there exist constantg (B) andcz(B) such that

‘EB—l '[B—l
Ex|: Y ¢o V(q)k):| + Ex|: > r¢(k)} = c1(B)V(x) + c2(B).

k=0 k=0
Hence, for anyW1, W>) € ¥, we have

3—1
Ex|: Z Wi (rg(k))W2(ep o V((Dk))i| <c1(B)V(x) + c2(B),
k=0

which shows that any probability measure such th@t) < oo is (Wa(¢ o V),
W1(ry))-regular. [J

2.3. Some usual rate functionsin this section, we provide examples of rates
of convergence obtained by Theorem 2.8 for several functoms Section 3, we
will provide examples and explicitly determine the drift functigrand the sec.
For two sequences, andv,, we write u, < v,, if there exist positive constants
c1 andcp such that, for large, ciu, < v, < cou,.

We assume throughout this section that Conditig, V, C) holds for some
petite setC and sup V < oco.

Polynomial rates of convergencePolynomial rates of convergence have
been widely studied recently under various conditions [see Veretennikov (1997,
2000), Tanikawa (2001), Jarner and Roberts (2002) and Fort and Moulines
(2003)]. As already mentioned, polynomial rates of convergence are associated
to the functions¢ (v) := cv® for somea € [0,1) andc € (0,1] and the rate
of convergence in total variation distance rig(n) o« n®/A=%). Set Wy(x) :=
(1 — p)x)I=P and W, (x) := (px)? for some p, 0 < p < 1. Applying
Theorem 2.8 yields, fat € {V < o0},

(2.9) lim n=pe/d=0) prx .y — 7()|yer = 0.
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This convergence remains valid forp = 0,1 by Propogion 2.2.
Setk : =1+ (1— p)a/(1—«a) sothat 1< k < 1/(1 — «). With this notation, (2.9)
reads

lim TP (x, ) — ()l yrca-w =0,

which is Theorem 3.6 of Jarner and Roberts (2002).

Itis possible to extend this result by using more general interpolation functions.
We can, for example, obtain nonpolynomial rates of convergence with control
functions which are not simply power of the drift functions. To illustrate this point,
set forb > 0, W1(x) := (1 Vv log(x))? and W,(x) := x(1 Vv log(x))~?. It is not
difficult to check that we have

sup (x +y) W1 () Wa(y) < o0,
(x,y)e[1l,00)x[1,00)

so that, for allk € {V < o0}, we have

: b n _
(2.10) I'}En log”(m)[| P" (x, ) — w () llye 1410g(vy)—» = O,
(2.11) lim n®/ 4= log™ () [ P" (x,) = 7 ()| L4109(vy> = O,
and for all O< p < 1,

: 1- 1— b
lim nA=Pe /A= 1ogl || P"(x,) — () lyer 1 110gvy-> = O-

Logarithmic rates of convergenceWe now consider drift conditions which
imply rates of convergence slower than any polynomial. Such rates are obtained
when ConditiorD(¢, V, C) holds with a functior that increases to infinity slower
than polynomially. We only consider here the cage) = c¢(1+log(v))* for some
a > 0 andc € (0, 1]. A straightforward calculation shows that

r¢(n) < log”(n).

Proposition 2.5 shows that the chain(is log* (n)) and((1 + log V)%, 1)-regular.
Applying Theorem 2.8, intermediate rates can be obtained along the same lines
as above. Choosing, for instandg;(x) := (1 — p)x)1~7 andWo(x) := (px)?
for 0 < p <1, the chain ig(1 + log V)?%, log(n)~"%)-regular and thus, for all
xe{V < o0},
lim (14 1og(m) "I P" (x,) = 7 () a410g(vyyre =O.

Subexponential rates of convergencBubexponential rates [as defined
in (1.4)] have been considered only rettgin the literature An example (in con-
tinuous time) has been studied by Malyshkin (2001); discrete-time examples are
considered in the recent work by Klokov and Veretennikov (2002). These rates,
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which increase to infinity faster than polynomially, are obtained when Condi-
tion D(¢, V, C) holds with¢ such thaty/¢ (v) goes to infinity slower than poly-
nomially. More precisely, assume thais concave and differentiable ¢h,+o0)

and that for largey, ¢ (v) = cv/log*(v) for somex > 0 andc > 0. A simple cal-
culation yields

re(n) < n—e/(1+e) exp{c(1+ a)n} 1/(1+°‘)),

and thus the chain ig1,n~%M exp{c(1 + a)n}¥A0)) and (V/(1 +
log V)*, 1)-regular. Applying Theorem 2.8 with'1 (x) := x1~7(1vlog(x))~? and
Wy(x) :=xP(1 v log(x))? for p € (0,1) andb € R; p=0andb > 0;orp =1 and
b < —a yields, forallx e {V < o0},

lim n—@+b)/(A+a) exp((l — e+ a)n} 1/(1+o¢))
(2.12) " ;
X [P"(x,) =7 () lyratiogyvy =0

Asymptotically, the termn~@+0/(+®) js net very important and we can
express (2.12) in a simpler way: for all< (1 — p){c(1 + o)} we have,
for the same values gf andb,

1/(1+e)
TP, ) = O llyp(astog vy = 0.

lim
n
3. Applications. We now illustrate our findings by applying Theorem 2.8
to several models. In Section 3.1, we exhibit a simple example where the rates
obtained in Theorem 2.8 can be proved optimal. In the next sections we study
several examples where no such optimality results are available.
In this section,(-,-) and| - | denote, respectively, the scalar product and the
Euclidean norm in any Euclidean space. The transpose of a veistalenoted’.
If u is a twice continuously differentiable real valued function®h Vu (resp.
v2u) denotes its gradient (resp. its Hessian matrix).

3.1. Backward recurrence time chainThe backward recurrence time chain
(see MT, Section 3.3.1) is a rich source of simple examples of stable and unstable
behavior. We consider it here to provide examples of chains satisfying Condi-
tion D(¢, V, C) and for which the rates of convergence implied by it are optimal.

Let (p,,n > 0) be a sequence of positive real numbers such pat 1,
pn€(0,D for all n > 1 and lim_[[/_;pi = 0. Consider the backward
recurrence time chairb with transition kernelP defined asP(n,n + 1) =
1— P(n,0 = p,, for all n > 0. Then® is irreducible and strongly aperiodic
and {0} is an atom. Letyg be the return time to {0}. We have, for all> 1,

n—1

n—1
Po(to=n+1)=1—p,) [[p; and Po(ro>n)=]]p;.
j=0 j=0
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By Kac's theorem (MT, Theorem 10.2.2), sindas -irreducible and aperiodic,
@ is positive recurrent if and only iEg[ o] < oo, that is,

o0 n

> [1pi<oo

n=1j=1
and the stationary distributiorr is given, by 7(0) = 7 (1) = 1/Eg[tg] and
for j > 2,

Eol>12 1 Liw,=j3 ] _ Po(to > j) __Po---pj-2
Eol o] Eo[ o] Yope1P1l P

Because the distribution of the return time to the atom {0} has such a simple
expression in terms of the transition probability,,n > 0), we are able to
exhibit the largest possible rate functiersuch that the (I;)-modulated moment

of the return tlmeIEO[Z’O lr(k)] is finite. We will also prove that the drift
conditionD(¢, V, C) holds for appropriately chosen functiokisand¢ and yields

the optimal rate of convergence. Note also that, for any funcfigbholds that

0—1 0—1
EO[Z f(rbk)} :EO[Z f(k)]
k=0 k=0

Therefore there is no loss of generality to consider only)imodulated moments
of the return time to zero.

If sup,~1p, <A <1, then, for allx < u < 1, Eg[u""] < co and {0} is
thus a geometrically ergodic atom (MT, Theorem 15.1.5). Subgeometric rates of
convergence in total variation norm are obtained when limgup 1. Depending
on the rate at whiclp,, approaches 1, different behaviors can be obtained, covering
essentially the three typical rates (polynomial, logarithmic and subexponential)
discussed above.

n(j) =

Polynomial rates. Assume first that, for¢é > O and largen, p, =1 —
(1+6)n~t. Then[T, pi < n=20. Thus,Eo[ Y15 r(k)] < oo if and only if
> r(k)k~1% < co. For instancey (n) := n? with 0 < 8 < 6 is suitable.

Logarithmic rates. If for 6 > O andlarge:, p, =1—1/n—(1+60)/(nlog(n)),
then [Ti_; p; < n=*log™*?(n), which is a summable series. Hencerifis

nondecreasing ard ;> ; r (k) 1‘[’;:1 pj < oo, thenr(k) = o(log’ (k)). In particular,
r(k) :=log? (k) is suitable for all 0< B < 6.

Subgeometric rates.If for large n, p, = 1 — 6nP~1 for somed > 0 and
B € (0,1, then[['_; p;i < e Thus, IEO[Zro 1 “kﬂ] < oo if a <0, and
Eoly g e’ 1= oo'if a > 6.
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Checking ConditiorD(¢, V,C). In order to prove that Proposition 2.5 pro-
vides the optimal rates of convergence, we now compute in each of the previous
examples the rates of convergence it yields.

For the polynomial and subexponential cases, the same technique can be used.
Fory € (0,1) andx € N*, defineV(0) := 1 andV (x) := H;;lpj_”. Then, for
all x > 0, we have,

PV(x)=p:V(x+1) + (11— py)V(0)
=py V) +1-p,
<V = Q= pi IV + 1= py.
Thus, for 0< § < 1— y and large enough, it holds that
(3.1) PV(x)<V(x)—56(1— py)V(x).

1. Casep, =1—(1+60)n~1t,0 > 0. ThenV (x) < x? A and(1— p,)V(x) <
V(x)IYA+0)  Thus ConditionD(¢, V,C) holds with ¢ (v) = cv® for
a=1-1/(y(1+ 6)) for any y € (0,1). Theorem 2.8 yields the rate of
convergencea®/ =) = ¥ A+0)-1 that is,n# for any 0< B8 < 6.

2. Casep, = 1—6BnP~1. Then, for large enough, (3.1) yields

PV(x) < V(x)—0B5xP v (x)
< cV(nflog(V(x))} 7,
for ¢ < 6P Bs. Defininga := 1/8 — 1, Proposition 2.1 yields the following
rate of convergence in total variation norm:
n= 0 exp{c(1 + a)n} ) = nP~LexpBsfnP).
Sinces is arbitrarily close to 1, we recover the fact tiﬁﬂz,if’:_ol e'] < 00
foranya < 6.

3. Casep, =1—nt— 1+ 6ntlogtn), 6 > 0. ChooseV (x) :=
(1‘[;‘.;6 pj)/10g° (x) for & > O arbitrarily small. Then, for constants< ¢’ <
¢” <1 and largex, we obtain

log® (x)

PV = log v + 1)

V(x) +1-— Dx
V(x)
xlog(x)
<V(x)—celog ¢ (x)
< V(x) —celod ¢ (V (x)).

=Vx)—c"e

1_px

Here again Theorem 2.8 yields the optimal rate of convergence.
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3.2. Symmetric random walk Hastings—Metropolis algorithridVe consider
the symmetric random walk Hastings—Metropolis algorithm. The purpose of this
algorithm is to simulate from a probability distributianwhich is known only up
to a scale factor. At each iteration, a move is proposed according to a random
walk whose increment distribution has a symmetric dengityith respect to
the Lebesgue measurg on R¢. The move is accepiewith probability«(x, y)
defined by
min{w,l}, if 7(x) >0,

7(x)

1, if r(x) =0.

The transition kernel of the Metropolis algorithm is then given by

(3.2) a(x,y) = I

P(x,A>:/Aau,x+y>q<y>dud<y>

+ 1A<x>/(1—oe<x,x + ) da(y).

Mengersen and Tweedie (1996) have shown that a real valued Metropolis chain
is geometrically ergodic when the proposal dengisatisfies moment conditions
and the target density is continuous, positive and log concave in the tails. This
condition is necessary in the sense that if the chain is geometrically ergodic, then
Jexpis|z)m(z) dna(z) < oo for somes > 0. These results have been extended
to the multidimensional case by Robe and Tweedie (1996) and Jarner and
Hansen (2000). Polynomial ergodicity was proved by Fort and Moulines (2000)
for a target density with regularly varying tails. We now state conditions that imply
subexponential rates of convergence.

AssuMPTION3.1. The target density is continuous and positive d&¢ and
there existn € (0,1), r € (0, 1), positive constants;, D;,i =0,1,2 andRg < o0
such that, ifix| > Rg, x > 7 (x) is twice continuously differentiable and

(3.3) < V() ,i> <-r

IV (x)| |x]
(3.4) dolx|" < —logm (x) < Dolx|",
(3.5) dilx|" "t < |Vlogm(x)| < D1|x|" 1,
(3.6) da|x|" 2 < |V?logr (x)| < Dalx|"2.

The Weibull distribution onR with density 7 (x) := Byx? " lexp(—Bx"),
for x >0, B >0 and O< y < 1 satisfies Assumption 3.1. Multidimensional
examples are provided in Fort and Moulines (2000). For the sake of simplicity,
we make the following assumption on the proposal dengity
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AssUMPTION3.2. The proposal density is symmetric and bounded away
from zero in a neighborhood of zero and is compactly supported; that is, there
existsc(g) such that, for ally| > ¢(g), g(y) =0.

THEOREM 3.1. Under Assumption8.1 and 3.2, there existz > 0, ¢ > 0,
r >0 such that D(¢,V,C) holds with V := 77% and ¢ () := cv(l +
logv)~23=m/m and C = {|x| < r}.

Under Assumptions 3.1 and 3.2, Theorem 2.2 of Roberts and Tweedie (1996)
shows that the chain ig-irreducible and aperiodic and nonempty bounded sets
of 8T (RY) are petite. Thus, we obtain the following corollary.

COROLLARY 3.2. There existc > 0 and z > 0 such that any probability
measure). on RY satisfyingi(V) < oo is (f,r)-regular with r(n) = e’ ™
and f =m7°%.

REMARK 2. Our result complements the work of Fort and Moulines (2000)
who show that under Assumptions 3.1 and 3.2, the cldaiis (f,r)-ergodic
with f(x) := QA+ |x|*) andr(n) := (1+n)”, foranyu > 0 andv > 0.

REMARK 3. The compactness Assumption 3.2 can probably be relaxed and
replaced by an appropriate moment condition.

REMARK 4. We do not provide explicit values of the constanendz here;
these values can be deduced explicitly from the proof. It should be stressed that
optimal values of these constants are related: the largiie smallerz and vice
versa. The same comments apply to Corollaries 3.4 and 3.6.

PROOF OFTHEOREM 3.1. DefineR(x) :={y e RY,n(x + y) < w(x)} the
potential rejection region. Using the definition of the transition kefealve have

PV(x)—V(x)

- / (V@ +3) = V)g() dia(y)

f Vet - V(x))(M - 1)g0) da),
R(x) 7 (x)
Setl(x) := —logn(x), R(V,x,y) :=V(x +y) — V() + zV(x)(VI(x),y) and

R(m,x,y) :=n(x+y)/m(x) — 1+ (VIi(x),y). Itis proved in Lemma B.4 of Fort
and Moulines (2000) that there exists a constasiich that, for largéx|,

(3.7) sup |R(m,x,y)|ly| 72 < c|x2m=D,

lyl=c(q)
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Using a Taylor expansion with integral remainder term of the functiesn V (x),
it is easily shown that there exists a constarstuch that, for alk € (0,zg) and
large|x|,

(3.8) sup |[R(V,x,)IlyI™% < cz?V (x)lx 2P,
lyl<c(q)
Sincegq is symmetric, we have
PV(x)—V(x)

— V(o) /ﬂ(x)wz(x),yﬁq(y)dw(y)
+ [ ROx a0 dpay)
_ /R o RV 20V, )9 () dRa(y)
+ V@) /R(x)<Vl(x)’y>R(7T1X,y)C]()’)de(Y)

+/$( ROV, RG99 0) dita(y)
X
Thus, for largdx|, we deduce from (3.7) and (3.8) that

PV(x)—=V(x)
V(x)

<2 /R( (VI 920 dia() + 1P,
X

for some positive constantthat does not depend anlt is shown in Lemma B.3
of Fort and Moulines (2000) that there exigts- O such that, for largéx|,

(3.9) /ﬂ( )<Vl(x>,y>2q<y>dud<y) > 0| VI(x) [ > ndf|x[2" D
X
Hence, upon noting thatdp|x|™ < logV (x), there exists a constartwhich is
positive forz small enough, such that, for large,
PV(x)— V(x) < —«[logV (x)]72X™/m vy (x).

Sincer is bounded on compact sets, sy, PV (x) + V(x) < oo and the proof
is concluded. O

3.3. Nonlinear autoregressive modelConsider a procesgd,,n > 0) that
satisfies the following nonlinear autoregressive equation of order 1:
(310) ch+1 = g(¢n) + &ntls

where the sequende,,n < 0) and the functiorg satisfy the following assump-
tions.
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ASSUMPTION 3.3. (g,,n > 0) is a sequence of i.i.d. zero meahdimen-
sional random vectors, independentdyf, that satisfy

(3.11) E[ezoleolm] <00,

for somezg > 0 andyyg € (0, 1] and the distribution ofg has a nontrivial absolutely
continuous component which is bounded away from zero in a neighborhood of the
origin.

AssUMPTION3.4. g:R? — R is continuous, and there existRy > 0 and
o €[0, 2 such that

(3.12) g < x|A=rix[7")  if |x] = Ro.

There already exists a wide literature on conditions implying a geometric rate
of convergence for nonlinear autoregressive models [see, e.g., Duflo (1997) and
Grunwald, Hyndman, Tedesco and Tweedie (2000) and the references therein].
Conditions implying a polynomial rate of convergence have been obtained by
Tuominen and Tweedie (1994) and AngoNze (1994) and have been refined by
Veretennikov (1997, 2000), AngoNze (2000) and Fort and Moulines (2003).
Conditions implying a truly subexponential rate of convergence are considered
in Klokov and Veretennikov (2002) [see also Malyshkin (2001) for diffusion
processes].

THEOREM 3.3. Assume that Assumptio&3and 3.4 hold.

@) If p > yo, the drift condition D(¢,V,C) holds with ¢ (v) := cv(1 +
log(v))2=P/ A=) V(1) 1= X" *” and € :={x e R?, |x| < M} for some
z€(0,z0),c>0andM > Rg.

(i) If p <0, then the Foster—Lyapunov conditigh.2) holds withC = {x €
R?, |x| < M} for someM > Rg and V (x) = " with z = zg if p < yp and
7z € (0,z0) if p = y0.

COROLLARY 3.4. Assume in addition thator all x € R¢, |g(x)| < |x|. Then
the chain isy -irreducible and aperiodic and compact sets®f (R¢) are petite

If p > y0, then there existg > 0 and z € (0,zp0) such that any probability
measure. onR? satisfyingi.(V) < oo is (f,r)-regular withr (n) = <70 @ "H*
and f (x) = e,

PrROOF OF THEOREM 3.3. Throughout the proof is a generic constant
that can change upon each appearance. Applying the ineqiality+ w) <
V(u)V(w), we obtain that in all case®V is bounded on compact sets Rf .
Thus the proof consists in boundi®yy/ — V outside balls.
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(i) We start by examining the cage> yo. SetB = y9 A (2 — p). We write
PV(x) 1- PV(x)—V(g(x)) n V(gx) 1

V(x) V(x) V(x)
Using the inequality1 — )" <1 — you for all 0 < u < 1, we have forx| > Ry,
lg(0)|? < |x|P — Br|x|P~*, and since* — 1 < x + x2/2 forall x <O,

(3.13)

VW) 4 _ szl _ g
V)

(3.14) 1
< —zrBlxf* + 522,,252|x|2<ﬂ—p).
Let 0< n < 1. We establish that, for small large|x| and largg g (x)|,
(3.15) PV (x) = V(g(x)) < 32°B°ElleolV (e0)11x|P 72V (x).
SetR(u,w) =V +w) — V) — (VV(u),w). SinceE[gg] = 0, this yields
PV (x) = V(g(x)) =E[V(g(x) + e0)] - V(g(x))
=E[R(g(x),20)],

and we have to upper bound the remainder tBfR(g (x), e0)]. If |w| < nlu|, then
by using a Taylor expansion with integral remainder term, one has

(3.16)

1
[R(u, w)| 5/ (L— 0w V2V (u + tw)w| dt
0
§%|wlzzﬁ Sup{(l+zﬂ|u+tw|ﬂ)|u+tw|ﬁ_2V(u+tw)}.
t€[0,1]

Sincey > |y126-2¢20" andy > |y|#~2e2"" are ultimately nondecreasing, for
large|u| and|w| < n|u|, we have

|R(u,w)| < 3lwl?2B(L+ zBlul + [wh?)(|u] + [w)P 2V @)V (w)
< 322B% WPV (W) u|? 2V () + clwl?V (w) |ulP 72V ().
If lw| > nlul, using again the inequality (u + w) < V() V(w),
[R(u,w)| < V(u+w)+Vu)+|VVw)||w
(3.18) < clw|V)lul’~V @)
< clw®V (w)lulf~2V (u).
We now apply (3.17) and (3.18) witlh = g(x) and w = . Since y +—
1y126=23" andy > |y|f—2¢7” are ultimately nondecreasing, for largex)|,
we have
IR(g(x),£0)]
< 322B%|e0l?V (20) X1 2V (x) + cleol?V (e0) [x P72V (x).

(3.17)

(3.19)
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Equation (3.15) now follows from (3.19). Gathering (3.14) and (3.15)8 as
2 — p, we obtain that we can choose< zg, M1 and M» such that, forx| > M
and|g(x)| = M>, it holds that

PV(x) = V(x) <¢(V(x))
with ¢ (v) = —kBz°/P{1 + log(v)}*~*/Pv and
r, if 8<2—p,thatis,yo<2—p,
- { r— 1/2;311@[8561'80"*], if B=2— p, thatis,yg>2— p,

andz is chosen small enough such tikat- 0. To conclude, note that [g(x)| <
My, then PV (x) < V(M1)E[V (g9)]. ChooseM1 such that if|x| > M3, then
¢ (V(x)) = V(M1)E[V (g9)]. Then, definingC = {|x| > M1}, we have that, for
allx¢ C,PV(x)— V() <op(V(x)).

(i) We now consider the case = yg [observe thaB := yo A (2 — p) = Yo
and that many results above remain valid]. By (3.13), (3.14), (3.16) and (3.19), we
have for larggx| and larggg(x)|,

PV(x)—V(x) - 1,, 5

V) <-—zryo+ EZ r“yo

1
+ EZZVOZIXIZVO_ZE[egV(Eo)](l +0(1)).

For z small enough, the term on the right-hand side is in the intgrval 0) and
this shows that the Foster—Lyapunov drift condition (1.2) holds @ithf the form
{x,1gx)] < M1} U{x,|x| < M>} for large enoughM1, Mo.

(i) We finally consider the case < yp. Using the inequality(l — u)"° <
1—you forall 0 <u < 1, we have forix| > Ro, |g(x)|"° < |x|0 — yor|x|0™7,
Hence, since/ (u + w) < V(u)V(w), this yields, for|x| > Ry,

PV (x) =E[V(g(x) + ¢0)]
< V(g(x)E[V (g0)]

_ Y0—p 0
< g~ Tvozolxl E[ezo\so\ ]V(x).

Hence limy|— o PV (x)/V (x) = 0, which implies that the Foster-Lyapunov drift
condition (1.2) holds withC := {|x| < M} for large enoughM. O

3.4. Stochastic unit root. We now consider a process which belongs to the
wide family of stochastic unit root models. See, for example, Granger and Sawnson
(1997) for many examples. The model we consider is one of the simplest. It has
been considered in Gourieroux and Robert (2001) with main focus on its extremal
behavior:

(3.20) Pui1 =10, 1<¢(@)} Pn + Ent1,
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where(e,,n € N) is a sequence of i.i.d. random variables that satisfies (3.11) and
(Uy,,n > 1) is a sequence of i.i.d. random variables, uniformly distributefDof

and independent from the sequeligg n € N). Moreover, we make the following
assumption oig.

ASSUMPTION3.5. g is a continuous function with values 0, 1) and there
existk € (0,1), c+(g) > 0,c-(g) <1 andRg > 0 such that

(3.21) Vx>Ro 1-g()>ci(g)x",
(3.22) Vx <Ro g(x) <c_(g).

Let P be the transition kernel of the chain. For alE R and all Borel sets,
it can be expressed as

(3.23) P(x,A)=g(x)P(x + o€ A) + (1 — g(x))P(g0 € A).

Under Assumption 3.5, for alM > 0, there exists a constan{M) such that,
for all x < M and all Borel sets,

(3.24) P(x,A) > n(M)P(gg € A).

This means that every set of the fofmoo, M] is petite. Definer, = max(x, 0).

THEOREM 3.5. Under Assumptior3.5 and if gg satisfies(3.11), there exist
z€(0,z0], 8§ > 0and M > Rq such that the drift conditio®(¢, V, C) holds with
V(x) = ek ¢ (v) = 8z7/Pv{1 v log(v)} "7/, C = (—oco,M] and 8 and r are
given according to the value @feg] by.

() B=yoA(L—«)andt =«, if E[gg] > O;
(i) B=ywAlQ—«k/2) t=xk,if E[eg] =0;
(i) B=yoandt = (1 — yo) Ak, if E[gg] <O.

COROLLARY 3.6. Under the same assumptigribe chain isy -irreducible
and (strongly) aperiodic and there exigt> 0 andz > 0 such that any probability
measure. onR? satisfyingh (V) < oo is (f, r)-regular with

. 1 (HOAA—)) /(YA LK) F5) rorNA—k)
@A) r(n) =e" YOS roAtE O and f(x) = e“*+ ,if E[gg] > O;
. 1 (YOAL—K/2)/ (roA L=k /2)+10) rorNd=k/2)
(i) r(n) =TI and f(x) = ¥+ , if E[eo] = O;

(i) r(n) = een?0/riTr0 o) and f(x) = e”]jro, if E[eg] < O.
PROOF OFTHEOREM 3.5. Letz < zg andx > 0. Using the definition of the
transition kernelP, we have
PV (x) = V(x) = gX)E[V(x +e0)] + (1 — g(x))E[V (0)] — V (x)
= g(X)(E[V (x +0)] = V(x)) — (1 — g(x))(V (x) — E[V (¢0)])
<E[V(x +&0)]— V(x) — (1 - g(x))(V(x) — E[V (0)]).
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DefineR (x,g0) = V (x + 9) — V (x) — e0Bzx?~1V (x). For anyy € (0, 1), we can
write

E[V (x 4 g0)] — V(x) — BzE[eolx? 71V (x)

= E[R(x,£0) L jeoi<nv} ] + E[R(x, £0) Y jeql>nx} ]-
By the same arguments as in the proof of Theorem 3.3, we have
E[R(x,0) L col>nx}]

<E[V(1+n Yleol) + V(Izol) + Bzn' P leol® V (leol)].

Thus this term is bounded provided that and z are chosen such that
(1 + n~1Pz < z0. To bound the second term, note that for large enaugthe
functionx — xzﬂ—ZV(x) is increasing. Thus, far > M, for someM depending
onn, and|eg| < nx, there exists € (0, 1) such that

V(x +e0) — V(x) — Bzeox? 1V (x)
= 1B(B — Dz(x +160)’ 263V (x + 160)

(3.25)

+ %(ﬁZ(X + ISO)ﬂ_l)ZegV(x +t50)
< 3822+ P 228V () V (leo))
< 3825 26GV (1) V (e
Forc < ¢4 (g) andx large enough, say > M for someM > R, we have
(1—-g@))(V(x) —E[V(e0)]) = cx™“V (x).

Hence, taking (3.25) into account, there exists a positive real numisrch that,
if x > M, then

PV(x)—V(x)
< (BxP " Ele0] + 35%2x 2P 2R3V (|sol)] — ex )V ().
If E[eo] > 0, set8 = yo A (1 — k). Then, for large enough, we obtain
PV(x)—V(x) < =8x"V(x)
= —8z/PV (){log (V (x))} /%,

with d =c¢ <c4(g) if yo<1—x ord =c— BzE[eo], ¢ < ¢4 (g) andz such that
8>0if yp>=1—«.If E[gg] <O, setB =ypandt = (1 — y9) A k. Then, forx
large enough,

PV(x)—=V(x)<=86x""V(x)
= =827V (x)flog (V (x))} "7/,
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withd =c < c4(g) If Yo <1—«k ands =c — z8E[so], ¢ < c4(g) andz such that
8 >0if yg=1—«. If E[gg] =0, theng must satisfy B3 — 2 < —; thus we set
B =(1—«/2) A yp, and we obtain

PV(x)—V(x) < =8x*V(x)
= —87/PV (x){log (V (x))} ~*/#,

with § = ¢ < c4(g) if 1 — /2> yo and § = ¢ — 3p%z?E[e3V (leo])], with
c<cy(g)andzsuchthat >0if1 —«x/2<yp. O
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