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Recent developments in the fields of smartphones and wireless communication technologies such as beacons, Wi-Fi, and ultra-
wideband have made it possible to realize indoor positioning system (IPS) with a few meters of accuracy. In this paper, an
improvement over traditional fingerprinting localization is proposed by combining it with weighted centroid localization
(WCL). The proposed localization method reduces the total number of fingerprint reference points over the localization space,
thus minimizing both the time required for reading radio frequency signals and the number of reference points needed during
the fingerprinting learning process, which eventually makes the process less time-consuming. The proposed positioning has two
major steps of operation. In the first step, we have realized fingerprinting that utilizes lightly populated reference points (RPs)
and WCL individually. Using the location estimated at the first step, WCL is run again for the final location estimation. The
proposed localization technique reduces the number of required fingerprint RPs by more than 40% compared to normal
fingerprinting localization method with a similar localization estimation error.

1. Introduction

Though global positioning system (GPS) is very popular in
localization applications, it is inefficient for indoor localiza-
tions [1]. Consequently, attention to indoor positioning
system (IPS) has been increasing rapidly as an alternative to
GPS for such locations. Various wireless technologies such
as Bluetooth low energy (BLE), Wi-Fi, visible light communi-
cation (VLC), and ultra-wideband (UWB) have been used in
IPS. Because BLE is widely supported by mobile devices and
is designed for short-range wireless transmissions with low
energy consumption and low cost, it seems more promising
than other wireless technologies.

The main wireless signal measuring principles in IPS
are time of arrival (TOA), time difference of arrival
(TDOA), the angle of arrival (AOA), and received signal
strength indication (RSSI). The TOA, TDOA, and AOA
positioning systems require either proper time synchroni-
zation or an antenna array, which may increase the system
cost. On the other hand, a RSSI-based positioning system

uses characteristics of wireless signal intensity over space
and does not require time synchronization and angle
measurement. Moreover, measurement of RSSI is relatively
straightforward and can employ existing wireless technolo-
gies without any additional hardware devices, which elim-
inates extra cost and energy consumption. Most of the
RSSI-based positioning research works use fingerprinting,
trilateration, and triangulation methods as their basic tech-
niques in IPS development. Among them, fingerprinting is
adopted extensively because of its high degree of accuracy.
However, the construction of an extensive reference point
database during the offline phase makes fingerprinting
time-consuming and labor intensive. The weighted cen-
troid localization (WCL) method can also be a candidate
technology for IPS. WCL is known as flexible, easy to
implement, and consumes less time, but it has a large
location estimation error [2, 3].

We present an IPS that reduces the number of reference
points (RPs) for fingerprinting operations over localization
space while yielding a location estimation error similar to
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weighted k-nearest neighbor (Wk-NN) fingerprinting locali-
zation. The proposed localization uses BLE beacon-based
fingerprinting, where the RSSI of beacons at the
predetermined location and the location coordinates are
stored in a database as an RP. Also, it uses collaboration
between WCL and fingerprinting localization with fewer
fingerprinting RPs.

This research paper is organized as follows. In Section 2, a
brief review of typical IPS is presented. The proposed posi-
tioning system is elaborated upon in Section 3. Section 4
and Section 5 present experimental results and discussion
and the conclusions of our research work, respectively.

2. Typical Indoor Positioning Systems

An IPS research work using BLE and fingerprinting is
presented in [4] where Wk-NN positioning method is used.
The k-nearest fingerprints are found in a database by using
the Euclidean distance between the measured RSSI and the
referred one from the database. This work also compares
localization methods based on Wi-Fi and a combination of
BLE and Wi-Fi.

Another work based on BLE beacon and fingerprinting
techniques is introduced in [5] where a Gaussian filter is used
to preprocess the receiving signals. Here, a distance-weighted
filter based on the triangle theorem of trilateral relations
is proposed to filter out the wrong distance value caused
by an abnormal RSSI. Moreover, [6] proposes a hybrid
approach to an integration of fingerprinting and trilatera-
tion with a gradient filter for RSSI estimation.

The WCL method is introduced in [7] for outdoor local-
ization using a ZigBee-based sensor network. Theoretically,
the WCL method is derived from a centroid determination
process where weights are used to estimate positions. The
weight being inversely proportional to a distance between
the reference beacon location and an unknown current
position plays a vital role in location estimation. Work
using proprietary radio modules with the WCL method for
tracking a person in a longwall mining application is
presented in [8].

Radio signal strength- (RSS-) based fingerprinting
positioning can also be integrated with motion sensor-
based positioning. Such a system is put forward in [9]
where the current position of the tag device is estimated
by adding the previous position estimate and the position
displacement from sensor-based positioning with the help
of Kalman filter. An approach of using a user movement
pattern and feeding this information to RSS-based localiza-
tion system is reported in [10]. Here, recurrent neural
networks are exploited to process RSS information to
predict the user movement pattern. Meanwhile, RSS itself
is not problem-free. It suffers a variance problem caused
by environmental variations that are innate to both the
training and test phase of fingerprinting localization. It is
reported that even the same device without changing any
experimental settings yields very different RSS characteris-
tics [9, 11]. Reference [11] is a smartphone-based Wi-Fi
fingerprinting system that tries to solve the RSS variation
problem by assuming that there lies a linear shift in the

RSS values at training and test phase. Furthermore, with
this assumption, peak RSS values from access points
(APs) at RPs are stored and are used for localization in
the test phase. Reference [9] adopts the concept of the
linear shift in RSS values as proposed by [11] and try to
mitigate the RSS variation problem. Here, the linear
fitting parameters that represent the difference between
the offline and online RSS observations are calibrated
with recursive least square estimation (RLSE). Channel
state information- (CSI-) based fingerprinting positioning
can use amplitude and phase response of the Wi-Fi
subcarriers and get rid of RSS [12]. Also, it is shown that
CSI amplitude values exhibit good stability compared to
RSS values. Here, feature-based fingerprints are generated
with a deep learning approach.

2.1. Bluetooth Low Energy (BLE) Beacon. The specifications
of Bluetooth version 4.0 [13] released in June 2010
introduced a new technology called Bluetooth low energy
(BLE) or “Bluetooth Smart.” In this version, among the two
lowest layers of the BLE stack, the physical (PHY) layer
takes care of transmitting and receiving bits, whereas the
link layer (LL) provides medium access, connection estab-
lishment, error control, and flow control. As with the
other protocols defined in BLEs, logical link control and
adaptation protocol (L2CAP), generic attribute protocol
(GATT), and generic access profile (GAP) operate on the
upper layers.

Indeed, BLE is designed for devices that do not require
large amounts of data transfer and is intended for short-
range wireless transmission with low energy consumption
and cost [14, 15]. A research work presented in [16] has
reported that the power draw of the mobile device (tag) is
lower for BLE than for Wi-Fi.

For the transmission, BLE operates at an industrial,
scientific, and medical (ISM) frequency band of 2.4GHz.
The frequency band is divided into 40 channels spaced
at 2MHz apart. Among the 40 channels, three channels
are used for an advertisement. A BLE device uses these
advertisement channels to broadcast its advertisement
packets continuously. Moreover, these three advertising
channels are strategically placed to avoid interference with
coexisting technologies like IEEE 802.11 and ZigBee [17].

A BLE device deployed in IPS is called a “beacon.”
Recently, many companies have emerged that provide bea-
cons commercially. We used Estimote Beacon devices as
BLE beacons in our experiment [18].

2.2. Weighted Centroid Localization (WCL). In the WCL
method for location estimation, weight wi is assigned to
beacons when measuring the distance from a tag device.
The weight is the inversed distance applied to a degree g
The main advantage of this method is that it always confines
location estimation inside the region surrounded by beacons.
Moreover, any beacon near the tag device will have the
highest weight, so that the final location estimation is pulled
towards this beacon. For m beacons, WCL is defined by the
following set of equations:
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where (xw, yw) is the estimated coordinate of the WCL
method, di is distance between the tag and beacon i, g is the
degree ofweight [2], andm is the total number of beacons con-
sidered at any time for locationestimation. Some typical values
ofg are 0.5, 1, and 2.6 [2, 3, 8]. For example, Figure 1 illustrates
WCL with three beacons within the localization area. At first,
distances (d1, d2, and d3) from beacons to the tag device
are estimated using the log distance propagation model
and respective weight is decided depending on both those
distances and degree (g).

The flowchart shown in Figure 2 depicts the operation of
the WCL positioning system. The operation procedure starts
with the measurement of raw signal strength coming from
the deployed beacons. These signals are further smoothed
using a moving average filter.

2.3. Fingerprinting Localization. Fingerprinting is the most
popular method of localization because of its high accu-
racy compared to other methods. It does not require
line-of-sight measurements of APs, has low complexity,
and gains high applicability in the complex indoor envi-
ronment [12, 19]. Fingerprinting-based localization usu-
ally consists of two main phases: offline (training) and
online (test).

2.3.1. Offline Phase. The offline phase of fingerprinting is
designed for learning the RSSI at each reference point.
At this stage, we collect RSSIs from all beacons. RSSIs in
four directions 0°, 90°, 180°, and 270° at each measure-
ment location are collected as shown in Figure 3. These
collected RSSIs are stored in a database along with their
location coordinates, which are called reference points
(RPs) in this paper.

2.3.2. Online Phase. In the online phase, RSSIs from beacons
are measured and compared with the stored ones in the
database. Then, the location of the tag device is estimated
using the fingerprinting procedure described in Figure 4.
The positioning distance Dj between the stored RSSI value

d1

d3

d2

w3 = 1/d3
g

w2 = 1/d2
g

w1 = 1/d1
g

Beacon 1

Beacon 3

Beacon 2

(xw,yw)

Figure 1: Example for weighted centroid localization.

Measurement of
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beacons

RSSI smoothing using
moving average �lter

Distance estimation
using distance-RSSI

relation
Decision of weight

WCL
positioning for
P (xw, yw) 

Figure 2: The operation procedure of a weighted centroid localization- (WCL-) based positioning system. Box with dotted lines represents
work we added for our proposed positioning method.
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(RSSIof f line) and the online collected RSSI value (RSSIonline) at
jth reference point is given by

Dj = 〠
m

i=1

RSSIionline − RSSIioff line
2
, 2

where i is the number of beacons ranging from 1 to m, the
total number of beacons around the tag. Here, Wk-NN can
be used as a matching algorithm based on stored and online
RSSI values [4, 20, 21]. In order to determine weight of any
reference point, Dj is sorted in an ascending order. Least k

positioning difference is chosen, and inverse of it is assigned
as weight to their respective reference points.

3. The Proposed Positioning System

In the arena of indoor location positioning techniques, fin-
gerprinting has been a prime choice for researchers due to
its good estimation. However, the inevitable drawback of this
method is the requirement of a tedious and time-consuming
offline phase. Also, though WCL seems easy and flexible to
implement, it has a high localization error [2]. The proposed
system starts with the removal of noisy RSSI values followed
by the proposed positioning method explained below.

3.1. Filtration of Measured RSSI. Due to several noise factors
and attenuation, RSSI exhibits high variability in space and

Determination of
reference points (xi, yi) on

testbed

Estimation of RSSIs (Rj)
from j beacons

Store avg. RSSIs (Rj
)

from j beacons at (xi, yi)

Database Output coordinate (xfl, yfl)

O�ine phase Online positioning phase

RSSI smoothing

(Rj, (xi, yi))

Weighted K-NN
�ngerprinting algorithm

Figure 4: The process flow of fingerprinting localization method.
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Figure 3: The offline phase of fingerprinting localization. The green dots are reference points, and RSSI0 represents RSSI value at 0
° to the

reference direction.
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time [9, 11]. That is, RSSI at a tag device fluctuates over time.
Hence, it is important to find the correct RSSI values that
eventually help to reduce the estimation error. For that
reason, in this study, we have utilized a Gaussian filter to
estimate RSSI values in training or offline phase and the
moving average filter for smoothing the real-time RSSI in test
or online phase.

3.1.1. Gaussian Filter for Training Data. The distribution of
RSSI at a particular point can be thought as a Gaussian distri-
bution [5, 22]. We perform statistical distribution of RSSI at
our testbed as shown in Figure 5. As depicted in Figure 5,
since the Gaussian distribution can represent the random-
ness of RSSI in a real environment, we use a Gaussian filter
for estimating the value of RSSI to construct radio map data-
base in the training phase. The mean (μ) and variance (σ2) of
Gaussian filter are given as follows:

μ =
1

N
〠
N

n=1

RSSIn,

σ
2 =

1

N − 1
〠
N

n=1

RSSIn − μ
2,

3

where n is the number of samples.
Now, the probability density function is formulated as

f RSSI =
1

σ 2Π
e− RSSI−μ 2/σ2 4

We accept the centralized RSSI values (68.2%) that lie in
the effective range of μ + σ and μ − σ. The RSSI is estimated
by averaging the values that are in the effective range.

3.1.2. Moving Average Filter for Smoothing RSSI. As shown
in Figure 5, the randomness of RSSI can lead to significant
variation in RSSI value. Hence, it is mandatory to smooth
the real-time-received RSSI for reducing the probable
localization error. The moving average filter can be explained
as follows.

Let us consider the following dataset.

RSSI0 = RSSI0 1 , RSSI0 2 ,… , RSSI0 n , 5

where RSSI0 n corresponds to the nth RSSI observed
around the tag device.

Now, a set of the last ten elements in (5) is taken and
averaged as follows:

RSSI1 = RSSI1 1 , RSSI1 2 ,… , RSSI1 n − 9 , 6

where RSSI1 k =∑k+9
m=kRSSI0 m and k ≥ 1 Here, when the

number of RSSI sample is less than 10, we take average of
all the samples; hence, there will not be any delay in real-
time position estimation.

The result after using the moving average filter is shown
in Figure 6.

3.2. Distance Observation from RSSI. After the RSSI estima-
tion, it is converted to distance using the following relation
between distance and received power [2, 23].

Pr d dBm = A − 10n × log10 d , 7

where Pr d is the received RSSI in dBm at distance d,
A is the received RSSI at one meter, and n is the path
loss exponent.

3.3. The Proposed Positioning Method. The proposed
technique integrating two different localization technolo-
gies contains two major steps of operation. At the first
stage of operation, both fingerprinting, with lightly popu-
lated reference points over testbed (we call it FPlight in
the rest of the paper), and WCL localizations perform
individually. That is, the coordinates estimated from FPlight
and WCL are obtained. These estimated coordinates and
their respective measured distances are further processed
in the next WCL operation as the second step of the
procedure. As we know, in weighted k-nearest neighbor
fingerprinting localization, a certain weight is assigned to
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Figure 5: Distribution of RSSI at a certain point. (a) Fluctuation of RSSI values and (b) Gaussian probability distribution.
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“k” nearest neighbor depending on their Euclidean dis-
tance to observed online value. In our method too, we
locate “k” nearest neighbor depending on observed online
value. However, the weights of these nearest neighbors are
determined depending on their Euclidean distance to first
WCL coordinate estimation.

In brief, the proposed practical fingerprinting method
combines WCL and traditional fingerprinting localization
while using lightly populated reference points to cover the
whole area of interest. The fingerprint data formed by a site
survey in a Wk-NN fingerprinting method can be summa-
rized as follows:

Fingerprintdata =

RSSIB1
RP1 RSSIB2

RP1 … RSSIBM RP1

RSSIB1
RP2 RSSIB2

RP2 … RSSIBM RP2

⋮ ⋮ ⋱ ⋮

RSSIB1
RPN RSSIB2

RPN … RSSIBM
RPN

,

8

where RSSIB1 RP1 represents RSSI from beacon B1 at RP1

with M and N being the total number of deployed bea-
cons and total RPs on the testbed, respectively. Depending
on the value of M and N , the size of fingerprint datasets
varies accordingly. Here, the proposed method tries to mini-
mize N , keeping the localization accuracy similar to the
existing system.

On the testing phase of the proposed method, RSSI of the
deployed beacons is smoothed using the moving average
filter. Among these beacons, any m numbers of beacons are
selected based on the strongest RSSI value. Distances from
the tag device to these m beacons are estimated for the
WCL method. To consider the beacon deployment in a rect-
angular fashion and to decrease the possible localization
error, four beacons are selected in our work. In the proposed

technique illustrated in Figure 7, WCL and FPlight (selects k
RPs with small distances to test data) methods are run in
the first step. While implementing Wk-NN, authors usually
recommend different values for k such as k = {2} [4]
and k = {3, 4} [24]. In our method, we observed that while
k= {4, 5} is considered, the reference points located far
from the original tag position also get selected (because
of a larger space between the two reference points) and
increase the localization error. We got the least localization
estimation error with k =3. Hence, the value of k is set to
3 in our work, such that the three nearest possible RP
locations are estimated. It is noteworthy that, in a con-
ventional fingerprinting positioning, a high space between
two RPs reduces granularity or accuracy of the position-
ing system and a small space increases accuracy. How-
ever, the small space between the RPs does not increase
the probability of correctly matching the fingerprints
because close reference points may have very similar fin-
gerprints [25].

We have strategically chosen the total number of RPs and
space between them to reduce the localization error as illus-
trated in Section 4. For the sake of uniformity, the height of
the tag device is kept as 1.20m from the ground in “Messag-
ing/testing” position (the usual way of holding smartphone)
in both the training and test phase.

Figure 8 illustrates the process flow of the proposed
method. Here, WCL1 and WCL2 represent WCL operation
with two different input data sets. WCL1 operates with the
beacons to tag distances and their respective weights (as
explained in Section 2.2). Similarly, WCL2 works with the
newly calculated distances and their respective weights.

Let the estimated locations by WCL1 and FPlight (three
RPs) be xw, yw , x f 1, y f 1 , x f 2, y f 2 , and, x f 3, y f 3 ,
respectively, as illustrated in Figure 9. Euclidian distances
between WCL and FPlight estimated locations are calculated
as shown in (9).
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dl = xw − x f l
2
+ yw − y f l

2
, 9

where xw, yw and x f l, y f l refer to the coordinates obtained

from WCL and FPlight, respectively, and l=1, 2, …, k.
Now, the above three calculated distances are con-

verted to their respective weights as in the WCL method
using degree g . Further, in the second step shown in 10,
the three estimated locations by FPlight x f 1, y f 1 , x f 2, y f 2 ,

and x f 3, y f 3 and their respective calculated weights (w1,

w2, and w3) are used for the second WCL estimation
(WCL2). The output of WCL2 estimation is the final location
estimation of our proposed method.

P x, y =
〠k

l=1
x f l ×wl

〠k

l=1
wl

,
〠k

l=1
y f l ×wl

〠k

l=1
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,
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1

d
g
l

10

4. Experimental Results and Discussion

For the proper evaluation of the proposed method, we tested
the proposed positioning method by conducting experiments
at the corridor and the room.

4.1. Testbed 1 (Corridor). The beacons are deployed in a
rectangular form with an orientation towards their opposite
walls at the corridor. For theWCL technique, the four nearest
beacons are selected by their RSSIs. WCL has two main local-
ization properties: (a) The estimated location is confined
inside the location of the beacons, and (b) It drags the loca-
tion estimation towards the nearest beacon from the moving
user. Keeping these properties in mind, we choose different
distinct regions across the corridor for localization measure-
ment purposes. Therefore, measurements are taken both at
the border of the rectangular polygon formed by beacons
and at central regions of the polygon. Moreover, in any
region, measurements are taken at three different places as
shown in Figure 10, such as away from the wall (A), midway
of the corridor (B), and near the wall (C). Also, the degree
value can be adjusted for best positioning result in WCL. If
g is kept high, the localization estimation moves to the closest
anchor position. On the other hand, very low value (near to
zero) may also yield the localization estimation as a centroid
point. Hence, we evaluated the localization estimation error
of WCL with different values of g (0.4, 0.5, 0.8, and 1.2) in
our testbed as shown in Figure 11. At a measurement place,
100 measurements are taken and the location estimation
error is averaged. Table 1 gives the glimpse of experimental
condition at the corridor.

As shown in Figure 11, the performance of the WCL
method with degree 0.5 is better than others in our testbed.
Therefore, the WCL method with degree 0.5 is used for the
proposed fingerprinting process. With this beacon deploy-
ment configuration, the proposed localization technique is
implemented at the corridor. Then, we evaluate the

performance of our method with various numbers of refer-
ence points over the testbed.

At first, we took 12 reference points such that there was a
reference point in between any two beacons along the
corridor. Later, we increased the number of reference points
uniformly over the testbed to 19, 26, and 36, as depicted in
Figure 12. We compared our proposed fingerprinting with
weighted K-NN fingerprinting localization. For this, since
we are confined to two opposite walls of the corridor, we
divided the testbed into 62 uniform grids of length 1.25m
and breadth 0.9m, forming 62 fingerprinting reference points
or radio map cells. Wk-NN fingerprinting was also per-
formed using 36 reference points intended for the proposed
practical fingerprinting localization. The value of k is set to
4 for better localization estimation in Wk-NN fingerprinting.

At first, we observed the cumulative distribution function
(CDF) of the localization estimation error at a fixed point in
testbed by various positioning methods. Since the proposed
method with 12 and 19 reference points have a very high
location error, we excluded them in this observation. The
CDF of the localization estimation error at the corridor is
given in Figure 13.

For an exhaustive study, a location error is estimated at
three regions: (i) the center of the polygon formed by bea-
cons, (ii) the border of the rectangular polygon, and (iii)
the edge of the corridor or end of beacon deployment as
shown in Figure 14. Similar to the WCL location error esti-
mation, at each region, location error is estimated at three
different places (A, B, and, C). At each measurement place,
we took 200 samples of location estimation error, with 50
samples in each direction 0°, 90°, 180°, and 270° .

In Figures 15, 16, and 17, the mean localization error of
the proposed practical fingerprinting (PF) localization
method in different measurement regions and measurement
places is compared with Wk-NN fingerprinting and WCL.
Since the high space between the two reference points
reduces granularity in normal fingerprinting localization,
the proposed positioning result is compared to Wk-NN fin-
gerprinting with 36 and 62 reference points only.

As shown in Figure 15, the proposed method with less
number of RPs (12 and 19) or high space among reference
points results to a high positioning error. At this condition,
the performance ofWCL is better than the proposed method.
It is so because, at the edge of the corridor, the selected three
nearest RPs are far away from the measurement place.
However, PF with 36 RPs yields a localization error similar
to Wk-NN fingerprinting localization.

Figure 16 shows the location estimation error at three
measurement places (A, B, and C) in the border region of
the rectangular polygon. Here, the PF with 36 RPs has almost
similar or lesser localization error to Wk-NN fingerprinting
with 62 reference points. However, the positioning result
with the lesser number of RPs has a high mean error. The
positioning error of the proposed method with 36 and 26
RPs has less difference as compared to that of PF with 19
and 12 RPs. It is so because the border region contains RPs’
location that can be utilized for PF with 26 RPs (see
Figure 12). It is also observed at the edge of the corridor
(see Figure 15). A similar result follows at the center of the
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rectangular polygon as shown in Figure 17. Here, the k-
nearest RPs are far away for PF with 26 and 19 RPs.
Therefore, they yield more localization errors.

Furthermore, in all regions of the corridor, the location
estimation error is lower at the midway (measurement place
B) and higher near the walls. This condition has less effect for
real indoor positioning applications because people tend to
walk down the middle of the corridor and avoid the places
near the walls. The lowest and highest average errors
obtained in testbed 1 are 0.8679m and 1.14m, respectively.
While using the proposed method with 36 reference points
across the testbed 1, we can reduce the number of reference
points by 41.93%.

4.2. Testbed 2 (Room). The experimental conditions for
evaluation of the proposed method at the testbed 2 are listed
in Table 2.

Table 1: Experiment conditions for the evaluation of the proposed
fingerprinting method at the corridor.

Parameters Value

Total number of beacons (M) 14

Space between two adjacent beacons 4.5m

Breadth of corridor 2.5m

Height of beacon deployment 2.5m

Beacon transmission power +4 dBm

Beacon advertisement interval 300 milliseconds

Tx-Rx devices Estimote beacons, iPhone 4S

A[dBm] −60.85

Path loss exponent (n) 1.3

Degree (g) in WCL method 0.5

Number of reference points (N) 12, 19, 26, and 36

A
B

C

Figure 10: Experimental environment: beacons deployed in the corridor where blue circular dots along the wall of the corridor represent
beacon deployment positions, and measurement places are marked on the floor as A, B, and C.
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Figure 11: Average location error at different measurement places (A, B, and C) in the (a) central and (b) border regions of a rectangular
polygon with a respective degree of weight.
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Here, beacons are deployed at the four corners and cen-
ter of the room. In WCL, shorter distances are more
weighted than higher distances for a fixed value of the
degree (g). Hence, to weight longer distances marginally
lower, g is kept high [7]. However, in our case, beacon
deployment height is almost the same in both testbeds.
Moreover, distance from the tag device to the beacon is also

in a similar range during the operation. Hence, we choose
the value of g as 0.5 in the room too. Although, beacon
density per unit area in the room is much lower than that
in the corridor, all the beacons in the room are much closer
to each other.

Since we are not constrained by two walls as in the corri-
dor, we divided the testbed 2 into a uniform grid with 65 cells

Corridor

2.
5 

m

2.25 m

4.5 m

(a)

2.25 m

Corridor

2.
5 
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(c)
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2.7 m 1.8 m

1.35 m
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(d)

Figure 12: Testbed conditions for fingerprinting positions of (a) 12, (b) 19, (c) 26, and (d) 36 reference point distribution pattern over the
testbed where red stars represent reference points.
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of length and breadth 0.9m for evaluation of Wk-NN finger-
printing. Furthermore, we increased the size of the grid to
1.35m and 1.8m forming 28 and 16 fingerprinting reference
points, respectively. Also, to mitigate the high location error
of WCL near the walls, we added one more reference point
in the middle of each wall. Therefore, the proposed finger-
printing method is evaluated using 20 and 32 reference
points in the testbed 2. Following the localization error
variation of WCL, location error is estimated at three mea-
surements places inside the testbed room as shown in
Figure 18.

The CDF of the location estimation error by various posi-
tioning methods at a fixed point in the testbed 2 is presented
in Figure 19.

A detailed study is done by examining the location
estimation error at three different measurement places inside
the testbed room as shown in Figure 20.

Figure 20 shows the mean localization error comparison
between the proposed method and existing localization

methods Wk-NN fingerprinting and WCL. Due to the fully
furnished testbed condition, localization error is higher in
the room than in the corridor. Measurement place A is the
center of the room where the localization error of WCL
method is least. It is so because, at this measurement place,
a beacon is just above the tag device and the remaining four
beacons are almost at an equidistance to this place. Since a
beacon is very near to the tag device, it has high weight,
and the remaining beacons have relatively low weight. Mea-
surement place C is near a wall of the room, and measure-
ment place B is midway between the wall and center of the
room. PF with 32 RPs closely follows the mean localiza-
tion error of Wk-NN everywhere. However, PF with 20
RPs yields a large localization error due to the large distance
between the RP locations. Similar to the corridor, the locali-
zation error is increased as we move towards the wall of
the room.

As expected, Wk-NN with 65 reference points has the
lowest localization error throughout the room whereas this
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2.
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4.5 m

Border Center Edge

Figure 14: Location error measurement regions in the testbed 1 where any four adjacent beacons form a rectangular polygon (e.g., the
rectangle formed by beacons a, b, c, and d). The red, blue, and green lines indicate the border of the polygon, the center of the polygon,
and the edge of the corridor, respectively.
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Figure 13: CDF of the localization estimation error at a fixed place in the testbed 1.
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method with 32 reference points has a high localization error
due to the larger size of the grid. However, the proposed
method takes the benefit of coarse localization estimation of
WCL and yields a better result. The lowest and highest aver-
age errors obtained by the proposed method (32 reference
points) in testbed 2 are 0.9893m and 1.5529m, respectively.
While using the proposed method with 32 reference points

across the testbed 2, we can reduce the number of reference
points by 49.23%.

4.3. Statistical Validation of the Presented Result. To validate
the reported result, we perform Friedman as the ranking test
[26, 27] and Holm [28] as the post hoc test. For the test, we
set the null hypothesis (H0) as

Mean square error (m)
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(a)
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Figure 16: Average location error at different measurement places at the border of the rectangular polygon: (a) measurement place A,
(b) measurement place B, and (c) measurement place C. PF: proposed practical fingerprinting; Wk-NN: weighted k-nearest neighbor;
WCL: weighted centroid localization; RF: reference points.
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Figure 15: Average location error at different measurement places at the edge of the testbed corridor: (a) measurement place A, (b)
measurement place B, and (c) measurement place C. PF: proposed practical fingerprinting; Wk-NN: weighted k-nearest neighbor; WCL:
weighted centroid localization; RF: reference points.
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(a) Ranking: The means of the results of two or more
algorithms are the same.

(b) Post hoc with control method: The mean of the
results of the control method and against each other
groups is equal (compared in pairs).

The following tests are applied to the STAC web platform
where it is assumed that the lower the result of an algorithm
on a problem, the better of such algorithm [29].

(i) Testbed 1 (corridor): here, we performed the tests for
Wk-NN with 62 RPs, Wk-NN with 36 RPs, PF with
36 RPs, and WCL. Hence, the number of the group
for the test (k) is four and the number of samples

(n) is nine (three different measurement places at
three regions of the corridor). Moreover, the
proposed method with 36 RPs is considered as the
control method with a significance level (α) equal
to 0.05.

The null hypothesis for ranking was rejected by the
Friedman test with a p value of 0.00000. In addition,
the null hypothesis for the post hoc test yielded the
following results.

(1) PF with 36 RPs versus WCL: H0 is rejected with
the p value of 0.00038.

(2) PF with 36 RPs versusWk-NN with 36 RPs:H0 is
rejected with the p value of 0.00697.

(3) PF with 36 RPs versusWk-NN with 62 RPs:H0 is
accepted with the p value of 0.85513.

(ii) Testbed 2 (room): the ranking test is done for Wk-
NN with 65 RPs, Wk-NN with 32 RPs, PF with 32
RPs, and WCL. Here, the number of the group for
the test (k) is four and the number of samples (n) is
three (three different measurement places inside the
testbed room). The null hypothesis for ranking was
rejected by the Friedman test with a p value of
0.01144. Similarly, the proposed method with 32
RPs is considered as the control method with a signif-
icance level (α) equal to 0.05. The null hypothesis for
the post hoc test yielded the following results.

(1) PF with 32 RPs versus WCL: H0 is accepted with
the p value of 0.08057.
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Figure 17: Average location error at different measurement places in the center of the rectangular polygon: (a) measurement place A,
(b) measurement place B, and (c) measurement place C. PF: proposed practical fingerprinting; Wk-NN: weighted k-nearest neighbor;
WCL: weighted centroid localization; RF: reference points.

Table 2: Experiment conditions for the evaluation of the proposed
fingerprinting method at the room.

Parameters Value

Total number of beacons (M) 5

Length/breadth of the room 7.28m× 7.24m

Height of beacon deployment 2.7m

Beacon transmission power +4 dBm

Beacon advertisement interval 300 milliseconds

Tx-Rx devices Estimote beacons, iPhone 4S

A[dBm] −64.97

Path loss exponent (n) 1.6

Degree (g) in WCL method 0.5

Number of reference points (N) 20 and 32
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Figure 20: Average location error at different measurement places in the room: (a) measurement place A, (b) measurement place B, and
(c) measurement place C. PF: proposed practical fingerprinting; Wk-NN: weighted k-nearest neighbor; WCL: weighted centroid
localization; RF: reference points.
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Figure 18: Panoramic view of the experimental environment: beacons deployed in the room where blue circular dots represent beacon
deployment positions, and measurement places are marked with red arrows (A, B, and C).
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Figure 19: CDF of localization estimation error at a fixed place in testbed 2.
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(2) PF with 32 RPs versus Wk-NN with 32 RPs:H0 is
accepted with the p value of 0.11556.

(3) PF with 32 RPs versus Wk-NN with 65 RPs:H0 is
accepted with the p value of 0.75783.

The null hypothesis for Friedman rank test is rejected at
both the testbeds with a p value much lower than the signif-
icance level. Moreover, the null hypothesis for the post hoc
tests compared in a pair of the proposed method and the
Wk-NN (62 and 65 RPs) is accepted at both the testbeds with
a p value much larger than the significance level. It signifies
that performance of the proposed method differs from other
methods, and the mean localization accuracy of the proposed
technique is statistically similar to the existing Wk-NN
fingerprinting approach.

5. Conclusion

The proposed fingerprinting method shows the reference
points reduced for fingerprinting localization. We measured
the performance of our method using various numbers of
reference point cells over the localization area. We showed
that it is possible to reduce the required number of reference
point cells over a localization area using the traditional
fingerprinting localization by joining it with another lateral
approach to IPS. We used BLE as wireless technology to
realize our proposed method of IPS. Since we use fewer
reference points, the proposed method is less cumbersome
and less time consuming than the traditional fingerprinting
method. Moreover, the yielded location estimation is better
than the location estimation by the WCL method when it is
used solely.
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